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Abstract
Poor quality of sleep increases the risk of many adverse health outcomes. Some measures of sleep,
such as sleep efficiency or sleep duration, are calculated from periods of time when a patient is
asleep and awake. The current method for assessing sleep and wakefulness is based on
polysomnography, an expensive and inconvenient method of measuring sleep in a clinical setting.

In this paper, we suggest an alternative method of detecting periods of sleep and wake that can be
obtained unobtrusively in a patient’s own home by placing load cells under the supports of their
bed. Specifically, we use a support vector machine to classify periods of sleep and wake in a
cohort of patients admitted to a sleep lab. The inputs to the classifier are subject demographic
information, a statistical characterization of the load cell derived signals, and several sleep
parameters estimated from the load cell data that are related to movement and respiration. Our
proposed classifier achieves an average sensitivity of 0.808 and specificity of 0.812 with 90%
confidence intervals of (0.790, 0.821) and (0.798, 0.826), respectively, when compared to the
“gold-standard” sleep/wake annotations during polysomnography. As this performance is over 27
sleep patients with a wide variety of diagnosis levels of sleep disordered breathing, age, body mass
index, and other demographics, our method is robust and works well in clinical practice.
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I. Introduction
Poor quality of sleep has been linked to many adverse health outcomes. For example, shorter
sleep duration has been linked to increased risk of stroke and chronic disease [1], and also
poor metabolic control [2]. Sleep disordered breathing – including obstructive and central
sleep apneas - cause daytime drowsiness, decreased executive function, and increased risk of
cardiovascular disease [3, 4]. Periodic limb movements during sleep cause reduced sleep
efficiency [5], a measure of quality of sleep. As a result, studying sleep and identifying sleep
disorders is important for treatment and improved health outcomes.

The current gold standard for studying sleep and assessing sleep disorders is
polysomnography (PSG). PSG is an overnight sleep study conducted in a sleep lab where a
patient is hooked up to multiple devices measuring eye movements, electroencephalography
(EEG), airflow, electrocardiography (ECG), and electromyography (EMG) at multiple
locations. Frequently, additional measurements are made based on the suspected diagnosis.
PSG has been widely and successfully used for both research and clinical applications, but
has some serious shortcomings. PSG is expensive, obtrusive (requiring a patient to be
hooked up to many devices through electrodes and other interfaces), measures sleep in an
unfamiliar and artificial environment, does not lend itself to longitudinal studies, and
requires visual analysis and manual scoring/annotation by a trained expert for adequate data
interpretation.

To overcome some of the limitations of PSG, many groups have proposed both alternative
methods of measuring sleep parameters of a patient in their own bed, and automatic scoring
algorithms to assess different characteristics of sleep. The primary methods most often
employed are based on instrumenting the patient or instrumenting the bed, although other
methods have been used [6]. Actigraphy, the most common method of instrumenting a
patient, relies on a body worn accelerometer or actigraph typically placed on the wrist [7, 8].
While actigraphy based sleep monitoring is used regularly in clinical practice, the method
requires that the patient wear the device during sleep and requires that the patient keep
records of the time they go to bed and get up in the morning. For long term monitoring,
regular charging of the device, regular downloading of the data captured by the device, and
consistent device placement on the body are all required to prevent data loss and promote
correct data interpretation. In terms of instrumenting the bed, the static charge sensitive bed
has been used extensively in Scandinavia to assess sleep unobtrusively in clinical studies
[9]. This approach, which places a sheet between a 2-inch foam mattress and the bed
platform, has had partial success in classifying sleep and wake periods [10]. However, no
studies have used it with other types of mattresses, and in the United States, where 8–10
inch spring, memory foam, and air mattresses are common, other approaches are needed.

Recently, a load cell based approach has shown considerable promise. Typically, load cells
are placed under the bed supports and measure the force applied at each support. Load cell
data has been successfully analyzed to classify breathing events [11], lying position [12],
and bed movements [13]. Other studies have used load cells to estimate heart rate variability
[14], and to separate slow wave and non-slow wave sleep [15]. In this paper, we extend
these prior results by describing our lab’s use of load cell data to classify segments of in-bed
time into periods of sleep and wakefulness. In particular, we demonstrate that a support-
vector machine (SVM) based classification approach using features derived from load cell
signals and patient demographics has good sensitivity and specificity over 27 sleep patients
with varying levels of sleep disordered breathing. This was validated against gold standard
PSG records of sleep and wakefulness.
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II. Methods
A. Subjects and Data Collection

Twenty-seven subjects participated in this study. All subjects provided written informed
consent before participating in study activities (OHSU IRB #6308). Subjects were selected
from a larger cohort of patients who had been admitted to the sleep lab for routine PSG and
who had undergone simultaneous load cell data collection. The entire cohort was not used as
some subjects’ load cell and PSG data had not been time aligned prior to this study.
However, the subset used possessed a wide range on the PSG-scored Apnea-Hypopnea
Index (AHI), which provided a wide range of sleep apnea severity and therefore a range of
sleep/wake behaviors. Load cells were placed under each of the five existing supports of the
bed at the Pacific Sleep Program. All patients received standard overnight polysomnography
and the load cell data was collected simultaneously. PSG records were scored by an
experienced sleep technician, including annotation of the sleep stage for each 30 second
epoch of the record. We then re-coded all sleep stages as “sleep”, to make sleep/wake a
binary variable. These binary sleep stages were then used as ground truth for our evaluation.

The 27 subjects (mean age 51 ± 14) had an average body mass index (BMI) of 31.9 kg/m2

ranging from 47.8 kg/m2 to 22.2 kg/m2, 18 were male, 7 had an AHI of less than 5, 9 had an
AHI between 5 and 15, and 11 had an AHI of greater than 15. Across the 27 subjects a total
of 23972, 30 second epochs were recorded.

B. Load Cells and Data Processing
The load cells used in this study were model AG 100C3SH5eU (SCAIME, Annemasse,
France). The output of each of the 5 load cells was prefiltered with a 4-pole analog
Butterworth filter with a cutoff frequency of 50 Hz before being digitized at a sampling
frequency of 500 Hz by a 16 bit A/D converter (USB-1608FS, Measurement Computing,
Norton, MA). For the analysis described here, the digital signals were further low pass
filtered with a 5 Hz cut-off frequency and decimated to a sampling rate of 10 Hz prior to
further processing. After time aligning the load cell data to the PSG data, the load cell data
was also segmented into 30 second epochs corresponding to the ground truth PSG data.

From the load cell data, we derived three additional signals. First, we calculated a center of
pressure (COP) signal [12], which is a vector valued signal containing an estimate of the
location of the COP on the bed with respect to a Cartesian coordinate system on the bed.
This signal is calculated as

(1)

where di is the (x,y) coordinate of the ith load cell and xi is the force measured by the ith
load cell at time t. From this signal we estimated the respiration signal, xr, by lowpass
filtering the y component of the xcop signal with a cutoff (-3 db) frequency of 0.367 Hz. The
final signal we derived is a mean-square difference (msd) signal, which has been shown to
contain information about movement in the bed [16]. This signal is calculated separately for
each load cell as
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(2)

where x̄i (t) is the local average of the signal calculated over the same window set by the
window size, L, constrained to be an odd number and set to 11 for our analysis. We further
summarized the individual msd signals into a composite signal by summing the msd
pointwise over all load cells. Figs. 1 and 2 show examples of each of the signals for epochs
of wake and sleep, for one of the subjects.

C. Feature Selection and SVM Classification
In order to use load cell data to classify subject’s in-bed periods into epochs of sleep and
wake, we first summarized the previously described signals into a set of load cell features
and combined these with demographic information to generate a set of 26 variables that
characterized each 30 second epoch. This set of 26 variables, or feature vector, fits loosely
into three different categories of data: demographics, statistical representations of the
signals, and sleep parameters.

The demographic variables included age, height, weight, sex, body mass index, and race
(coded as Caucasian or non-Caucasian). While these variables were constant for a given
patient, it is possible that measures such as weight and age could influence how the load
cells capture respiration during sleep and wake differentially across patients. We also
included the patients’ AHI as estimated from PSG, since AHI unquestionably influences the
respiration signal. In practice, the AHI could be estimated from the load cell data instead
[11]. The statistical variables consisted of the sample mean and variance of the following
signals: COP in both x and y directions, the respiration signal, the sum of the individual load
cell signals, and the composite msd signal. The sleep parameters consisted of multiple
variables characterizing measures of movement and respiration during in-bed time. Two
variables were used as measures of movement: the sum over time and range of the
composite msd signal. To characterize breathing, we detrended and estimated the peak
frequency of the respiration signal, and the COP signal in both the x and y directions, using
the fast Fourier transform (FFT). We also calculated the maximum amplitude, full and 90%
range, and autocorrelation at one lag of the respiration signal.

To classify periods of sleep and wake from the features described above, we used an SVM.
SVM is a machine learning algorithm commonly used for binary classification problems,
and is well described in the literature ([17], for example). SVM is a supervised learning
algorithm, and requires training on labeled data prior to being used for classification. In our
study, we used a Gaussian radial basis function (RBF) as the kernel for the SVM. We also
tried SVM with a linear kernel and logistic regression for classification, but neither method
was competitive with the RBF-SVM. To train the SVM, we first split the feature vectors into
sets corresponding to epochs of sleep and wake. We then randomly subsampled one third the
total number of wake epochs (1491) and the same number of sleep epochs to make the
training set. This resulted in 2982 vectors – approximately 12.5% of the total data – in the
training set. The remaining 87.5% of the data was used to test the classifier. The results were
quantified in terms of specificity and sensitivity of the classification. The training and
testing was repeated 100 times to calculate confidence intervals for the classifier
performance. We note that leave one out cross-validation is often used in this context. Our
choice of repeated random subsampling was driven by the desire to use a smaller proportion
of the data set to train the classifier (we used approximately 12.5% of the data as opposed to
the 96% that would have been used) and because we wanted to have enough test and
training splits to estimate assumption free confidence intervals from the data.
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III. Results
The results of the classification when compared with PSG labeled epochs are summarized in
Table I. The classifier achieved a mean sensitivity of 0.902 and a mean specificity of 0.923
on the training sets. The 90% confidence intervals were (0.891, 0.911) and (0.911, 0.932),
respectively. This shows that the training data was fairly separable, although there were still
a number of cases where sleep and wake were confused based on the features we used. The
classifier also showed good generalization when applied to the testing sets. Specifically, the
classifier achieved a mean sensitivity of 0.808 and a mean specificity of 0.812, with
corresponding 90% confidence intervals of (0.790, 0.821) and (0.798, 0.826), respectively.

IV. Discussion
As Table I shows, the classifier performed very well in delineating periods of sleep from
periods of wake. In particular, this classifier generalized well to the out-of-sample test sets
with sensitivities and specificities of over 0.8, on average. Additionally, the tight confidence
intervals suggest that this classifier is robust and performed consistently on out-of-sample
data when trained over a large range of different training data. This is especially promising
for practical application as we used patient data collected from 27 patients with a wide
variety of sleep-disordered breathing profiles, BMI index, heights, weights, and ages.

There have been two other load cell based methods that have tried to estimate periods of
sleep and wakefulness. The first method is based on what is referred to as bed actigraphy, or
BACT [18]. This approach consisted of estimating the intensity and duration of movements
in the bed, and classifying periods as wakefulness if the duration of movement exceeded a
threshold. This method was validated on 10 healthy volunteers and had a high agreement
between epochs of sleep and wake compared to PSG (95.2%). However, the average
sensitivity was 0.644 (SD 0.133), indicating that sleep was not detected very well. This
suggests that the agreement with PSG was good primarily because periods of sleep were
classified well, and most of the epochs from the sleep lab were periods of sleep. Also, the
use of healthy subjects frequently results in an overestimate of algorithmic performance
when applied to patient data. The other load cell based method for estimating sleep and
wakefulness was based on the ballistocardiogram derived from a load cell equipped bed
[19]. This study also used 10 healthy volunteers and achieved a mean sensitivity of 0.717
and a specificity of 0.989. No confidence intervals or standard errors were included to assess
the variability in the results. In addition, the study appears to have optimized the decision
threshold to minimize the discrepancy between the PSG and the algorithm. This makes it
unclear how well the algorithm would generalize to unseen data, as it appears to have been
optimized on the same data used to train the optimal threshold. Additionally, as with the
prior method, the use of healthy volunteers may have resulted in an overestimate of
algorithm performance compared to the “real-world” application with sleep patients.

Despite our promising results, we expect that some improvements will increase the
performance of this classifier. In particular, heart rate information obtained from load cell
data has been shown to be useful in detecting periods of sleep and wakefulness[19] and
sleep stage[15]. We are currently working on implementing an algorithm for heart rate
estimation and expect that features derived from the heart rate signal will increase classifier
performance. We also plan to study the respiration signal in more detail and investigate a
more comprehensive characterization of this signal than those used here.

In addition to improving the classification of wake versus sleep, we plan to implement
automatic feature selection to determine the relative contribution of each of the features used
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in this study. This will help determine which signals are the most important for detecting
periods of sleep.

V. Conclusion
In this paper, we discussed an approach for classifying periods of sleep and wakefulness
from patient demographics combined with unobtrusively derived sleep parameters from load
cell data. We showed a high sensitivity and specificity with narrow confidence intervals for
out-of-sample classification when compared to ground truth PSG data. Our study used data
collected from 27 patients with different demographics, including a wide range of AHI, a
measure of sleep disordered breathing. In addition, we compared our method with
previously described work and outlined the benefits of our study. Finally, we discussed
future work to improve classifier performance and generalize the approach described here
for the problem of classifying periods of sleep by sleep stage and wakefulness.
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Figure 1.
Three example traces from one subject for the center of pressure signal, xcop, in both the x
(top) and y (bottom) directions for periods of sleep (red) and wakefulness (black). Sleep and
wake epochs were labeled by an experienced sleep technician using the polysomnography
data.
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Figure 2.
Three example traces from one subject of the composite msd signal (top) and respiration
signal (bottom) for periods of sleep (red) and wakefulness (black). Sleep and wake epochs
were labeled by an experienced sleep technician using the polysomnography data.
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Table I

SVM classification results for training and testing sets. CI stands for confidence interval.

Mean
Sensitivity

90% CI
Sensitivity

Mean
Specificity

90% CI
Specificity

Training 0.902 (0.891,0.911) 0.923 (0.911,0.932)

Test 0.808 (0.790,0.821) 0.812 (0.798,0.826)
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