

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Feb 09, 2025

Mapping and Scheduling Automotive Applications on ADAS Platforms using
Metaheuristics

McLean, Shane Daniel Geisler; Craciunas, Silviu S.; Alexander Juul Hansen, Emil; Pop, Paul

Published in:
Proceedings of 25

th
 IEEE International Conference on Emerging Technologies and Factory Automation

Link to article, DOI:
10.1109/ETFA46521.2020.9212029

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
McLean, S. D. G., Craciunas, S. S., Alexander Juul Hansen, E., & Pop, P. (2020). Mapping and Scheduling
Automotive Applications on ADAS Platforms using Metaheuristics. In Proceedings of 25

th
 IEEE International

Conference on Emerging Technologies and Factory Automation Article 9212029 IEEE.
https://doi.org/10.1109/ETFA46521.2020.9212029

https://doi.org/10.1109/ETFA46521.2020.9212029
https://orbit.dtu.dk/en/publications/f6133ad1-1efd-40f0-90a7-873b506e8213
https://doi.org/10.1109/ETFA46521.2020.9212029

Mapping and Scheduling Automotive Applications

on ADAS Platforms using Metaheuristics

Shane D. McLean∗, Silviu S. Craciunas†, Emil Alexander Juul Hansen∗, Paul Pop∗

∗Technical University of Denmark Kongens Lyngby, Denmark; paupo@dtu.dk
†TTTech Computertechnik AG, Vienna, Austria; silviu.craciunas@tttech.com

Abstract—Modern Advanced Driver-Assistance Systems
(ADAS) merge critical and non-critical software functions
with complex timing requirements and inter-dependencies
onto the same integrated hardware platform. Real-time safety-
critical automotive applications feature complex dependency
chains between tasks (e.g., performing sensing, processing and
actuation) which have to satisfy worst-case end-to-end latency
constraints. The resulting scheduling problem requires both
the assignment of tasks to the available cores of the platform
and the computation static schedule tables for the real-time
tasks, such that task deadlines, as well as end-to-end task chain
constraints, are satisfied. We propose a heuristic approach based
on Simulated Annealing (SA) which creates static schedule
tables by simulating Earliest Deadline First (EDF) scheduling
parameterized by task offsets and local deadlines decided by SA.
We evaluate the proposed solution with real-world and synthetic
test cases scaled to fit the future requirements of ADAS systems.

Index Terms—Automotive applications, task scheduling, task
preemption, Simulation

I. INTRODUCTION

Modern vehicles integrate a growing number of complex

functions, commonly known as Advanced Driver Assistance

Systems (ADAS), which provide driver assistance, e.g. au-

tomated or assisted parking, lane changing and emergency

brake assistance and even fully autonomous driving. The

growing trend to migrate more and more of ADAS functions

from hardware to software allows modularization within an

integrated hardware platform that can be cooperatively used

and centrally managed [1].

The fusion of multiple software functions into the same

hardware platform has multiple advantages, like reusability

and portability, but also several challenges, especially in terms

of real-time, testing and safety [2]. This paradigm enables

the integration of functions of different criticality levels in

a composable manner with guaranteed temporal and spatial

isolation such that they can coexist on the same platform

without sacrificing real-time capabilities. However, this mixed-

criticality paradigm applied to the automotive domain requires

new concepts in terms of safety-critical temporal and spatial

isolation, new scheduling results and configurations tools, as

well as analysis methods for SIL certification (c.f. [1], [3]).

Generally, ADAS platforms are composed of heterogeneous

multi-core CPUs and Systems-on-chip (SoCs) of different per-

†The research presented throughout this paper has partially received fund-
ing from the European Community’s Horizon 2020 programme under the
UP2DATE project (grant agreement 871465).

formance and safety levels, that are interconnected by a (real-

time) communication backbone [4], [5]. In such integrated

platforms, the ADAS functions have not only complex tim-

ing requirements but also feature a complex interdependence

between sensors, control software and actuators. For example,

one function for driver assistance collects sensor data from

both cameras and distance sensors (ultrasonic, LIDAR) into

a sensor fusion layer which transmits the data to control

algorithms that activate e.g. the emergency brake system.

This succession of function execution creates a temporal

dependency chain, which has to comply to a set of timing

requirements in terms of latency. In order to guarantee both

the interdependence and real-time timing behavior, the ADAS

functions have to be scheduled in an appropriate manner.

Moreover, other less critical systems, like infotainment, are

also integrated into the same platform, and must not interfere

with the real-time behavior of critical functions.

In this paper1, we present a heuristic-based scheduling

algorithm for ADAS platforms, that takes into account the

different dimensions of timing and dependency requirements

and is designed with scalability in mind. The optimization

algorithm is based on a Simulated Annealing metaheuristic,

which takes into account not only the timing constraints but

also design goals, such as function allocation on computing

units. For the function allocation we use a regular task model

in which the WCET changes based on the core speed and the

communication happens at the end of task instance execution.

Future work may also include the LET model [8] which is

becoming increasingly popular in the automotive domain since

it can provide deterministic communication behavior.

The scheduling of task sets with dependencies has been a

well-studied topic within the real-time community (e.g. [9]–

[11]). In the context of ADAS, the complex task chain

requirements have been addressed in terms of computing the

worst-case end-to-end latency of a chain based on a given

schedule (c.f. [12], [13]). In such approaches, the schedule

is fixed by the scheduling policy (e.g., fixed priority) and

the analysis focuses on determining the worst-case latency,

when there is variance in the execution of said tasks. Our

approach is different in that it generates schedules, that already

adhere to the task chain requirements, which does not neces-

sitate a further analysis, since the real-time requirements are

1The paper is based on original technical material contained in a thesis of
the author [6] which is archived as a technical report [7].

Deterministic Ethernet / PCIe

Task1

Safety
Safety/

Performance Performance

CPU

CPU

CPU

CPU

CPU

CPU

GPU

GPU

CPU

CPU

CPU

CPU

RTOS

Task2 Task3 Task4 Taskn…

Autosar OS Linux / Android

Abstraction Layer / Middleware

Fig. 1. High-level platform model.

guaranteed by the schedule construction. In [14], the authors

present a model-checking based method to compute worst-

case response times and end-to-end latencies of tasks, that

have chain dependency and communication constraints. In the

work presented in [15], the authors introduce a task chain

latency analysis, that does not require information about the

concrete scheduling algorithm.

To the best of our knowledge, this is the first work to

propose a heuristic-based solution to the combined task-to-

core assignment and scheduling problem in ADAS platforms

that generates schedule tables which respect both task and

complex task chain timing constraints.

We start by introducing the platform and application models

in Sections II followed by a description of the scheduling

problem (Section III). We introduce the algorithm in Sec-

tion IV followed by an experimental evaluation in Section V

and conclude the paper in Section VI.

II. PLATFORM AND APPLICATION MODELS

A. System Model

The ADAS hardware platform is a multi-core multi-SoC

embedded ECU featuring a variety of CPUs and Graphics

Processing Units (GPUs) running at different speeds, which

are interconnected through either a deterministic Ethernet

backbone (TSN [16], TTEthernet [17]) or through PCIe. Ra-

zorMotion [18], for example, features a Renesas RH850P/1H-

C ASIL D MCU with lockstep cores running at 240 MHz and

two Renesas R-Car H3 ASIL B SoCs with four Cortex A57,

four Cortex A53, one Cortex R7, one IMP-X5, and one IMG

PowerVR GX6650 GPU.

Figure 1 presents a high-level view of the ADAS platform.

Each host can run a different operating system depending on

the safety and performance requirements. Each such OS can

have a different scheduling policy, ranging from fixed-priority

(AUTOSAR [19]) to table-driven or dynamic priority schedul-

ing (typically in safety RTOSes). However, there is a growing

tendency to use a table-driven static schedule execution due

to the compositionality and isolation properties [20]–[23], i.e.

tasks that are already scheduled are not influenced by new

tasks being added to the system. In order to provide a common

execution environment and hardware abstraction, a middleware

layer, e.g. the MotionWise [18] layer, is running on top of

0 10 20 30 40

Latency 1

Latency 2

𝜏

𝜏

𝜏

𝜏

1

2

3

4

Fig. 2. Task chain example.

each operating system. The middleware layer also ensures

portability of software functions to be located according to

their execution and safety requirements [1]. Moreover, the

middleware layer provides the capability to execute tasks

according to a table-driven pre-computed schedule indepen-

dent of the underlying OS dispatching mechanisms which

ensures temporal isolation [22]. Hence, in this paper we focus

on creating static schedules for the table-driven dispatching

mechanism of such ADAS systems.

We model an ADAS platform as a graph A(V,E), where

each vertex vi ∈ V is a processor and the edges E are the

communication links between the processors. Each processor

vi ∈ V has a list of cores Ci.

B. Application Model

On top of this platform a large number of different soft-

ware functions, implemented by different vendors, must be

integrated and deployed. It is crucial that software functions

(which may be tested independently) can be integrated with

other software functions compositionally. The system is com-

posed of applications (called tasks or runnables), that are either

pre-assigned to cores or must be assigned by the scheduling

algorithm. Tasks have real-time requirements, both in terms of

execution (offset, deadline, jitter) as well as temporal depen-

dencies arising from task chains (defined below). We model

the applications as a set of n periodic tasks, Γ= {τi | 1≤ i≤ n},
similar to the model in [24]. A task τi is defined by the tuple

(σi, ri, φi, Ci, Ti, Di) with σi representing the core, Ci denoting

the computation time, Ti the period, ri the earliest release time,

φi the initial offset/displacement of task arrival times and Di

the relative deadline of the task under the assumption that

Di≤ Ti. Each real-time task τi yields an infinite set of instances

(jobs) τi,k,k = 1,2, . . . [25, p. 80]. Tasks can be preempted

at any time instant on a timeline with macrotick granularity

given by the underlying OS capabilities. If a task τi is pre-

assigned to a core, then its core σi will be given. Otherwise,

we decide their assignment to a specific core, in that the σi of

a task τi can take any value from a finite set of core values Ci.

The assignment of tasks to cores is captured by the mapping

function M : Γ→Ci.

Currently, tasks cannot migrate at run time, after they

have been assigned to a core, but in the future we envision

that task migration, when done properly with respect to the

deterministic timing behavior, will allow even better resource

utilization. The scheduling allows preemption, i.e., a table can

be constructed such that a task is interrupted by another task,

and then resumes its execution.

For a given mapping M, we denote the schedule table with

S . In this table, each task τi has a list of offsets Φi on its

core σi. The first offset in Φi, denoted with φi, captures the

initial offset of τi’s arrival time within the schedule, and the

rest of the offsets in Φi are the times when task τi resumes

its execution, if preempted. Figures 2 and 3 show examples of

such schedule tables.

C. Timing Constraints

Each task may have implicit timing constraints arising out

of the task definition and explicit design parameters in terms

of arrival offsets and/or deadline requirements. Hence, a task

must execute periodically with the given period Ti, and in

each period it must finish its worst-case execution Ci within

the defined deadline Di, starting after the earliest release

time ri. In addition, tasks may also have jitter requirements,

i.e. constraints on the variance of execution of consecutive

period instances [25, p. 81-82], due to control loop considera-

tions [26]. We denote the jitter requirements of a task τi with

Ji and the observed jitter ji, i.e., for any two consecutive task

instances, the maximal deviation of both starting and finishing

times are bounded by Ji.

Other timing requirements are related to message passing

between tasks, where the communication latency have to be

considered. The most complex set of timing requirements

come from the so-called task (or event) chains (c.f. [15]). A

task chain specifies, that at least one instance of every task in

the given task chain list has to be executed in the specified

order within a given maximum end-to-end reaction latency.

These chains also have a priority, pi, which can be used for

optimization criteria. Since the tasks in the chain can be on

different hosts/cores, the communication latencies must be also

taken into account. Please note that tasks in the chains may

have different activation patterns and periodicity.

We give a simple example of a task chain in Figure 2

composed of 4 tasks, a source (τ1), two processing tasks (τ2,

τ3) and a sink (τ4) with periods of 20 ms, 10 ms, 10 ms and

20 ms, respectively. From each instance of the source there

needs to be a succession of instances of the other tasks in the

right order such that the latency is not exceeded. It is allowed,

that an instance of the processing or sink tasks merges multiple

signals. In the example, the sink merges the signal from two

execution instances of the processing task τ3.

Let Lℵ denote the set of task chains, where a task chain is

given by the tuple ℵi = ({τ1 ≺ ...≺ τk},Li, pi) with Li being

the allowed end-to-end latency and pi ∈ [0,1] is the priority.

For a chain ℵi = ({τ1 ≺ ...≺ τk},Li, pi)∈Lℵ, we formalize

the correctness condition for the in-order execution and end-

to-end latency requirement as follows:

∀τ1,x,x ∈
{

0, . . . ,
hpi

T1

}

: ∃{y2, . . . ,yk} such that

start(τ2,y2
)≥ end(τ1,x)∧ end(τk,yk

)− start(τ1,x)≤ Li∧
(

∀ j ∈ {2,k−1} : start(τ j+1,y j+1
)≥ end(τ j,y j

)
)

,

(1)

where hpi is the hyperperiod of the chain ℵi calculated as

the least common multiple of the periods of the tasks in

the respective chain and interfering tasks2 and start(τi, j) and

end(τi, j) denote the start and end of the execution of the job

τi, j, respectively.

III. PROBLEM FORMULATION

The scheduling algorithm needs to find an assignment of

unassigned tasks to cores such that the tasks are schedulable

on each assigned core with respect to their timing constraints

(offsets, deadlines, and jitter) as well as with respect to the

task chain requirements. Moreover, since there is communi-

cation either between individual tasks or between tasks in

a task chain, the scheduling algorithm also needs to find a

schedule for the deterministic communication backbone that

respects the required maximum latencies. For this paper we

focus on the scheduling problem on the task level and only

consider the communication cost as a constant delay for a

PCIe communication backbone, as part of a task’s WCET.

Extending the scheduling strategy for the communication layer

for TTEthernet and TSN backbones is subject for future work.

As an input to our problem we have (1) the ADAS platform

A and (2) the applications, denoted by the set of tasks Γ,

including the task chains Lℵ and all the mapping and timing

constraints. We are interested to determine (i) a mapping M of

tasks to the cores of the platform and (ii) a static schedule S of

tasks on each core, such that the task deadlines and their jitter,

as well as end-to-end constraints on task chains are satisfied.

IV. MAPPING AND SCHEDULING STRATEGY

As can be seen, the scheduling problem resulting out of the

platform and task models is very complex and necessitates new

scheduling approaches. While other approaches use optimal

algorithms (e.g., based on Optimization Modulo Theories or

ILP [27]), the size and growing complexity of ADAS platforms

make such approaches infeasible in practice. It is expected

that ADAS platforms, which already have the complexity of

an entire in-vehicle electronics system [18], will grow to a

scale of thousands of functions with hundreds of complex

event chain requirements. We therefore aim to find a heuristic

algorithm that can scale with the growing ADAS trend and can

solve complex scheduling problems in a realistic time frame.

We describe a Simulated Annealing (SA)-based metaheuris-

tic approach, first introduced in [6], [7] and extended in [28],

[29], which uses an EDF-based heuristic to solve the task

scheduling problem. The scheduling heuristic allows task

preemption by simulating an Earliest Deadline First (EDF)

scheduling policy parameterized by task offsets and local

deadlines decided by SA, see Section IV-C. For a mapping

of task to cores we assign, according to our SA strategy, an

offset and a deadline to each task and simulate EDF to obtain

the static schedule, if one can be found. We then check if

the schedule adheres to the timing requirements imposed by

the jitter and task chain constraints. The algorithm, explained

2I.e., tasks that execute on the same core as the tasks in the chain

in detail in Section IV-A, tries to modify the mapping of

tasks M, the task offsets (φi ≥ 0) and deadlines D, in order

to find an optimal solution with respect to the end-to-end

latency of chains. The novelty in our approach is that our

proposed Simulated Annealing method makes use of the

different dimensions, that influence task execution, i.e., task

mapping, task offsets and task deadlines in order to converge

to a near-optimal solution faster than traditional approaches.

A. Simulated Annealing

Simulated Annealing is a heuristic method that aims to op-

timize solutions by randomly selecting a candidate solution in

the neighbourhood of the current one [30]. The SA algorithm

is a variant of the neighborhood search technique, where the

local search space is explored by moving from the current

solution to a neighbor solution [31, p.285]. A new solution is

accepted if it is an improvement, however, a worse solution

can also be accepted with a certain probability that depends

on the deterioration of the cost function Cost and on a cooling

scheme captured by the initial temperature, ts and a cooling

rate cr, which is the rate at which the temperature drops with

time [31, p.285].

An essential component of the algorithm is the generation of

a new candidate solution s′ (also called neighbor) starting from

s. The neighbor solutions s′ are generated through performing

design transformations (also called moves) on s.

SA is presented in Alg. 1, and it takes as input: The platform

model A, the applications Γ, the initial solution s0 which acts

as the starting point of the search (s0 is generated by a Greedy

mapping algorithm, where tasks are iteratively assigned to

those cores that have the most available utilization), the

initial temperature ts, the cooling rate cr which controls the

Algorithm 1 SimulatedAnnealing(A,Γ,s0, ts,cr, i)

1: t← ts
2: s← ScheduleSynthesis(A,Γ,s0)

3: s∗← s

4: while timeleft do

5: while t > 1.0 do

6: for k← 1 to i do

7: s′← GenerateNeighbor(A,Γ,s)

8: if Cost(s′)<Cost(s) then

9: s← s′

10: if Cost(s′)<Cost(s∗) then

11: s∗← s′

12: end if

13: else if exp(Cost(s)−Cost(s′)
t

)> random[0,1] then

14: s← s′

15: end if

16: t← t · (1− cr)
17: end for

18: end while

19: end while

20: return s∗

temperature decay, and the number of iterations to maintain a

static temperature i.

We denote with s′ the neighboring candidate solution gen-

erated from the currently accepted solution s, line 7. Also, s′

is accepted if it improves on s, line 9. The cost function Cost

used to evaluate a solution is detailed in Section IV-B. We

record the best so far solution s∗ at line 11. SA returns s∗ (at

line 20) when it terminates, that is when the allotted time has

expired (line 4). As mentioned, the main feature of a SA is

that we also accept worse solutions, with a certain probability,

see line 13 in Alg. 1.

The GenerateNeighbor procedure functions as a simple state

machine, allowing different moves to be chosen randomly.

We use three moves, described in the following, SwapTask,

AdjustOffset and AdjustDeadline. Various probability assign-

ments for these moves were tried, and, based on observations

from performed experiments a uniform distribution has been

chosen for all actions.

AdjustDeadline adjusts the deadline of a single randomly

selected task. Only tasks that failed at complying to the jitter

constraints, are potential candidates for this move. Note that

the deadlines in D are used to control the resulting EDF

schedule. We do not change the relative deadline Di of the

task, which is one of its timing constraints. For a task τi,

AdjustDeadline will modify the deadline used by EDF to

schedule τi, such that it is lower or equal to Di. We check for

each resulted schedule that all timing constraints are satisfied.

SwapTasks swaps the core mapping of two randomly

selected tasks, considering the imposed mapping constraints.

For example, if the task has a processor affinity, the swapping

is done within the cores of the particular processor. Only tasks

that are allowed to swap, are considered, meaning only tasks

without a predefined core assignment. Offset and Deadline

adjustments are reset to zero for both tasks when performing

this action. Finally, the utilization/core load is not considered,

and as such this action might overload one of the cores.

AdjustOffset changes the offset of a randomly selected

task. This action has two modes. (1) It will select tasks from

a specific processor, if deadline/jitter constraints are violated.

The target is determined by the processor with the highest

number of accumulated violations. Initially, the specific core

were also included as part of the selected, however it decreased

the performance. (2) If no deadline/jitter violations occur, then

the task is chosen randomly from the complete task set.

B. Cost Function

The cost function (Cost), defined in Eq. 2, captures both a

minimization objective with respect to the end-to-end latency

of task chains and penalties representing constraint violations

given by the application. We introduce ρℵ as a weighted

average cost of computation chain violations as well as ρD

and ρJ representing deadline and jitter costs (defined below).

The function itself has two cases, (1) a value if the solu-

tion configuration meets all the timing constraints and (2) a

combination of static and dynamic penalties, if one or more

timing constraints are violated, i.e.,

Cost(s) =











∑
ℵi∈Lℵ

li
Li
·pi

|Lℵ|
·w1 if χ(s) = true

w1 +ρℵ +ρD +ρJ if χ(s) = false

(2)

where χ(s) is a test defined by χ(s) = ρℵ +ρD +ρJ 6> 0.

The minimization objective is the average weighted distance

of the measured end-to-end latency li over the imposed con-

straint Li, of all task chains. The static penalty w1 in Eq. 2

for χ(s) = false ensures, that any invalid solution will be

rated worse relative to that of any valid solution. That is,

it adjusts the score such that the minimal penalty value is

higher than that of any feasible solution, thereby preventing the

annealing process from accepting any invalid candidate over

a valid one, as the currently best. Furthermore, the penalty

function incurs an increased cost, if any end-to-end, deadline

or jitter constraints are violated, as also evident from Eq. 2.

Here ρℵ, listed in Eq. 3, measures the weighted average of

end-to-end violation. The violation of a chain ℵi is defined

as the difference between its highest observed chain latency li
and its end-to-end constraint Li.

ρℵ =

∑
ℵi∈Lℵ

min(Li,max(0,li−Li))
Li

|Lℵ|
·w2 (3)

Also, from Eq. 3 we see that the observable violation range

is clamped in the interval [0,Li], whereas the penalty itself is

bounded by [0,w2] and grows proportionally with the number

of violations.

Likewise, the additional deadline and jitter costs (ρD and ρJ)

is listed by Eq. 4 and Eq. 5, respectively. Here ρD measures

the weighted average of deadline violations with a violation

range clamped in the interval [0,Di]. The deadline violation

of a task τi is denoted as the difference between the maximal

relative finishing time of all τi’s instances fi and the relative

deadline Di.

ρD =

∑
τi∈Γ

min(Di,max(0, fi−Di))
Di

|Γ|
·w3. (4)

Finally, ρJ measures the weighted average of jitter violations.

We define the jitter violation of a task τi as the difference

between the maximal observed jitter ji and the threshold Ji.

The violation range is then clamped in the interval [0,Ji].

ρJ =

∑
τi∈Γ

min(Ji,max(0, ji−Ji))
Ji

|Γ|
·w4, (5)

In Eq.2-Eq.5, we list w1,w2,w3 and w4 as static weights

designed to capture the importance of the respective violation

with the following constraints: w2 ≥ w1, w3 ≥ w1, w4 ≥ w1.

The constants were determined based on manual experimen-

tation and observations, with w1 through w4 set to 10,000,

40,000, 10,000 and 60,000, respectively. Please note that there

are no optimal values for the weights, since they have to be

adapted to the application domain, criticality definitions and

design goals of the respective use-case.

Algorithm 2 ScheduleSynthesis(A,Γ,s)

1: Initialize(s)

2: l← 2 ·hyperperiod +MaxOffset

3: for each vi ∈ V ∈ A do

4: for each σk ∈ vi do

5: Enqueue(Qσ ,σk)

6: end for

7: end for

8: while Empty(Qσ) is false do

9: σ ← Dequeue(Qσ)

10: cycle←NextCycle(σ)

11: if cycle < l then

12: next← EDFSimulation(σ ,cycle)

13: SetNext(σ , next)

14: Enqueue(Qσ ,σ)

15: end if

16: end while

17: return s

The penalty function has been devised such that small

improvements, with respect to violations, will reduce the

weighted penalties, ideally leading to gradual improvements.

If a course-grained penalty function is used, it would result in

a lot of equal values between candidates with respect to their

fitness. Using the fine grained approach, the penalty is thus

a tighter approximation of the true distance from achieving a

valid solution.

C. EDF Simulation for Schedule Synthesis

Scheduling of tasks to processors is a well researched

topic [32]. In our case, it is intractable to generate optimal

schedules, hence we use a heuristic algorithm. In order to

include task preemption in a simplified manner, we propose

a schedule synthesis heuristic (Alg. 2) based on simulating

Earliest Deadline First (EDF) scheduling, similar to [11], [28],

[29]. EDF is a scheduling algorithm [25] which prioritizes

tasks at each time instant depending on their deadlines, i.e.,

the one with the earliest deadline will get control of the CPU.

Given the task WCETs, offsets and deadlines, the schedule

table S is generated by simulating how EDF would execute

tasks until the hyperperiod. For a given mapping, offsets and

deadlines, EDF will always produce the same schedule. We

vary the output schedule produced by the EDF simulation

by allowing the Simulated Annealing to change the mapping

M, offsets φi of each task τi and deadlines D via the moves

presented earlier.

ScheduleSynthesis receives as input the architecture A,

applications Γ and the the solution s to be simulated by EDF

(containing the mapping M, offsets φ and deadlines D). Due to

the nature of task chains and their temporal dependencies, the

simulation of each core cannot be executed separately. That

is, each schedule produced by the individual EDF simulations

must take every other task execution into account.

We start by assigning all tasks to their respective cores

(line 1 in Alg.2). All tasks without a task mapping will

0 10 20 30 40
Latency 1

Latency 2

!

!

!

1

2

3

(a) End-to-end task chain latencies not satisfied

0 10 20 30 40
Latency 1

Latency 2

!

!

!

1

2

3

!

!

1

3

(b) End-to-end task chains latencies satisfied

Fig. 3. Unoptimized (a) vs. optimized (b) schedules.

be mapped according to a best-fit strategy with respect to

utilization, i.e., balancing the processor and core utilization.

We run the simulation for a length l (set in line 2), af-

ter which the schedule will repeat itself. l is defined by

2 ·hyperperiod+MaxOffset, where hyperperiod is determined

as the Least Common Multiple of all tasks in Γ and the

MaxOffset is the maximum over all offsets φi [33].

The iteration over the simulation length l is done in the

while-loop in ScheduleSynthesis (lines 8–16). The current time

is captured by cycle, and we advance the time to the next event,

that needs to be simulated.

The EDF simulation is performed per core σ (line 12) and

we use a queue Qσ , containing all cores from all processors,

ordered by the earliest event that needs to be simulated. To

start the simulation, lines 3–7 add cores to the queue Qσ , by

visiting all the cores in the architecture A.

The next event to be simulated is determined by taking the

head of the queue Qσ (Dequeue) and calling NextCycle. We

add cores to be simulated in Qσ only if we are still within

the simulation length l. The while loop stops, when there are

no cores to be simulated (Qσ is empty). The EDF simulation

logic is taking place in the EDFSimulation function , called

at line 12, which simulates up to the next event, which is

returned. The product of ScheduleSythesis is then a recording

of all occurred events, from which we can derive the schedule

table S of the current solution s.

Our EDFSimulation implementation is able to skip unneces-

sary cycles. It does so by progressing towards the nearest event

defined by either releasing a tasks from the waiting queue,

choosing the task with the earliest deadline first from the ready

queue, completing a task or allowing preemption to occur on

certain break point defined by a parameter called macrotick for

each core. The macrotick defines the preemption granularity.

The macrotick is set such that it allows preemption, under the

constraint that the overhead due to context switches, on each

processor, should be low, see [11], [34], [35] for a discussion.

We illustrate the EDF approach via the example in Figure 3,

consisting of an architecture with a single processor with

two cores, σ1 and σ2, both of which having a macro tick

of 1 ms. The depicted application is modelled by the task

set Γ = {τ1,τ2,τ3}, which is constrained by zero jitter for

all tasks. The tasks are defined as τ1 = (σ0,0,φ1,4,10,10),
τ2 = (σ0,0,φ2,1,4,4) and τ3 = (σ1,0,φ3,4,20,20). Further-

more, the set of task chains is defined by Lℵ = {ℵ1}, with

ℵ1 = ({τ1 ≺ τ2 ≺ τ3},20,1.0). Please note, that given Eq. 1,

only two chain instances are necessary to validate as the

hyperperiod of ℵ1 is 20 ms, and the period of τ1 is 10 ms.

Figure 3a depicts a solution, where the jitter and the task

chain end-to-end constraints are violated, whereas Figure 3b

shows a valid solution. As seen from Figure 3a, τ1 violates its

jitter constraints, as the start (and end) of execution within its

periods varies. This is detected, when TriggerTaskEvent raises

the events for the respective tasks instances. For example, the

event triggering the start of execution with respect to τ1,1 and

τ1,2 differs by 1 ms. While the initial offset φi for all tasks is 0,

resulting in τ2,1 and τ3,1 starting their execution first, neither

are source tasks with respect to ℵ1. Moving forward, τ1,1 is

started at cycle 1, causing the event to trigger the registration

of a task chain instance ℵ1,1. At cycle 4, τ1,1 is preempted

by τ2,2 while τ3,1 completes is execution. Although τ3,1 is

a sink task, and a chain instance has been registered, the

instance has yet to receive the completion of τ1,1 and τ2,k

before it is accepted. That is, the presence of an event from

τ2,k that happens after τ1,1 must be registered. Subsequently,

τ1,1 completes at cycle 5, allowing the ℵ1,1 to advance its

state, waiting for τ2,3. Lastly, τ3,2 finalizes its execution at

cycle 23, thus completing ℵ1,1 with a resulting latency of 23,

which incidentally violates the given constraints. The chain

instance ℵ1,2 is registered at cycle 10, and also finalizes at

cycle 23, yielding a latency of 14. Given that both latency

and jitter constraints have been violated, the product of the

ScheduleSynthesis is not feasible.

However, in an optimized solution, solving the associated

violations can be achieved by manipulating the initial offsets

φi for the tasks, as depicted in Figure 3b. Here, the schedule

has been altered such that all executions of τ1 and τ3 have been

deferred by φ1 and φ3. For τ1, the displacement φ1 solves the

jitters, because all jobs τ1,i now start (and end) at the same

cycle relative to its period. Finally, τ3 has been displaced by

9 cycles, such that its initial execution allows τ3,1 to catch

the events from τ2,3 (and by extension τ1,1), thus reducing the

latency of ℵ1,1. Likewise, by introducing φ1 for τ1 the latency

of ℵ1,1 was reduced even further. The combined effect of φ1

and φ3 is full compliance of all constraints with the resulting

latency’s of 10 ms and 20 ms for ℵ1,1 and ℵ1,2, respectively.

V. EXPERIMENTAL RESULTS

As a first experiment, we were interested to determine the

ability of our proposed SA to find near-optimal solutions. We

have implemented an exhaustive search that finds the optimal

solution; however, we were able to do that only for small task

sets of less than 10 tasks considering an architecture with two

cores. Our SA was able to find the same optimal solution in

less than 10 s. In the next sets of experiments, determining

the efficacy of SA was achieved through a combination of

synthetic and realistic test scenarios, benchmarked against two

TABLE I
EVALUATION RESULTS ON SYNTHETIC TEST CASES

Test case Time Greedy SA GA

Chains Jitter Sched. Chains Jitter Sched. Chains Jitter Sched.

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

ADAS1x100% 1 hour 0.97 0.98 1.00 0.58 0.61 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ADAS1x200% 2 hours 0.97 0.99 1.00 0.55 0.67 0.75 1.00 0.98 1.00 1.00 0.94 1.00 1.00 1.00 0.98 1.00 1.00 0.71 0.95 1.00 1.00
ADAS1x300% 3 hours 0.97 0.99 1.00 0.52 0.64 0.72 1.00 0.97 0.99 1.00 0.70 0.87 1.00 1.00 0.97 0.99 1.00 0.70 0.88 1.00 1.00
ADAS1x400% 4 hours 0.97 0.97 0.98 0.52 0.64 0.73 1.00 0.97 0.99 1.00 0.69 0.80 0.88 1.00 0.94 0.99 1.00 0.70 0.81 0.92 1.00
ADAS1x500% 5 hours 0.97 0.98 0.98 0.51 0.62 0.70 1.00 0.95 0.98 0.99 0.63 0.78 0.86 1.00 0.95 0.98 1.00 0.64 0.79 0.87 1.00

other heuristics: Greedy and Genetic Algorithm (GA). Greedy

decides the mapping of tasks to cores aiming to distribute

the workload such that no core overloads. Thus, iterating

through tasks, Greedy allocates a task to the core with the

least utilization available. For the Greedy-based heuristic, we

use the same EDF simulation technique (with preemption),

considering zero offsets and the deadlines of the tasks (i.e.,

these parameters are not optimized).

GA is a multi-objective optimization heuristic inspired

from evolutionary theory [36]. We (i) encode each solution

(chromosome) as an array where each entry (gene) contains

information on the mapping, offset and deadline of a task and

(ii) randomly initialize N individuals. We then (iii) evolve

some selected candidates by using (iv) recombination and

(v) mutation. Finally, (vi) the evolved candidates with better

fitness will replace the parent population. The fitness of a

solution is evaluated using the same cost function as for

SA, however the cost for each task deadline, task jitter, and

chain is its own objective. The cost for the GA is the vector

of each of these objectives. Steps (iii) to (vi) are repeated

until the allotted time is exhausted. We employ a standard

uniform crossover, and for mutation we do as follows: for each

gene in the chromosome, we compare a randomly generated

number with a “probability of mutation” and if this number is

smaller, then this position is mutated. To select parents we sort

the “population” using the “non-dominated” sorting method

from [36]. Half the population are kept as parents, and to

create new individuals, two random parents are picked until

all individuals have been created.

All experiments were conducted on a High Performance

Computing (HPC) cluster, with each node configured with

2xIntel Xeon Processor 2660v3 (10 cores, 2.60GHz) and 128

GB memory. Both SA and GA run on one node at a time.

Synthetic Test Cases. The synthetic task sets were gener-

ated using a tool developed for this purpose [7], which derives

the desired task properties from the realistic task set presented

in the next subsection. We are interested to determine if using

an SA meta-heuristic combined with EDF-simulation is a

viable solution for finding feasible schedules, when confronted

with very large task sets.

Thus, we have used five test cases, ranging from 100% to

500% in scale, i.e., for ADAS1x100% the application contains

151 tasks and 31 chains using a model of the architecture

discussed in section II, whereas with ADAS1x200% the ar-

chitecture would double the number of processors, tasks and

task chains. The results are presented in Table I, with each

TABLE II
EVALUATION RESULTS ON REALISTIC TEST CASES

Test case Time Greedy SA

Chains Jitter Sched. Chains Jitter Sched.

Min Avg Max Min Avg Max
ADAS1 3.20 0.81 0.37 1.00 0.97 0.99 1.00 0.95 0.99 1.00 1.00
ADAS2 6.40 0.65 0.21 1.00 0.94 0.99 1.00 0.84 0.99 1.0 1.00
ADAS3 13.20 0.48 0.21 1.00 0.84 0.99 1.00 0.74 0.97 1.0 1.00

row representing the results of a task case. A test case is

a scenario consisting of 30 synthetically generated task sets,

with each undergoing 30 trials (runs of SA and GA on the

same test case). Thus a single test case, e.g. ADAS1x100%,

would conduct 900 trials for each algorithm. As the experiment

progresses through each case, the algorithms were given

additional time due to an inherent increased complexity of

the problem (see the Time column).

For each algorithm (Greedy, SA and GA), we show in the

table, under the Sched. columns, the percentage of cases (out

of the 30 trials) for which the algorithms determine schedu-

lable solutions (all deadline constraints are satisfied; 1 means

100%). The columns labelled Chains have the percentage of

chains out of the total chains, for which the respective algo-

rithm was able to satisfy the end-to-end constraints. Similarly,

Jitter denotes the percentage of jitter constraints satisfied.

These values are presented for in terms of minimum, average

and maximum considering the 30 runs. Note that the Greedy

algorithm is not stochastic and always outputs the same result.

As we can see from Table I, the Greedy approach has

comparatively the worst performance in terms of complying

with the constraints. We also see that SA is able to find

schedulable solutions (in terms of deadlines, chains and jitter

constraints) within the allotted time, even when the problem

size increases. We see that SA has a drop in finding feasible

schedules (from 100% in column Chains. for ADAS1x100%,

to 63% for ADAS1x500%, and cannot meet the jitter con-

straints for some of the two largest test cases). We estimate

that this is caused by a combination of increased difficulty of

the task sets and their constraints, as well the crude method

for estimating the time allotted. We observed that both SA and

GA obtain similar quality results, with SA being slightly better

for smaller test cases and GA doing slightly better for larger

test cases. Reflecting on the results, we expect that SA would

be able to find an increased percentage of feasible solutions

given more time. However, both metaheuristics (SA and GA)

are clearly superior to the mapping heuristic such as Greedy,

when presented with very large task sets.

Realistic Test Cases. For the following evaluation, we were

interested in the ability of SA to handle realistic test cases.

Thus, we have used three test cases, ADAS1 to ADAS3, which

are variants of an anonymized realistic task set, currently in

use in a series-production vehicle. All test cases have 151 tasks

and 31 task chains, but with varying jitter, earliest activation

and macrotick constraints. The experiment was setup such that

30 trials were conducted by SA for each test case; the time

limit used is in minutes. As we can see from Table II, SA can

find feasible solutions for all test cases. As the test cases get

progressively more difficult from ADAS1 to ADAS3, in terms

of timing constraints that need to be satisfied, SA retains its

ability of finding solutions within the allotted time, albeit at a

slightly lower rate. By comparison we see that the percentage

of resolved constraints for the Greedy algorithm decreases

similarly, and fails on all accounts to find feasible schedules

that meet all the constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered safety-critical ADAS ap-

plications mapped on modern multi-processor platforms. The

applications are modeled as a set of communicating software

tasks with complex timing requirements, e.g. jitter, deadlines

and end-to-end latency bounds on task chains. We have pro-

posed an optimization strategy that, given the application and

platform models, determines a mapping of tasks to the cores

of the platform and a static schedule of tasks on each core,

such that the timing constraints are satisfied. Our optimization

strategy uses a Simulated Annealing metaheuristic to explore

the solution space, combined with a scheduling heuristic

based on an EDF simulation to solve the preemptive task

scheduling problem. The experimental evaluation on several

realistic and synthetic test cases has demonstrated that our

proposed strategy is able to find solutions, that meet the timing

constraints at a higher rate than traditional approaches, and

scales with the growing trend of ADAS platforms.

As future work we want to extend both SA and GA to

include the communication scheduling (considering TSN) as

well as potential virtualization layers. We envision adding

extra optimization objectives, such as reducing the number of

task preemptions in order to reduce context switch overhead.

REFERENCES

[1] G. Niedrist, “Deterministic architecture and middleware for domain
control units and simplified integration process applied to ADAS,”
https://www.tttech.com/technologies/adas/, 2016.

[2] O. Gietelink, J. Ploeg, B. D. Schutter, and M. Verhaegen, “Development
of advanced driver assistance systems with vehicle hardware-in-the-loop
simulations,” Vehicle System Dynamics, vol. 44, no. 7, 2006.

[3] M. Hammond, G. Qu, and O. A. Rawashdeh, “Deploying and scheduling
vision based advanced driver assistance systems (ADAS) on heteroge-
neous multicore embedded platform,” in Proc. FCST, 2015.

[4] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege,
M. Armbruster, G. Spiegelberg, and A. Knoll, “Race: A centralized
platform computer based architecture for automotive applications,” in
Proc. IEVC, 2013.

[5] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nelis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in Proc ECRTS, 2016.

[6] S. D. McLean, “Mapping and scheduling of real-time tasks on multi-core
autonomous driving platforms,” Master’s thesis, Technical University of
Denmark, 2019.

[7] S. D. McLean, P. Pop, and S. S. Craciunas, “Mapping and scheduling of
real-time tasks on multi-core autonomous driving platforms,” Technical
University of Denmark, Tech. Rep., 2019.

[8] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in RTAS, 2018.

[9] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Syst., vol. 2, 1990.

[10] T. F. Abdelzaher and K. G. Shin, “Combined task and message schedul-
ing in distributed real-time systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 10, no. 11, pp. 1179–1191, 1999.

[11] S. S. Craciunas, R. Serna Oliver, and V. Ecker, “Optimal static schedul-
ing of real-time tasks on distributed time-triggered networked systems,”
in Proc. ETFA. IEEE Computer Society, 2014.

[12] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” J. Syst. Archit., vol. 80, no. C, Oct. 2017.

[13] J. Schlatow and R. Ernst, “Response-time analysis for task chains in
communicating threads,” in Proc. RTAS, 2016.

[14] A. C. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and S. Ramesh,
“Schedulability and end-to-end latency in distributed ecu networks:
Formal modeling and precise estimation,” in Proc. EMSOFT, 2010.

[15] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,”
in Proc. RTCSA, 2016.

[16] IEEE, “TSN Task Group,” https://1.ieee802.org/tsn/.
[17] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, “TTEthernet: Time-

Triggered Ethernet,” in Time-Triggered Communication. CRC, 2011.
[18] TTTech Computertechnik AG, “Automated Driving Offering,”

https://www.tttech-auto.com/products/automated-driving/, 2018.
[19] S. Bunzel, “AUTOSAR – the standardized software architecture,”

Informatik-Spektrum, vol. 34, no. 1, pp. 79–83, Feb 2011. [Online].
Available: https://doi.org/10.1007/s00287-010-0506-7

[20] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Stähle,
S. Chakraborty, and A. Knoll, “Schedule integration framework for time-
triggered automotive architectures,” in Proc. DAC. ACM, 2014.

[21] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems,” in Proc ASPDAC, 2012.

[22] A. Mehmed, W. Steiner, and M. Rosenblattl, “A time-triggered middle-
ware for safety-critical automotive applications,” in Ada-Europe, 2017.

[23] R. Ernst, S. Kuntz, S. Quinton, and M. Simons, “The Logical Execution
Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl
Seminar 18092),” Dagstuhl Reports, vol. 8, no. 2, pp. 122–149, 2018.

[24] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. of the ACM, vol. 20, 1973.

[25] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable

Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag, 2011.

[26] M. Di Natale and J. A. Stankovic, “Scheduling distributed real-time
tasks with minimum jitter,” IEEE Transactions on Computers, vol. 49,
no. 4, pp. 303–316, 2000.

[27] S. S. Craciunas and R. Serna Oliver, “Combined task- and network-level
scheduling for distributed time-triggered systems,” Real-Time Systems,
vol. 52, no. 2, pp. 161–200, 2016.

[28] M. Barzegaran, A. Cervin, and P. Pop, “Towards quality-of-control-
aware scheduling of industrial applications on fog computing platforms,”
in Proc. IoT-Fog. ACM, 2019.

[29] M. Barzegaran, A. Cervin, and P. Pop, “Performance optimization of
control applications on fog computing platforms using scheduling and
isolation,” IEEE Access, vol. 8, 2020.

[30] E. K. Burke, G. Kendall et al., Search methodologies. Springer, 2005.
[31] P. Pop, P. Eles, and Z. Peng, Analysis and Synthesis of Distributed Real-

Time Embedded Systems, 22nd ed. Kluwer Academic Publishers, 2004.
[32] O. Sinnen, Task scheduling for parallel systems. Wiley&Sons, 2007.
[33] J. Y.-T. Leung and M. Merrill, “A note on preemptive scheduling of

periodic, real-time tasks,” Inf. Process. Lett., vol. 11, no. 3, 1980.
[34] A. Zuepke, M. Bommert, and D. Lohmann, “AUTOBEST: a united

AUTOSAR-OS and ARINC 653 kernel,” in Proc. RTAS, 2015.
[35] M. Aichouch, J. Prévotet, and F. Nouvel, “Evaluation of the overheads

and latencies of a virtualized RTOS,” in Proc. SIES, 2013.
[36] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in Proc. PPSN, 2000.

