
HAL Id: hal-00700883
https://inria.hal.science/hal-00700883v1

Submitted on 29 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Middleware Platform to Federate Complex Event
Processing

Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, Lionel
Seinturier

To cite this version:
Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, Lionel Seinturier. A Middleware
Platform to Federate Complex Event Processing. Sixteenth IEEE International EDOC Conference,
Sep 2012, Beijing, China. pp.113-122. �hal-00700883�

https://inria.hal.science/hal-00700883v1
https://hal.archives-ouvertes.fr


A Middleware Platform to Federate Complex Event Processing

Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, Lionel Seinturier

University of Lille & Inria Lille - Nord Europe
LIFL UMR CNRS 8022, France

Email: firstname.lastname@inria.fr

Abstract—Distributed systems like crisis management are
subject to the dissemination of a huge volume of heterogeneous
events, ranging from low level network data to high level crisis
management intelligence, depending on the role of the rescue
teams involved. In such systems,Complex Event Processing
(CEP) has emerged as a solution to detect and react (in
real-time) to complex events, which are correlations of more
primitive events. Although various CEP engines implement the
support for dealing with the business heterogeneity of events,
the technological integration of these events remains uncovered.
Therefore, in this paper we introduce DiCEPE (Distributed
Complex Event Processing Engine), a platform which focuses on
the integration of CEP engines in distributed systems. DiCEPE
provides a native support for various communication protocols
in order to federate CEP engines and ease the deployment of
complex systems-of-systems. We illustrate our proposal using
a nuclear crisis management scenario and show how DiCEPE
leverages the coordination and the federation of differentCEP
engines.

Keywords-CEP; SOA; middleware; federation; component;

I. I NTRODUCTION

Nowadays, there is a huge amount of information sources
everywhere around us, and heterogeneity is the rule among
them. These events are used by distributed applications such
as Air-Traffic Control Systems [16], Automated Banking
Systems [9], Tracking Roaming Cellular Telephones [15],
Retail Point-of-Sale Terminals [3] or Global Positioning
Systems [23], that require them to be filtered and correlated
for complex pattern detection and transformed to new events
that reach a semantic level appropriate for higher-level
applications.

The need for real-time processing of information is rele-
vant for many systems, as not only the content but also the
context in which it was created, determine its value. Having
such contextual information in real-time may substantially
increase the performance of an application, improving its
liveliness since it can better react to the constantly changing
situations. One example of such an application can be seen
in a nuclear crisis management scenario, where there are
several factors that may alter the outcome, and where a
lot of information needs to be analyzed and processed
(e.g., weather forecasts and radiation surveys), while at the
same time, several different teams (e.g., policemen, firemen,
medics) are cooperating in the same zone and depend on the

decisions made using that information.
One of the problems in that kind of scenarios is the

overwhelming amount of data that has to be considered at
the same time, which may lead to information overload.
The way in which data is handled is very important, and
processing it using only one Complex Event Processing
(CEP) engine may be a dangerous practice [8], as it may
miss some important information due to being overwhelmed
by all the events. Moreover, in a crisis management scenario
we can see that there are several groups that are sharing
the same information to achieve a common goal, however,
the way in which each of them manages and interprets the
information is different from the others. This could lead to
incompatibilities among the groups.

In this paper we present DiCEPE, a platform that focuses
on the integration of CEP engines in distributed systems, and
which is capable of using various communication protocols
in order to federate CEP engines and ease the deployment
of complex systems-of-systems. DiCEPE uses the configu-
ration capabilities provided by OASIS’s Service Component
Architecture (SCA) [11] to create a distributed environment
of CEP engines that can prevent information overloading
by sharing the load among different CEP engines. This
approach also allows multiple domain-specific CEP engines
to be included in the environment and to be managed directly
by the domain experts, while at the same time sharing the
global-level events and processing.

The reminder of this paper is structured as follows. In
Section II we give an overview of some background concepts
that we use in our proposal. Next, Section III presents
the motivation of our work. In Section IV we introduce
the DiCEPE platform. Then, in Section V we describe the
integration of different CEP engines with DiCEPE. Next,
in Section VI we present the validation of our approach.
In Section VII we discuss some related work. Finally, we
conclude our work in Section VIII.

II. BACKGROUND

In this section we give a brief introduction to some of
the concepts and technologies that we use throughout this
paper, in order to facilitate the understanding of how they
are used with the DiCEPE platform.



A. Complex Event Processing

Complex Event Processing(CEP) has been proposed as a
new paradigm for real-time event-based applications [8]. It is
designed to match event correlations, calledevent patterns,
from a constant flow of events, called anevent stream. One
key aspect of CEP is the ability to define reactive rules
corresponding toevent patterndefinition and triggering a
process in real-time when anevent patternis detected. CEP
is used in a wide diversity of applications, which have to deal
with voluminous streams of incoming data, the complexity
of processing and time response [17], [22], [25]. There are
many domains in which CEP is actually used, like network
management, traffic monitoring, or fraud detection, and it
has drawn the attention of many research projects [2], [6]
and commercial products [17], [22].

B. SOA and SCA

Service-Oriented Architecture (SOA) is a paradigm for
the realization and maintenance of business processes that
span large distributed systems [10]. It is independent of
the development technology and comprises loosely cou-
pled, highly inter-operable application services, which inter-
operate based on a formal interface definition independent
of the underlying platforms and programming languages.
The DiCEPE platform uses a programming model based on
the SOA paradigm, called Service Component Architecture
(SCA).

SCA [11] is a set of specifications for building distributed
applications and systems using SOA. It is neutral with
respect to programming languages, and can be implemented
in any language that supports it. SCA targets the heteroge-
neous composition of various interface definition languages
(e.g., WSDL, Java), implementation technologies (e.g., Java,
Spring, BPEL, JavaEE, C++, COBOL, C), and binding
technologies (e.g., Web Services, JMS).

Figure 1. Overview of an SCA Diagram

As illustrated in Figure 1, the basic SCA building blocks
are software components [24], which provide services, re-

quire references and expose properties. The references and
services are connected by wires. SCA specifies a hierarchical
component model, which means that components can be
implemented either by primitive language entities or by
subcomponents. In the latter case the components are called
composites. Any provided services or required references
contained within a composite can be exposed by the compos-
ite itself by means of promotion links. To support service-
oriented interactions via different communication protocols,
SCA provides the notion of binding. For SCA references,
a binding describes the access mechanism used to invoke a
remote service. In the case of services, a binding describes
the access mechanism that clients use to invoke the service.
DiCEPE is implemented on top of an SCA platform called
FraSCAti, which we describe below.

C. FraSCAti

FraSCAti [20] is an open source platform for deploy-
ing and executing SCA-based applications. It introduces
reflective capabilities to the SCA programming model, and
allows dynamic introspection and reconfiguration via a
specialization of the Fractal component model [1]. These
features open new perspectives for bringing agility to SOA
and for the run-time management of SCA applications. The
platform itself is built as an SCA application (its different
subsystems are implemented as SCA components). This pro-
vides an homogeneous view of a middleware software stack
where the platform, the non-functional services, and the
applications are uniformly designed and implemented with
the same component-based and service-oriented paradigm.
With FraSCAti, the structure of an SCA application can
be discovered at run-time using introspection, and modified
dynamically to add new services, or even reconfigured to
take into account new operating conditions.

The component-based approach of the FraSCAti platform
has the following characteristics:

• Reusability: Components can be re-used in different
composites.

• Substitutability : Alternative implementations are easy
to insert, specified interfaces are available, run-time
component replacement mechanisms exist, and it has
the ability to verify and validate substitutions.

• Composability: A subset of different components can
be combined to create complex functional solutions that
meet application requirements and system constraints,
without the need to load all the existing components
every time.

• Extensibility : The platform can be easily extended by
adding components that provide additional functionality
in a seamless way.

Finally, FraSCAti provides a unified way to build appli-
cations that communicate among each other in an heteroge-
neous way, as it supports a wide variety of communication
protocols (e.g.Web Services, REST, JMS, JNA, UPnP).



III. M OTIVATION

An emerging characteristic of event processing is its
ubiquity: events are everywhere. An example of this can
be found in a nuclear crisis management scenario. In this
scenario, the multiplicity and diversity of the actors involved,
as well as the volume and heterogeneity of information, the
critical dependencies between actions, and the dynamics of
the scenario create complex situations. These situations can
be modeled as patterns that represent topics of interest which
need to be detected nearly in real-time (e.g., evacuation of
the perimeter, distribution of iodine capsules, information to
the public by the media). Events from heterogeneous sources
(e.g., firemen, policemen, army) can be combined to detect
further situations of interest (i.e., complex events).

For instance, let us consider a scenario where, after a
nuclear crisis alert, the evacuation of the population goes
smoothly. There are no victims, there is no change in
the force or direction of the wind, no rain, nor any alert
regarding high radioactive levels. Suddenly, the nuclear plant
teams detect a radioactive leak, thanks to an alert given by
a high pressure sensor. The throttle valve is open and is not
responding to the remote commands to get it closed. The
teams realize that there is a risk of radioactive gas leaking
into the atmosphere, so they alert the manager of the nuclear
plant. This use case is studied in the context of the ANR
SocEDA project1.

Figure 2. Nuclear Crisis Scenario

In this case, we are particularly interested in decision and
operation activities that occur outside the plant, as illustrated
in Figure 2. The manager of the nuclear plant informs
the representative of the national authority, who activates
the Emergency Intervention Plan [14]. The manager also
informs the representative of the electric power company,
and a crisis cell is formed, led by the local authority. The

1SocEDA (SOCial Event Driven Architecture)
http://tinyurl.com/SocEDA

crisis cell alerts the field actors (e.g., firemen, policemen,
army, Emergency Medical Services) and calls for support
from the Radiation Survey Network (RSN) and the National
Weather Service (NWS) for measurements. The crisis cell
also alerts the media and sets off the siren so that the
population can learn that they have to stay indoors and
listen to the media. The field actors are deployed and regular
updates are given to the media, so that the population may
remain informed.

There are several factors that may affect the way in which
the crisis management is carried out, and so, in order to make
the correct decisions during the execution of the Emergency
Intervention Plan in this scenario, we need a continuous
monitoring of the following information: radioactivity level,
wind force, wind direction and precipitation. A change in
the wind speed or direction would mean that the evacuation
perimeter and routes would have to be readjusted. A change
in the radioactivity levels may trigger additional security
measures to be considered and more aggressive actions to
be taken into account.

As for the actors of the scenario, we can separate them in
two main groups according to their role: Management and
Operation. TheManagementgroup is in charge of evaluating
all the information surrounding the situation, analyzing the
possible solutions and deciding the better way to proceed.
It is formed by the local authority and the members of the
crisis cell. These actors are the heads of the whole process
and are only there to manage the situation. They do not
interact directly with the crisis site, however, any situation
that may require a change in the normal execution of the
plant has to be analyzed and decided by them. On the
other hand, the actors in theOperationgroup are the ones
that interact directly with the crisis site, such as policemen,
firemen, the army, and the Emergency Medical Services.
They execute any orders received from theManagement
group. Even through they have a pre-established sequence
of tasks to execute, their behavior can be modified by a
decision makingactor if the situation changes.

Each subgroup of actors (e.g., the army or the police) will
have their own CEP engine to manage the events related
to their domain. A domain represents a complete run-time
configuration, potentially distributed over multiple run-time
nodes where statement rules were managed and processed.
Each subgroup creates their own rules and complex events
according to the goals of their domain. The problem is
that when different actors are working together to achieve a
common goal, we can no longer maintain a separate event
management for each domain. In this case, we need to
combine the events from all the actors involved in order
to improve the performance of the collaboration, but at the
same time, we need to keep the events that only concern a
single domain from spamming the global event management,
and leave the control of domain-specific rules and events to
be managed separately, as is illustrated in Figure 3.



Figure 3. Communication between domains

Moreover, we also need to allow some sort of hierarchy,
so that theManagementgroup may receive the events
that it needs for the decision making process, from the
Operation groups and from external sources (e.g., RSN,
NWS), and be able to modify the global event management
of theOperationgroups according to their decisions, without
interfering with domain-specific rules.

Given the presented scenario, we find that there are many
challenges that need to be faced, in order to accomplish a
successful federation of complex event processing systems.

• Communication heterogeneity: The nuclear crisis
management puts together a large number of actors and
CEP engines that need to interact through the network,
according to the scenario previously described (see
Figure 2). The communication among them is essential,
and for different circumstances we may need different
types of communication protocols. For instance, when
interacting in a private network, an asynchronous proto-
col, such as JMS, may be much faster and as reliable as
a synchronous one. However, when leaving the private
network, it may be blocked due to firewall restrictions,
and its reliability may suffer as well. In that case, a
synchronous approach like REST could become useful.

• Heterogeneous CEP: The actors have different tasks
which may generate multiple complex events. These
events can then be processed by other CEP engines that
may belong to the same or to different domains. Each
group of actors can have different kinds of complex
event processing engines. In this point, the challenge
consists in supporting the interaction among heteroge-
neous complex event processing engines.

• Scalability: This distributed system will process a huge
volume of events, ranging from low level network data
to high level crisis management intelligence. Enabling
the efficient detection of such situations in real-time
and under critical conditions is crucial.

• Adaptability : In the scenario, the Emergency Interven-

tion Plan can change during the crisis. Therefore, the
possibility to deploy new rules at run-time is essential
for the correct federation of complex event process-
ing systems. The domain-specific and engine-constraint
rules will ensure the processing of new conditions in
the network nodes.

This paper brings forward a solution to these challenges,
called DiCEPE (Distributed Complex Event Processing En-
gine). With DiCEPE, we allow the federation of distributed
CEP engines that can deal with the heterogeneity of the
event’s sources and communication protocols, address scal-
ability, provide the means to hierarchically control, and adapt
the rules of the different CEP engines in the distributed
environment. This approach will allow a domain-specific
engine to be managed by the experts of the domain, while
providing at the same time a way to create collaborations
among different domains.

IV. T HE DICEPE PLATFORM

In this section we present the DiCEPE platform. We begin
by giving an overview of the solution and then we present
the platform’s architecture. Finally, in the following section
we will describe how DiCEPE can integrate different CEP
engines, thanks to its architecture.

A. DiCEPE Overview

DiCEPE is based on the concepts introduced by the Event
Processing Network (EPN) [8], however it evolves those
concepts by incorporating the advantages of SCA. DiCEPE
inherits the flexibility and adaptation facilities provided by
FraSCAti, which allow it to provide a complete solution to
federate complex event processing systems.

To understand the concepts that rely under the construc-
tion of DiCEPE, we begin by explaining how an EPN
works. An EPN is a conceptual model, that describes a
set of Event Processing Agents (EPA), Event Producers
and Event Consumers all connected by a set of Event
Channels (EC) [5]. The event producers are entities that
create events, while the event consumers are the entities that
receive such events. The EPA behaves as both, consuming
events generated by producers, and then forwarding them or
creating new events to other consumers. The goal of the
EPA is to filter, match and derivate events, according to
the business rules. A complex event processing engine is
an example of an EPA. Basically, the EPN describes how
events received from producers are processed by the agents,
who perform transformations, validations or enrichment on
them, and finally directed to the consumers. An example of
such a network is presented in Figure 4.

The EPN is an abstract model, since it abstracts the
features of the input, processing and output elements of
an event processing system. Guided by these concepts,
our DiCEPE architecture identifies the abstract elements or
components and then provides a concrete and flexible way to



Figure 4. Event Processing Network

federate complex event processing engines. In our approach,
all the components of the EPN are transformed into DiCEPE
components, the different instances of EPA are wrapped
by a DiCEPE composite and the communication among
them is managed using SCA bindings, as is presented in
Figure 5. This approach allows us to overcome some of the
weak points of the EPN model, such as heterogeneity and
adaptability, as we will present in the following sections.

Figure 5. Distributed Complex Event Processing Engine

B. DICEPE Architecture

DiCEPE is a platform for federating CEP engines, with
synchronous and asynchronous communication protocols. Its
architecture is based on the EPN, but it improves it by filling
the gaps that are still present in the EPN model. Since
our solution deals with many CEP engines, we describe
it in terms of a concrete SOA platform. The proposed
solution is implemented on top of FraSCAti [20]. However,
most of the concepts used in DiCEPE are generic, and we
believe a similar implementation can be done on top of other
component frameworks as well. The architecture of DiCEPE
is composed of four parts: (i) Engine, (ii) Statement, (iii)
Listener, and (iv) Context; as presented in Figure 6.

• Engine: This component acts as the engine instance,
by which Statement components, events, and outputs
(Listener component) are registered.

• Statement: A Statement component is used for quering
the inbound event streams. This component is registered
within the Engine component. The Engine component
is connected to one or many Statement components.

Figure 6. Overview of the DiCEPE Architecture

• Listener: A Listener component generates a new com-
plex event when an action is detected. Each Listener
component is associated to a Statement component.

• Context: A Context component collects information,
like the number of statement rules deployed in the
engine at run-time.

In addition, DiCEPE supports both synchronous and asyn-
chronous communication. This is useful, for example in the
crisis scenario, where in a private network the JMS protocol
is sometimes more appropriate for communication among
CEP engines given its speed and reliability [4]. But, when
we scale the scenario to a city using the Internet, the REST
protocol is the better suited, since it is less likely to get
blocked by a Firewall (since it uses HTTP), and also has
great reliability. To retrieve information from the NWS and
the RSN, we can use Web Services. There is no universal
communication protocol that takes into consideration all
those aspects. However, the DiCEPE platform provides
access to several communication protocols which can be
used as needed.

To summarize, by allowing the use of both communication
protocols, synchronous and asynchronous, DiCEPE provides
a solution to theCommunication heterogeneitychallenge
identified in Section III.

The deployment of statement rules at run-time is very
important for the crisis management plan, because it can
change depending on the circumstances. The DiCEPE plat-
form inherits its reconfiguration capabilities from FraS-
CAti [20], so a component can be stopped, modified and
restarted at run-time, without service downtimes. Therefore
a domain-specific rule can be changed and deployed at run-
time as well, allowing it to be adapted to the new context.
With this capability, DiCEPE addresses theAdaptability
challenge presented in Section III.

V. I NTEGRATION

This section describes how the integration of different
CEP engines with the DiCEPE platform is achieved. As
described in Section II, FraSCAti provides a component-
based programming model which simplifies the develop-
ment, assembly, deployment and management of composite
applications. The DiCEPE platform facilitates the integration



of complex event processing engines. Moreover, the DiCEPE
platform also encapsulates the event processing technology,
so that each node in the network is running a DiCEPE run-
time environment. In the following subsection we describe
the integration of DiCEPE with two open source CEP
engines (Esper, Etalis).

A. Integration with the Esper CEP Engine

Esper2 is an open source engine that combines Event
Stream Processing (ESP) and CEP capabilities. It is available
as Java source and C# .Net source (NEsper). Their Event
Processing Language (EPL) is used to express filtering,
aggregation and joins, over multiple event streams, while
the pattern language is used to define more complex patterns
on different types of events. Esper also includes a historical
data access layer to connect to the most popular databases,
making the possible to combine historical data with real time
data in one single query.

To describe how the Esper engine is integrated into
DiCEPE, it’s important to understand Esper’s architecture,
which is shown in Figure 7.

Figure 7. Overview of Esper Engine Architecture

In the figure we can see the different elements of the Esper
engine:

1) The EPServiceProvider, which acts as the Engine.
2) The Configuration, which sets the engine configura-

tions.
3) The Event object, which is an object that represents

an event.
4) The EPLStatement, which are queries written in

EPL.
5) The UpdateListener, which receives updated data as

soon as it is processed by the statement.

These elements are integrated into DiCEPE in the fol-
lowing way: The Engine composite encapsulates both the
EsperServiceProvider (1) and the Configuration components
(2), having the EventObject as property (3). The State-
ment component is associated to the EPLStatement (4). Fi-
nally, the Listener component represents the UpdateListener
(5). The Engine component exposes the engine services

2http://esper.codehaus.org

with different communication protocols (e.g., REST, WS-
Notification, JMS).

All the relationships in an SCA composite are expressed
using the SCA Assembly Model [12]. Here is a slightly
simplified example of how this file might look for the
integration of the Esper CEP engine shown above:

1 <composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
2 xmlns:frascati="http://frascati.ow2.org/xmlns/sca/1.1"
3 xmlns:stmt="statements" name="fireStation">
4
5 <component name="esper-engine-fireStation"
6 constrainingType="esper:Engine">
7 <implementation.java
8 class="org.ow2.frascati.esper.
9 impl.EsperEngineImpl.java"/>

10 <property name="events" type="esperEvents:Events">
11 <esperEvents:Events>
12 <esperEvents:Event
13 esperEvents:event-type=’CLASS’>
14 org.ow2.frascati.soceda.eventBean.AgentLocation
15 </esperEvents:Event>
16 </esperEvents:Events>
17 </property>
18 <service name="DiCEPEFireStation">
19 <interface.java
20 interface="org.ow2.frascati.esper.api.
21 EsperEngine"/>
22 <frascati:binding.rest
23 uri="http://dicepe-firestation.soceda.cloudbees.
24 net/EsperEngine"/>
25 </service>
26 </component>
27
28 <!--Component statement-->
29 <component name="fireStation-stmt">
30 <implementation.composite
31 name="stmt:fireStationStmt"/>
32 <reference name="engine" autowire="true">
33 <interface.java
34 interface="org.ow2.frascati.esper.
35 api.EsperEngine"/>
36 </reference>
37
38 <!--Simulation Rest Services -->
39 <reference name="siafu">
40 <interface.java
41 interface="org.ow2.frascati.broker.service.
42 Simulation"/>
43 <frascati:binding.rest uri="/simulation"/>
44 </reference>
45 </component>
46 </composite>

Listing 1. Descriptor for Firemen Composite with Esper.

Like all SCA Assembly Model configurations, this one
wraps its contents in an SCA composite (cf. lines 5-46).
In the example shown here, a component element describes
each of the two components in this composite. The first
component is implemented in Java as indicated in lines 7-
9. The second is embedded as a component as indicated in
lines 30-31. Even though each component has it’s services
(cf. lines 18-25) and references (cf. lines 32-44) shown in the
diagram, some are explicitly specified in these component
elements, while others are not. Instead, the FraSCAti run-
time can discover them and then choose the appropriate
wires.

After both components have been defined, the service
provided by the composite itself is specified using the service
element (cf. line 18).



B. Integration with the Etalis CEP Engine

Etalis3 is an open source system for Complex Event
Processing which includes two languages: the Etalis Lan-
guage for Events (ELE) and the Event Processing SPARQL
(EP-SPARQL). The Etalis CEP engine is implemented in
Prolog, and supports reasoning about events, contexts, and
real-time complex situations (i.e., Knowledge-based Event
Processing).

The DiCEPE platform provides a convenient way to ac-
cess native libraries with pure Java code, using the bindingof
JNA in FraSCAti with the Prolog environment. In our case,
we built an adapter component for the Etalis Engine, which
provides a convenient way for getting events in and out of
the Etalis Prolog core, as shown in Figure 8. The Engine
component embeds the PrologEngineWrapper, while the
Listener component is associated to the EtalisEventListener.

Figure 8. Overview of the Etalis adapter

With this, we have shown that the DiCEPE platform can
integrate two CEP engines, written in different languages
(Java for the Esper engine and Prolog for the Etalis engine).
This addresses theHeterogeneous CEPchallenge presented
in Section III.

VI. VALIDATION

This section describes our simulation results, which study
the heterogeneity of events and their interactions via dif-
ferent communication protocols, as well as the performance
and scalability of DiCEPE. Given the complexity of crisis
management and to facilitate the understanding, we focus
on one single scenario.

A. Context

This use case consists in the construction of a simula-
tion tool to validate the DiCEPE platform. The simulation
tool was created based onSiafu4, an open source context
simulator written in Java, which allows to integrate real
and simulated contexts to enrich the testing capabilities.To

3http://code.google.com/p/etalis
4http://siafusimulator.sourceforge.net

obtain a simulated context, we need to follow three steps.
First, the behavior of individual agents is modeled in a
separate agent model. Then, the environment is handled in a
world model, including possible random events. Finally, we
get a context model which is used for defining how context
data is simulated. In our simulation tool we designed a small
city, where we have police stations, fire stations and an army
camp. There are also two nuclear centrals nearby which
have several sensors attached to them. Finally, the National
Weather Service (NWS) and the Radiation Survey Network
(RSN) are also reachable for information. The case study
shown in Section III (cf. Figure 2) illustrates this scenario.

To evaluate our solution, we try to find an answer to the
following questions:
(i) Does DiCEPE introduce much overhead?
(ii) What is the scalability of the system?
To focus on the real performance of the DiCEPE platform,
without the overhead of Internet lag, all the benchmark
experiments were performed on a local machine, using an
HP Z4000 Workstation with a 2.67 GHz Intel(R) Xeon
processor, 16 GB RAM, Ubuntu Server 3.0.0-12 64 bit
and Oracle Java 1.6. In addition, another version of this
implementation was also deployed to a cloud environment,
as described in the following subsection.

B. DiCEPE deployment

Our solution was deployed on a full cloud environment,
that is publicly accessible on the Web5. For this, we used
a public Platform as a Service (PaaS) provider, called
CloudBees6, which is basically a Virtual Machine running a
Linux distribution, with a Java virtual machine and a Web
application container, all hosted in the cloud and offered
as a service. In this case, the PaaS hardware resources
(e.g., RAM, CPU, Storage) are provided by an external
Infrastructure as a Service (IaaS) provider, independent from
the PaaS. In Table I we describe the characteristics of the
PaaS that we used to deploy the different instances of the
DiCEPE platform that are required to run our scenario7.

Table I
THE CLOUD PLATFORM USED

Cloud PaaS software stack
Provider Location JRE Web container

CloudBees Amazon EC2 US West JVM 6 Apache Tomcat 6.0.32

C. DiCEPE Cost Analysis

To evaluate the overhead of the DiCEPE platform,
1,001,946 events were collected from our simulation tools,
which represents about 1GB of data to be processed by
the CEP engines. We then fed these events to DiCEPE in

5http://dicepe-broker.soceda.cloudbees.net
6http://www.cloudbees.com
7The IaaS hardware information (CPU, RAM, Storage and OS) arenot

available to end users.



order to determine which houses were not covered by the
firemen. We evaluated two implementations of this scenario
where the events were processed:i) natively with theEsper8

CEP engine, andii) with DiCEPE integrating Esper and
implemented on top of FRASCATI 1.5.

Figure 9. Cost analysis

The scenario was executed ten times on each of the two
implementations. As shown in Figure 9, the execution time
of each request is stable for both implementations, which
means that they are both deterministic.

In Table II, we present the results of the average execution
time for each implementation, as well as the mean overhead
introduced by the SCA run-time used by DiCEPE.

Table II
EXECUTION TIME AND OVERHEAD

Implementation Avg. exec. time SCA overhead
Esper 27 sec -

DiCEPE (Esper + FraSCAti) 30 sec 11%

This benchmark shows that there is an overhead intro-
duced by adding the FraSCAti layer, the execution time is
still acceptable and the benefits provided by the platform (cf.
Section II) outweigh the difference in the execution time.
Even if FraSCAti could still be optimized in order to reduce
its overhead, we can already consider that DiCEPE is ready
for intensive real-time distributed complex event processing
applications.

D. DiCEPE Scalability

Our second evaluation of DiCEPE was lead towards
scalability. For this, we used the scenario of our case study
(cf. Section III), and we wrote a benchmark that mines
firemen events. We simulated several firemen inside one
big Fire Station using our simulation tool. Each fireman
had devices which received notifications and sent events to
their DiCEPE platform, which embedded one CEP engine

8http://esper.codehaus.org

(for this benchmark the CEP engine used was Esper). The
firemen’s DiCEPE received events, processed them and
generated complex events, which were sent to the DiCEPE
broker. This is done for the rest of the actors as well, as
shown in Figure 10. The goal of the broker is to process the
events of the specialized DiCEPE entities to find information
which is relevant to the whole situation. Also, thanks to the
capabilities provided by DiCEPE to deal with heterogeneous
communication, all the entities can interact using different
types of communication.

Figure 10. Distributed CEP engine in a crisis management

To evaluate this scenario, we used two different datasets
of event generators: one with 10,000 (see Figure 11) and a
second one with 15,000 (see Figure 12), which generated
around 500,000 and 750,000 events respectively (50 events
per generator, without considering the start and finish noti-
fications). As can be seen in Table III, the processing time
for each event remained stable and very low during both
benchmarks (around a 10th of a millisecond), despite the
fact that the average number of simultaneous sessions had
a significant increase of about 50% (from 89 with the first
dataset, to 135 with the second). It should also be noted that
there were no failures nor events lost during the executions
of these tests.

Table III
BENCHMARK RESULTS

Generators Events Failures Avg. sessions Avg. response
10,000 500,000 0 89 0.113 ms
15,000 750,000 0 135 0.142 ms

Overall, these benchmarks show that the response time is
negligible despite the scalability, knowing that in real life we
could not have more than 10,000 firemen inside one single
Fire Station. For this case study we did not use any cache,
which means that the response time can also be improved.
With this data, we may conclude that the DiCEPE platform
scales well, which addresses theScalability challenge pre-
sented in Section III.



Figure 11. Response time during simulation with 10,000 firemen

Figure 12. Response time during simulation with 15,000 firemen

VII. R ELATED WORK

In this section we will present some of the related work
from different fields of research that are relevant to our
solution.

We already introduced the Event Processing Network
(EPN) in Section IV, and explained how the DiCEPE archi-
tecture is based on its four components: the Event Producer
(EP), the Event Consumer, the Event Processing Agent
(EPA), and the Event Channel [13], [21]. However, the EPN
model is abstract and only contemplates the independent
interaction of isolated EPAs, and does not take into account
a distributed architecture.

There are already some works that start dealing with
Distributed CEP. For instance, in [19] the authors present a
distributed approach for distributed event detection, however
they do not deal with CEP heterogeneity, and they do not

provide the dynamic rule adaptation provided by DiCEPE.
Another approach was proposed by [18], which takes into
account the heterogeneity of event processing engines in
their distribution techniques. However, their solution does
not address scalability and does not provide a real way to
interconnect heterogeneous components within a common
platform.

CEP systems in general, both open research and com-
mercial, propose an event channel to connect the event
consumers, providers and processing agents [7]. However,
none of them provide synchronous and asynchronous com-
munication protocols, and as we previously presented in this
paper, distributed systems perform better when both proto-
cols are available. Communication in distributed systems is
always based on low-level message passing, as offered by
the underlying network. DiCEPE makes it easier to deal with
the numerous levels of communication as well as with all
the issues involved since it supports both, synchronous and
asynchronous communication protocols (e.g., JMS, SOAP,
REST).

VIII. C ONCLUSION

In this article we presented DiCEPE, a platform that offers
interoperability for Distributed Complex Event Processing
engines, via federation. This platform focuses on providing
a very flexible component architecture, which supports the
interaction of different complex event processing engines
simultaneously, while enabling communication among them
with a distributed system and deployment. Thanks to its dis-
tributed nature, DiCEPE also offers real scalability, and the
evaluation results show that, despite the additional overhead
generated by SCA, the execution times are still acceptable.

As of future work, we plan to continue our research
in the following directions. First, since the Event Query
Language (EQL) is not the same for all CEP engines
solutions, we will integrate a Domain Specific Language
(DSL) to express statement rules, with which we will be
able to translate the DSL to the CEP specific language.
Second, in the case of a geographically distributed CEP, the
cloud is a good candidate. However, there are still some
vendor lock-in problems with the existing solutions. This
means that the deployment of the DiCEPE platform on
heterogeneous cloud environments, either PaaS (Platform
as a Service) or IaaS (Infrastructure as a Service), is still
a challenge. As a third direction, we plan to add error
handling capabilities to the DiCEPE platform to deal with
distributed environments. Finally, we plan to design and
evaluate a variety of distributed systems in heterogeneous
cloud environments with large scale scenarios.

ACKNOWLEDGMENT

This work is partially funded by the French Ministry
of Higher Education and Research, Nord-Pas de Calais



Regional Council and FEDER through the Contrat de Pro-
jets Etat Region Campus Intelligence Ambiante (CPER-
CIA) 2007-2013, and the ANR (French National Research
Agency) ARPEGE SocEDA project.

REFERENCES

[1] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani. The FRACTAL component model and its support
in Java: Experiences with Auto-adaptive and Reconfigurable
Systems. Softw. Pract. Exper., 36(11-12):1257–1284, Sept.
2006.

[2] S. Chakravarthy and Q. Jiang.Stream data processing:
a quality of service perspective : modeling, scheduling,
load shedding, and complex event processing. Advances in
Database Systems. Springer, 2009.

[3] Christopher M. Benson. Clustering of retail terminals.Web-
site http://www.google.com/patents/US20030110082, 2001.

[4] R. Eggen and S. Sunku. Efficiency of Soap Versus JMS.
In Proceedings of the International Conference on Internet
Computing, IC ’03, pages 99–105, 2003.

[5] O. Etzion and P. Niblett.Event Processing in Action. Manning
Publications Co., 2010.

[6] M. K. Kasi and A. M. Hinze. Cost analysis for complex in-
network event processing in heterogeneous wireless sensor
networks. In Proceedings of the 5th ACM international
conference on Distributed event-based system, DEBS ’11,
pages 385–386, New York, NY, USA, 2011. ACM.

[7] D. Luckham and R. Schulte. Event Processing Glossary -
Version 1.1.Processing, 1.1(July):1–19, 2008.

[8] D. C. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[9] Mark S. Covert et al. Automated banking machine and
system. Website http://acomplete.com, 2001.

[10] OASIS. Reference Model for Service Oriented Archi-
tecture 1.0. Website http://www.oasis-open.org/committees/
download.php/19679/soa-rm-cs.pdf, August 2006.

[11] OASIS. Organization for the Advancement of Structured
Information Standards.Web Services Business Process Exe-
cution Language Version 2.0 Standard. (OASIS) . Website
http://www.oasis-opencsa.org/sca, 2007.

[12] OASIS. SCA Service Component Architecture - Assembly
Model Specification, May 2011. Version 1.1.

[13] E. Rabinovich, O. Etzion, S. Ruah, and S. Archushin. An-
alyzing the behavior of event processing applications. In
Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems, DEBS ’10, pages 223–234,
New York, NY, USA, 2010. ACM.

[14] S-Cube: Crisis Management Case Study. Website http:
//tinyurl.com/NuclearCrisis.

[15] R.-G. Reuven Della-Torre. Tracking Roaming Cellu-
lar Telephones Calls For Anti-Fraud and Other Pur-
poses. Website http://www.freepatentsonline.com/y2007/
0072587.html, 2007.

[16] Richard H. R. Harper et al. Document processing
and data distribution system for an air traffic control
Environment. Website http://bks9.books.google.as/patents/
US5764508, 1998.

[17] RTView platform. SL RTView platform. Website http://www.
sl.com/solutions/cep.shtml.

[18] B. Schilling, B. Koldehofe, U. Pletat, and K. Rothermel.
Distributed heterogeneous event processing: enhancing scala-
bility and interoperability of CEP in an industrial context. In
Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems, DEBS ’10, pages 150–159,
New York, NY, USA, 2010. ACM.

[19] Schultz-Møller, Nicholas Poul and Migliavacca, Matteo and
Pietzuch, Peter. Distributed complex event processing with
query rewriting. InProceedings of the Third ACM Interna-
tional Conference on Distributed Event-Based Systems, DEBS
’09, pages 4:1–4:12, New York, NY, USA, 2009. ACM.

[20] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni,
and J.-B. Stefani. A Component-Based Middleware Platform
for Reconfigurable Service-Oriented Architectures.Software:
Practice and Experience (SPE), 42(5):559–583, May 2012.

[21] G. Sharon and O. Etzion. Event-processing network model
and implementation.IBM Syst. J., 47(2):321–334, Apr. 2008.

[22] SpatialRules. SpatialRules. Website http://www.objectfx.com/
geospatial-solutions-products/spatialrules.

[23] J. Spencer.Global Positioning System: a field guide for the
social sciences. Blackwell Pub., 2003.

[24] C. Szyperski.Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York,
NY, 1998.

[25] WSO2. WSO2 Complex Event Processing Server. Website
http://wso2.com/products/complex-event-processing-server.


