
Congestion Control for CoAP Cloud Services
August Betzler, Carles Gomez, Ilker Demirkol

Department of Telematics Engineering
Universitat Politecnica de Catalunya, Barcelona, Spain

i2CAT Foundation, Barcelona, Spain
Email: {august.betzler, carlesgo, ilker.demirkol}@entel.upc.edu

Matthias Kovatsch
Institute for Pervasive Computing
Department of Computer Science

ETH Zurich, Switzerland
Email: kovatsch@inf.ethz.ch

Abstract—The Constrained Application Protocol (CoAP) is a
new Web protocol for the Internet of Things that allows to
connect IoT devices directly to services hosted in the cloud.
CoAP is based on UDP to better fit the requirements of
constrained environments with resource-constrained nodes and
low-power communication links. Being an Internet protocol,
CoAP must still adhere to congestion control, primarily to keep
the backbone network stable. Thus, the base specification uses
conservative parameter values for the number of open requests,
the retransmission timers, and the overall message rate. More
powerful CoAP nodes, however, can use metrics to optimize these
parameters to achieve a better quality of service. For this, the
IETF CoRE working group is designing an advanced congestion
control mechanism for CoAP called CoCoA. This paper presents
first evaluation results for a mechanism that improves the
communication between cloud services and resource-constrained
IoT devices. We implement CoCoA for the Californium (Cf)
CoAP framework and evaluate its performance on a wireless
sensor network testbed that runs IPv6. Our results show that
CoCoA can better utilize the available network capacity and can
increase throughput by 19–112%.

I. INTRODUCTION

The Internet of Things (IoT) aims for the interconnection
of numerous smart objects to create a link between the
virtual world of IT systems and the real world of physical
artifacts. Through the introduction of IPv6 and 6LoWPAN, this
vision is now emerging. Using the Internet Protocol (IP) for
seamless network convergence, it is now possible to connect
smart objects directly to the Internet. To benefit from a rich
ecosystem of services in the IoT, however, devices must also
be interoperable at the application layer. Due to the success of
the World Wide Web as the de facto application layer of the
Internet, the IETF recently standardized a new Web protocol
that fulfills the requirements of low-power IoT devices. The
Constrained Application Protocol (CoAP) [12] provides a
modular protocol suite that brings RESTful Web services to
the IoT, and also enriches the Web with indispensable features
for machine-to-machine (M2M) communication. CoAP is a
compact binary protocol that uses the UDP transport. On the
one hand, UDP is better suited for constrained environments
with limited resources in nodes and lossy low-power multihop
communication in networks [4]. On the other hand, it is a
better fit for M2M applications because it allows for group
communication and significantly reduces round-trip times op-
posed to the three-way handshake of TCP.

Internet protocols are required to provide congestion control

so that the open Internet backbone remains operational and
stable independent from the number of connected nodes. In
most cases, this is realized by using TCP as transport. Current
TCP implementations combine a plethora of mechanisms and
metrics to optimize the connection between two endpoints.
It can effectively react to congestion along the route through
the traditional Internet. These mechanisms and metrics usually
break, however, when one endpoint is part of an edge network,
a low-power lossy network (LLN) that is not designed for
transit traffic [4]. Yet most IoT devices are connected through
such LLNs.

When using UDP, the application protocol must provide
congestion control. Thus, the CoAP base specification defines
a basic scheme, which uses a retransmission timeout (RTO)
with exponential backoff, whereas the RTO is selected from
a fixed interval of values. Furthermore, it limits the number
of outstanding interactions between an endpoint and a given
destination. To improve this scheme, the IETF CoRE working
group is currently working on a draft specification called
CoAP Congestion Control Advanced (CoCoA) [1]. It allows
to dynamically determine the RTO based on RTT samples and
it also allows a greater amount of outstanding interactions.

It is expected that cloud services will play a key role
in the management and orchestration of the IoT [2], [8],
[14]. Thus, one of the main use cases we see for CoCoA is
when traditional Internet nodes communicate with IoT devices
in low-power edge networks. These are usually connected
through a border router (BR) that provides access to the
LLN. Problems may arise if the amount of active interactions
between the cloud and the network of constrained devices
either surpasses the capacity of the BR (bottleneck issue) or
if the bandwidth of the LLN is exceeded. In this paper we
analyze if CoCoA is capable of improving the performance
in such use cases in terms of throughput and request/response
exchange durations when compared to default CoAP.

II. COAP CONGESTION CONTROL ADVANCED (COCOA)

This section explains the congestion control mechanisms
of CoAP. First, we summarize the default mechanism before
we introduce CoCoA in more detail. Finally, we present
optimizations that go beyond the current version of the CoCoA
Internet-Draft.

A. CoAP Default Congestion Control

Besides RESTful requests and responses, CoAP includes a
messaging sub-layer that provides deduplication and optional
reliable transmission. For the latter, it provides two different
message types to send a request:

• Confirmable (CON) messages must be acknowledged by
the receiver and are retransmitted up to four times.

• Non-confirmable (NON) messages follow a best-effort
delivery and are neither acknowledged nor retransmitted.

CoAP applies congestion control by imposing a limit to the
number of parallel requests and by using backoffs for the re-
transmission of CONs. The number of outstanding interactions
to a single destination is limited by the parameter NSTART,
which is set to a conservative value of one by default1. An
outstanding interaction is a CON request that has not been
acknowledged yet (either by an empty ACK message or the
response) or a NON request for which no reply has been
received yet. When transmitting CONs, the retransmission
timeout (RTO) is initialized with a random value between two
and three seconds to avoid synchronization effects. If the timer
expires without having received an ACK or response (which
can be sent as CON as well) from the destination endpoint,
the client assumes message loss and retransmits the request.
To dilute network congestion, a binary exponential backoff
(BEB) is applied to the next retransmission, thereby doubling
its RTO value. After four retransmissions without reply, the
transmission is closed and a new request can be issued to
this remote endpoint (although other actions might be more
appropriate for the application).

For NON requests, it is hard to define when to give up
on an outstanding interaction. Thus, this timeout is usually
given by the application requirements. For congestion control,
however, clients must not exceed a rate of 1 Byte/second. The
same applies for clients that decide to cancel an ongoing CON
request to issue a new request to the same endpoint.

B. CoCoA: Confirmable Requests

There may exist network setups where the static restric-
tions imposed by the base specification can cause the net-
work to underperform. Thus, CoAP Simple Congestion Con-
trol/Advanced (CoCoA) [1], attempts to make the restrictions
more flexible. Its core mechanism consists of the adaptation
of the RTO value for CON requests by using round-trip time
(RTT) information for different destination endpoints such as
IP addresses or whole IPv6 prefixes. While RTT information
is also the basis for the flow control mechanisms of TCP,
CoCoA specifically aims for the adaption for constrained node
networks.For each destination endpoint, CoCoA maintains two
RTO estimators:

• The strong RTO estimator, which gathers RTT informa-
tion (RTTstrong) according to Karn’s algorithm [5] and
follows the guidelines of RFC 6298 [11] by measuring
only when no retransmissions occurred.

1It may be increased for closed networks without Internet connectivity.

• The weak RTO estimator, which takes RTT values from
retransmitted requests (RTTweak) using the time between
sending the initial request and obtaining the reply.

The following formulas apply when obtaining a new RTT
measurement RTTX new, where RTTVAR is the round-trip
time variation as in RFC 6298 and X stands for strong or
weak accordingly:

RTTX = (1− α) ·RTTX + α ·RTTX new, (1)

RTTVARX = (1−β) ·RTTVARX +β · |RTTX−RTTX new|
(2)

with α = 1
4 and β = 1

8 . When RTTX is determined, it is used
to update RTOX as

RTOX = RTTX +KX · RTTVARX , (3)

with Kstrong = 4 and Kweak = 1. The point of using a weak
estimator in addition to the strong estimator is to increase
the probability of gathering RTT information for network
environments where packet losses are likely to happen. Still,
the weak estimator is less reliable and likely to overestimate
the RTT because of the ambiguity of which CON actually
triggered the reply.

When either RTOstrong or RTOweak is updated after ob-
taining a RTT measurement, the overall RTO (RTOoverall) is
updated as an equally weighted average of its previous value
and the newly obtained RTO estimation:

RTOoverall = 0.5 · RTOX + 0.5 · RTOoverall (4)

It is used as next initial RTO for CON messages to the same
destination endpoint. It also adjusts the maximum transmission
rate for NON messages to 1/RTOoverall. Two out of 16 consec-
utive NON messages must be changed into CONs, however,
to allow for an update of the RTO estimator. The overall RTO
is initiated with two seconds, while the maximum RTO value
is defined to be 60 s. The state of the RTO estimators must
be kept for at least 255 s before clearing inactive destination
endpoints.

CoCoA also allows to use values of NSTART greater
than one, thereby permitting several outstanding interactions
towards one destination endpoint in parallel. The assumption
made by CoCoA is that when RTT information and adapted
RTO timers are used, the outgoing traffic automatically adjusts
to the capacity of the network. If NSTART is greater than one
and no RTO information is available yet, the initial RTO of
each new CON message is set to 2 s · 2ACT, where ACT is the
number of already ongoing exchanges.

To avoid exchanges with large initial RTOs to take very
long and to avoid that retransmissions are used too fast when
the initial RTO is very short, the variable backoff factor
(VBF) is applied. With the VBF, three different backoffs are
applied to retransmissions, depending on the initial RTO of
the transmission:

VBF(RTOinit) =


3, RTOinit < 1s

2, 1 <= RTOinit <= 3s

1.3, RTOinit > 3s

(5)

If a small overall RTO (RTOoverall < 1 s) is not updated
during 16 times its current value, its value is increased as

RTOoverall = RTOoverall · 16. (6)

The values and thresholds are experimental and need to
stabilize while the proposal evolves.

C. CoCoA: Optimizations

For the evaluations carried out in this paper and in line with
the ongoing optimization of the CoCoA draft, we modify some
of CoCoA’s mechanisms and add new ones. We add an aging
mechanism for RTO estimators with large RTOs. If an RTO
estimator was not updated for at least one minute and its RTO
value is larger than the default of two seconds, the RTT and
RTTVAR of the estimators are adjusted to be reduced:

RTTX = (2 + RTTX)/2;RTTVARX = RTTVARX/2. (7)

The reasoning for this mechanism is that RTT information may
become obsolete after some time and may no longer reflect the
current network state, in particular when low-power wireless
links are involved.

Recent discussions in the working group indicate that using
RTT measurements obtained after the first retransmission are
likely to distort the values maintained by the weak RTO
estimator, since they may differ essentially from the real RTT.
Therefore, RTT measurements taken after the first retrans-
mission are ignored. A further optimization is to reduce the
contribution of the weak RTO estimator to the overall RTO
upon a weak RTT measurement:

RTOoverall = 0.25 · RTOweak + 0.75 · RTOoverall (8)

This helps to reduce the fluctuation of the overall RTO that is
caused by the ambiguity of the multiple possible CON-ACK
pairs when retransmissions occur. Latter improvements are
considered to be included in future versions of the draft. An-
other improvement to avoid strong fluctuations of the RTO is
the use of a history with configurable size for implementations
of CoCoA for unconstrained devices, where the last calculated
values for RTOoverall are used to calculate an averaged RTO
value.

III. COCOA CALIFORNIUM IMPLEMENTATION

We implemented CoCoA and the optimizations introduced
in the last section as an optional congestion control layer
for the Californium (Cf) CoAP framework [7]. It pro-
vides all necessary data structures and methods to carry
out the mechanisms introduced in the previous section. A
RemoteEndpoint object stores the information needed by
the congestion control layer, such as the RTT windows and
the current state of the RTO estimators. Since Californium is
designed for unconstrained environments, each remote end-
point is identified at the highest granularity, that is, by its
unique IP address and port number. This allows to even react to
congestion at specific services, which are provided at different
UDP ports of a host.

Whenever a new request-response exchange is created, it
is associated to its remote endpoint. After performing this
association, it is possible to access the state information of
the remote endpoint from all layers of the CoAP stack, as the
Exchange object is passed around. The congestion control
layer first determines whether the transmission is a CON or a
NON, as each type is processed differently.

When an exchange with a CON message reaches the con-
gestion control layer, the NSTART limit for open interactions
with the corresponding remote endpoint is checked. If less than
NSTART exchanges are active to that remote endpoint, the
request can be processed and it is forwarded to the reliability
layer. In this context, observing does not count as active
exchange. If the limit of NSTART is already reached, the
new request is added to a queue that is bounded through
a maximal lifetime for stored exchanges. As soon as an
incoming reply is handed up from the reliability layer, the
congestion control layer updates the RTO estimators of the
associated endpoint. After updating the state information of
the remote endpoint, the outstanding interaction is closed and
the next CON exchange can be pulled from the queue.

When a NON exchange is handed over to the congestion
control layer, it is stored in a queue, which implements a leaky
bucket traffic shaper [13] for the associated remote endpoint.
With a rate of 1/RTOoverall, NONs are pulled from the queue
and handed down to the lower layers in the stack. Following
the guidelines of the CoCoA draft, every eighth NON is
converted to a CON in order to obtain a RTT measurement
to assure that the RTO value gets updated from time to time.
The evaluation of this mechanism is out of scope of this paper,
though, as we focus on the adaptation of the RTO value for
CON requests.

IV. EVALUATION

In this section we carry out a performance comparison
of the default CoAP congestion control with CoCoA. We
evaluate if the use of advanced congestion control mechanisms
improves the quality of service in terms of higher throughput
and faster processing of requests by the network. In an
experimental setup, Cf-clients try to access information stored
on constrained devices in an LLN over the Internet. We define
three different scenarios for the evaluations that differ in the
amount of generated traffic and in the interaction patterns
between the Cf-clients and the LLN. In the following we
introduce the general experiment setup and then go into the
details and results of the different scenarios.

A. Experiment Setup

The experiment setup can be divided into two parts: the
client side and the server side. On the client side, we set
up a PC to run multiple instances of the Californium client
to represent cloud services that access Web resources on
sensor nodes. For the server side, we use the FlockLab
testbed [9] with CoAP servers on 30 Tmote Sky motes [10],
which provide a test resource that allows GET requests. The
motes are programmed with the full ContikiOS 6LoWPAN

TABLE I: CoAP Congestion Control Schemes

Congestion Control used in clients RTO base value NSTART
Default CoAP 2 s 1

Default CoAPB (RTOinit
2

) 1 s 1
CoCoA 2 s 1

CoCoA4 2 s 4

communication stack. This includes the IPv6 Routing Protocol
for Low-Power and Lossy Networks (RPL) [15] and Erbium
CoAP [6]. One of the central motes in the FlockLab is set
up as border router to connect the LLN with the Internet.
For our evaluations, we furthermore compare two link-layer
configurations: radio duty cycling (RDC) with ContikiMAC
[3] and no RDC.

On the client side, four different CoAP congestion control
schemes are evaluated as listed in Table I. The first one uses
default CoAP, that is, our CoCoA layer for Californium is
disabled. The second one explores how the performance of
default CoAP is affected when it uses less conservative RTO
values: we reduce the initial RTO from 2 s to 1 s (CoAPB),
expecting CoAP to react faster to packet losses not origi-
nating from congestion but from lossy links. The latter two
configurations use our CoCoA layer, while the evaluations are
carried out for the cases NSTART=1 (CoCoA) and NSTART=4
(CoCoA4). With NSTART=4 we want to determine if relaxing
the restriction of only one open request to an endpoint at a time
increases the performance, while maintaining network stability
when applying advanced congestion control mechanisms.

All test runs for a scheme are repeated ten times with a
duration of 15 minutes each. In the following we define three
scenarios for the interaction between the cloud services and
the LLN and present the results of the measurements.

B. Baseline: 1-to-1

In the baseline scenario, we measure the performance for
the clients under basic network conditions. We observe how
long it takes for a single client to exchange 50 CON-ACK pairs
(request and piggybacked response) with a single CoAP server
in the LLN. As metrics, we give the average throughput (# of
requests processed per second), the average exchange duration
(time it takes to obtain an ACK to a CON request), and the
average amount of retries used per original CoAP request. This
experiment is repeated for every mote in the LLN separately
and determines how well CoAP and CoCoA perform when
there is no congestion within the LLN and at the border router.

TABLE II: Results for the Baseline Scenario (No RDC).

Config Throughput (req./s) Exch. duration # of retries
CoAP 0.67 1.49 s 0.40

CoAPB 0.88 1.13 s 0.52
CoCoA 1.18 0.84 s 0.38

CoCoA4 1.42 0.70 s 0.56

TABLE III: Results for the Baseline Scenario (ContikiMAC).

Config Throughput (req./s) Exch. duration # of retries
CoAP 0.56 1.76 s 0.21

CoAPB 0.79 1.26 s 0.35
CoCoA 0.89 1.12 s 0.07

CoCoA4 1.18 0.84 s 0.35

Table II shows the metrics when no RDC is configured.
The average throughput achieved by clients using CoCoA and
CoCoA4 is higher than the throughput achieved with default
CoAP. The adaptive RTO mechanisms ensure that advanced
congestion control mechanisms use the available bandwidth
more efficiently than default CoAP. The peak performance
is achieved with NSTART=4, which doubles the average
throughput. The results for CoAPB reveal that reducing the
fix interval of RTOinit can help to improve the throughput as
well in this scenario. Analogical to the throughput, the average
exchange duration is the lowest for CoCoA4 and the highest
for CoAP.

With ContikiMAC (Table III), the same tendencies are
observed, however, the average throughput decreases for all
congestion control schemes, since the duty cycling introduces
larger delays to communications within the LLN. Independent
from the RDC, we draw the conclusion that in networks with
low or no congestion, the use of CoCoA with NSTART>1
is recommended, as it leads to a significant increase in
throughput.

C. Many-to-many

In the many-to-many scenario, we evaluate how the con-
gestion control mechanisms perform in environments that
suffer from heavy congestion. During the setup phase of the
experiment, we assign a separate client to each of the CoAP
servers in the LLN. As soon as the test starts, all clients
continuously exchange CON-ACK pairs with their associated
CoAP servers until the test finishes. The continuous requests
cause significant congestion at the border router bottleneck
and inside the LLN.

Tables IV and V show that the highest overall throughput is
achieved with clients that use CoCoA. With NSTART=1, each
client adapts the RTO to a saturated and highly congested
network and a higher overall throughput is achieved when
compared to default CoAP. Allowing more parallel exchanges
with NSTART=4 does not increase the performance notice-
ably. In a situation where the LLN and the border router
are highly congested, it is difficult to adjust the RTO timers
adequately when more CoAP messages are transmitted in
parallel by the clients. If the clients use CoAPB , a performance
loss is observed, since the more aggressive yet static RTO
setting does not adapt to the heavy congestion of the network.
The aggressive behavior also results in using the highest

TABLE IV: Results for the Many-to-Many Scenario (no RDC).

Config Throughput (req./s) Exch. duration # of retries
CoAP 4.23 2.32 s 0.28

CoAPB 4.05 2.15 s 1.08
CoCoA 5.34 1.94 s 0.43

CoCoA4 4.59 1.65 s 0.67

TABLE V: Results for the Many-to-Many Sce. (ContikiMAC).

Config Throughput (req./s) Exch. duration # of retries
CoAP 1.60 5.72 s 1.81

CoAPB 1.45 6.06 s 2.33
CoCoA 1.79 4.16 s 1.69

CoCoA4 1.90 5.12 s 2.16

0

10

20

30

40

50

60
R

T
O

 V
al

ue
s

of
 T

ra
ns

m
is

si
on

s
(s

)

C
oA

P

C
oA

P
 (

R
D

C
)

C
oA

P
B

C
oA

P
B
 (

R
D

C
)

C
oC

oA

C
oC

oA
 (

R
D

C
)

C
oC

oA
4

C
oC

oA
4 (

R
D

C
)

Fig. 1: Boxplots for all congestion control schemes (and RDC
configurations) showing the RTO values observed during test
runs in the many-to-many scenario with median (lines within
the boxes), the first and third quartiles (bottom and tops of
boxes), 1.5 times the interquartile range of the first and third
quartiles (whiskers) and outliers (crosses).

number of retries, exceeding an average of one retry per CoAP
packet sent. It is also important to notice that the clients
running CoCoA have the shortest exchange durations for both
configurations, with and without RDC.

The results of the many-to-many case show that the use
of adaptive RTOs has a high impact on the performance.
Fig. 1 shows the typical distribution of RTO values observed
during the tests runs in the many-to-many scenario. The static
RTO intervals of default CoAP that result from the BEB for
retransmissions are visible for the CoAP and CoAPB cases.
Since CoCoA dynamically adjusts the RTO, it uses a wider
range of RTO values: the boxplots for CoCoA and CoCoA4

show lower minimums and a wider spectrum of outliers.

D. Cross Traffic Burst

In the cross traffic burst scenario, we observe how clients
that continuously exchange data with an LLN react to a state
of sudden congestion in the LLN. For this experiment, we

distinguish two groups of clients: The first group, consisting
of four clients, continuously sends requests to four randomly
picked CoAP servers in the LLN throughout the whole test
duration. The second group consists of up to 25 clients, one
for every other CoAP server of the LLN, and is set to initiate
half-way through the test (at the instant of t = 450 s). At
the point the second group of Cf-clients initiates, they begin
the exchange of a limited number of requests (50) between
them and the CoAP servers. The sudden appearance of these
CoAP messages causes a peak in the network congestion. We
determine how this traffic burst affects the performance of the
different congestion control schemes by measuring the overall
throughput and looking at the time it takes to transmit the
burst of traffic.

Figures 2a and 2b show the observed RTO values used
for (re)transmissions as well as the cumulative distribution
functions (CDFs) for the constant traffic and interfering burst.
In both figures, the 100% mark of the constant traffic CDF
refers to the amount of completed requests with CoCoA during
the experiment.

Up to the burst at 450 s, the network only suffers from a
low degree of congestion. During this phase, the clients are
able to achieve a high throughput, since the performance is
similar to the one observed in the baseline scenario, where no
congestion was present. CoCoA therefore is able to transmit
more messages than default CoAP in the same time interval.
For CoAPB , and CoCoA4 (not visualized) this is the case
as well. A change occurs as soon as the additional traffic is
introduced in the network, causing a high degree of congestion
for a limited time. Now the constant and burst traffic clients are
contending. The CDF of the successfully transmitted packets
of the burst traffic shows that default CoAP needs more
time to process the burst traffic requests. Conversely, CoCoA
processes the messages of the burst in a shorter time span and
returns to the initial network state much faster, thanks to the
adaptive RTO that adjusts to the sudden traffic burst.

Tables VI and VII show that CoCoA performs best with and
without RDC. Since with CoCoA4 every client may send up
to 4 requests in parallel, the network is driven into congestion
in the pre-burst phase (nullRDC). Since the calculated RTOs
are small, clients react with fast retransmissions to congestion
losses or losses from lossy links, which increases congestion
further and can lead to an important increase of the RTOs of

TABLE VI: Results for the Burst Scenario (No RDC).

Config Throughput (req./s) Exch. duration # of retries
CoAP 2.65 1.86 s 0.22

CoAPB 2.98 2.21 s 0.37
CoCoA 3.98 0.84 s 0.21

CoCoA4 2.48 1.43 s 0.52

TABLE VII: Results for the Burst Scenario (ContikiMAC).

Config Throughput (req./s) Exch. duration # of retries
CoAP 1.58 2.21 s 0.35

CoAPB 1.32 2.52 s 0.98
CoCoA 1.69 2.09 s 0.39

CoCoA4 1.95 1.94 s 0.79

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

t (s)

R
T

O
 V

al
ue

s
of

 T
ra

ns
m

is
si

on
s

(s
)

RTOs Burst Traffic
RTOs Constant Traffic
CDF Burst Traffic
CDF Constant Traffic

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

C
D

F
 o

f F
in

is
he

d
T

ra
ns

m
is

si
on

s

(a) Default CoAP

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

t (s)

R
T

O
 V

al
ue

s
of

 T
ra

ns
m

is
si

on
s

(s
)

RTOs Burst Traffic
RTOs Constant Traffic
CDF Burst Traffic
CDF Constant Traffic

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

C
D

F
 o

f F
in

is
he

d
T

ra
ns

m
is

si
on

s

(b) CoCoA

Fig. 2: RTO values for (re)transmissions and CDF of success-
ful requests for constant and burst traffic during a testrun with
clients using CoAP (a) and CoCoA (b) with no RDC.

subsequent retries with a VBF of 3. Both, fast retransmissions
and large backoffs after the LLN recovers from congestion
lead to a poor overall trouhgput. On the other hand, since with
ContikiMAC the delays in the LLN are larger, the calculated
RTOs are larger and fast retransmissions are avoided. This
leads to a more stable behaviour and a better overall per-
formance of CoCoA4 when ContikiMAC is enabled. CoAPB

cannot adapt to the network state and the reduced initial
RTO interval is prone to cause congestion. Only when RDC
is disabled and during the congestion free pre-burst phase,
CoAPB is able to achieve a higher trouhput than CoAP. In
all other situations (with ContikiMAC, burst phase) CoAPB

performs worst.
The generally short average exchange duration and low

amount of retries can be explained by the fact that most
of the measured values are obtained during the initial and
end phases, where the degree of congestion is low and fewer
retransmissions are needed.

V. CONCLUSIONS

In this work, we present the details of our implementation
and evaluation of CoCoA for the Californium (Cf) CoAP
framework as an optional congestion control layer. We carry
out experiments with cloud services that communicate with
CoAP servers on real sensor nodes in a testbed and compare
how well the different congestion control schemes for CoAP
perform. In three different traffic scenarios, we determine that
the improvements achieved by CoCoA are twofold: the amount
of requests that can be processed in parallel increases and
the time it takes for clients to complete their tasks decreases.
The advanced congestion control mechanisms achieve this by
calculating optimized RTO timers and adjusting the backoff
behaviour dynamically. We also show that NSTART can be
increased to higher values safely, even though it may not
always deliver the best performance.

In future work, CoAP observe notifications need to be eval-
uated in combination with the rate control of Non-confirmable
CoAP messages as proposed by the CoCoA draft.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the Spanish Gov-
ernments Ministerio de Economı́a y Competitividad through
project TEC2012-32531, and FEDER.

REFERENCES

[1] C. Bormann. CoAP Simple Congestion Control/Advanced. I-D draft-
bormann-core-cocoa-01, 2014.

[2] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota. REST
Enabled Wireless Sensor Networks for Seamless Integration with Web
Applications. In Proc. MASS, Valencia, Spain, 2011.

[3] A. Dunkels. The ContikiMAC Radio Duty Cycling Protocol. Technical
Report T2011:13, Swedish Institute of Computer Science, 2011.

[4] J. Hui and D. Culler. IP is Dead, Long Live IP for Wireless Sensor
Networks. In Proc. SenSys, Raleigh, NC, USA, 2008.

[5] P. Karn and C. Partridge. Improving Round-Trip Time Estimates in Re-
liable Transport Protocols. ACM SIGCOMM Computer Communication
Review, 17(5):2–7, 1987.

[6] M. Kovatsch, S. Duquennoy, and A. Dunkels. A Low-Power CoAP for
Contiki. In Proc. MASS, Valencia, Spain, 2011.

[7] M. Kovatsch, M. Lanter, and Z. Shelby. Californium: Scalable Cloud
Services for the Internet of Things. In Proc. IoT, Cambridge, MA, USA,
2014.

[8] M. Kovatsch, S. Mayer, and B. Ostermaier. Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things. In Proc. IMIS, Palermo, Italy, 2012.

[9] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel.
Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems. In Proc. IPSN, Philadelphia, PA, USA,
2013.

[10] Moteiv Corporation. TMote Sky: Ultra low power IEEE 802.15.4
compliant wireless sensor module, 2/6/2006 edition, 2006.

[11] C. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s
Retransmission Timer. RFC 6298, 2011.

[12] Z. Shelby, K. Hartke, and C. Bormann. Constrained Application Protocol
(CoAP). RFC 7252, 2014.

[13] M. Sidi, W.-Z. Liu, I. Cidon, and I. Gopal. Congestion Control Through
Input Rate Regulation. In Proc. GLOBECOM, Dallas, TX, USA, 1989.

[14] I. Thomas, S. Gaide, and M. Hug. Composite Business Ecosystems for
the Web of Everything: Using Cloud Platforms for Web Convergence.
In Proc. IMIS, Taichung, Taiwan, 2013.

[15] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. P. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. RFC6550, 2012.

