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Abstract

The MOF Query, View and Transformation RFP, issued
by OMG will result in a key enabling technology for model-
driven development of large distributed systems. We have
designed a transformation language which will meet the re-
quirements of this RFP, and several others besides. The lan-
guage is declarative and patterns based. Transformation
descriptions are explicitly reusable and modular. Rules that
make up such descriptions may be aspect-driven, allowing
for transformations to be written to address semantic con-
cepts rather than structural features. This paper introduces
the language and its rationale, and shows how it is used to
solve a small but non-trivial MDA problem.

1 Introduction

The Meta Object Facility (MOF) [13] is a technol-
ogy specification standardised by the Object Management
Group in 1997. It provides an object-oriented framework
for the specification of the abstract syntax of modeling lan-
guages. The benefits of using this facility for the specifica-
tion of languages such as the Unified Modeling Language
(UMLTM) [14] is that there are a standard mechanisms for
automatically deriving

• a concrete syntax based on XML DTDs and/or
schemas known as XML Model Interchange [18]
(XMI)

• a customisable human-usable textual notation [16] or
HUTN

• a set of interfaces in CORBA IDL or Java for program-
matic access to object model repositories

However, to date, the common MOF foundation of OMG
languages such as UML, the Common Warehouse Meta-
model (CWMTM) and the Enterprise Distributed Object
Computing (EDOC) model has not enabled the use of a
model in one language to be transformed into a model in
another language, except by the following limited means:

• An XML document representing one model in the
standard XMI form may be manipulated using XSLT
to produce another model.

• A program may traverse the model using CORBA or
Java interfaces, and populate another model in a dif-
ferent repository.

• Partial transformations of data may be described in the
CWM.

All of these approaches have some usefulness. However,
a language for describing the generic transformation of any
well formed model in one MOF language into a model in
some other MOF language (or perhaps in the same lan-
guage) is not yet available in a standard form. The OMG
has issued a Request for Proposals named “MOF Queries,
Views and Transformations”, known as QVT for short [22].
It requires submissions to:

• define a language for querying MOF models

• define a language for transformation definitions

• allow for the creation of views of a model

• ensure that the transformation language is declarative
and expresses complete transformations

• ensure that incremental changes to source models can
be immediately propagated

• express all new languages as MOF models

The DSTC Pegamento project has submitted such a pro-
posal to the OMG [5]. The following sections provide an
overview of its structure and semantics and show how it can
be used to solve a small but non-trivial example of a map-
ping from the ECA Entity Model to an EJB/Java model.

2 Related Work

A number of partial solutions to describing and im-
plementing model transformations are currently available.
Some of these are applicable only in a limited domain, or
provide very low-level abstractions for transformations.
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2.1 CWM Transformation

The OMG’s Common Warehouse Metamodel Specifica-
tion [4] contains a model for describing Transformations.
It introduces the concepts of black- and white-box trans-
formations. Both of these transformation styles provide
only a relationship between model elements which are the
sources and targets of a transformation, but do not express
exactly what the resulting target will consist of. White-
box transformations may have a ProcedureExpression as-
sociated with the transformation, allowing for a program
fragment in some implementation language to describe the
implementation of the transformation.

2.2 Graph Transformation

Varró et al [26, 6] describe a system for model trans-
formation based on Graph Transformations [2]. This style
of transformation is based on the application of an ordered
set of rules. Operators available include transitive closure,
and repeated application. Rules identify sub-graphs which
define before and after states, and may refer to source and
target model elements and introduce associations between.

The use of this kind of transformation for software engi-
neering would require a copy of the initial model to be kept,
as the graph is modified in place. Care needs to be taken in
ordering rules with repeated application, as non-termination
is not guaranteed.

2.3 Generated XSLT

Peltier et al. [21, 20, 1] propose that a transformation ap-
proach that operates on textual representations of models.
The rules are expressed as a model instance, and then trans-
lated into a form that manipulates the textual documents.
The current implementation uses XMI [18] as the textual
model format, and generates XSLT from the model of the
transformation rules which can then be applied to the XMI
documents.

Rules are required to be ordered, and are restricted to
defining a single target element per source element. Cre-
ation of target model elements is done explicitly in the rules,
which in part explains the requirement for rule ordering, as
rules creating objects must execute before rules populating
their contents or participation in associations.

2.4 XSLT

XSLT [27] may be used effectively for some class of
transformations of MOF models, as they may be repre-
sented as XML documents via the XMI specification. How-
ever, XSLT must be written in terms of the concepts in the

source XMI document (model), and object (or element) cre-
ationis explicit. The style is highly procedural and due to its
XML basis, the concrete syntax is very user unfriendly. As
such, it is usuitable for one of the major goals of a declar-
ative transformation language - which is to communicate
mapping specifications to human beings. It also requires a
complete document as input, and is therefore not amenable
to transforming incremental updates to models.

2.5 Action Semantics

Since UML 1.4 the Action Semantics language (ASL)
has been a standard part of UML. ASL has been submit-
ted to OMG [9, 25] as a candidate reponse to the MOF
QVT RFP. The ASL provides a number of constructs at the
level of 2GL programming language statements that can be
composed to provide specifications of actions. Its imper-
ative nature makes it rather unsuitable for describing pat-
terns within models which are to be transformed into new
model elements. At best it offers a form of pseudo-code for
descrribing algorithms for walking one graph and explictly
constructing another graph.

3 Additional Requirements for Transforma-
tion

The basic requirements for a transformation language are
spelled out in the RFP, however, we have formulated the
following additional criteria for usability of the language
and reusability of the definitions expressed in it.

These are some of the additional requirements:

• Transformation rules should be able to match both col-
lections of elements and single elements. That is, they
can be expressed in terms of a single element with
some implied quantification, rather than needing to ex-
plicitly iterate over the elements of a collection.

• The application of a rule should establish associations
between source and target model elements. These as-
sociations would then be used for maintaining trace-
ability information.

• The language should allow for the definition of a stable
total order over any unordered multi-valued attributes
or unordered association links. The need for such
stable orders typically arises when different mapping
rules must be applied to the first and/or last element of
some collections of values.

• It should handle recursive structure with arbitrary lev-
els of nesting.
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• Rules should be able to match and create elements at
different meta-levels. For compact and clear specifica-
tion of such transformations, it is necessary to support
dynamic typing in the Transformation Model rather
than relying on the explicit use of the reflective fea-
tures of the MOF meta-model.

• Transformations should allow both multiple source ex-
tents and multiple target extents.

• There should be no dependency on the application or-
der of rules, and all rules should be applied to all
source elements.

• Creation of target objects should be implicit rather than
explicit. This follows from the previous requirement;
if there is no explicit rule application order, then we
cannot know which rule creates an object and are re-
lieved of the burden of having to know. Objects are
simply created on demand during execution of a trans-
formation.

• Multiple target elements should be definable in a single
rule.

• A single target element should be definable by multi-
ple rules. That is, different rules can provide property
values for the same object.

• Rules should be able to be grouped naturally for read-
ability and modularity.

• Transformation patterns should be definable, thus sup-
porting modular transformation definitions.

These requirements are set forth to allow transformations
be written in a variety of styles (typically source-driven,
target-driven or aspect-driven). See Section 5.

4 Concepts and Terminology

The transformation language has the following basic
concepts: rules, patterns and tracking relationships.

Transformation rules are used to describe a correspon-
dence between patterns of elements in a source model or
models and the elements to be created in a target model or
models. They will typically have variables declared which
are used as parameters to a pattern in the source part of the
rule which will bind them to values from the source model,
and then these values will be used to populate another pat-
tern in the target.

Patterns are expressed as reusable named definitions
with parameters. A pattern will also have local variables
used within the definition. When used in the source of a
rule a pattern is a query which, when applied to a model

element with the pattern parameters bound to external vari-
ables, will have a boolean result. When the result is true,
the external variables will be populated with values from
the model to which the pattern was successfully applied.

When a pattern is used in the target of a rule it acts as a
template for model elements which will exist in the target
model if the source of the rule matched. The parameters
in this case are bound to external variables which contain
values for the instantiation of the template.

Tracking relationships are used to associate the source
model elements with the target model elements whose exis-
tence a rule implies. They are named relationships which
typically occur in several different rules and allow each
rule to address only part of the creation of a target object
or structure of objects and relationships, without duplicates
being created. An example shown in [5] is reproduced in
Figure 1.

Model-ABC

Class A Class B
Association C

Model-XYZ

Class X Class Y
Association Z

Figure 1. A common transformation kind.

This transformation can be described using three rules,
one for Class A to Class X, another for Class B to Class Y,
and a third for the association mapping. The first two rules
are easily written, but the third will need to be able to refer
to the instances of Classes X and Y that were created from
instances of Classes A and B so that the newly created link
of type Association Z has the correct objects at either end.
This is done by using tracking relationships in the rules for
transforming the classes and referring to the relationships in
the rule for the association.

5 Styles of Transformation

The Model Driven Architecture (MDATM) development
paradigm that is being championed by the OMG has asso-
ciated terminology that can be misinterpreted to constrain
the kinds of model transformations required. The terms
Platform Independent Model (PIM), and Platform Specific
Model (PSM) imply that a single style of transformation is
required to map the more abstract PIM to a form in which
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enough concrete platform information is available in a PSM
to proceed with an implementation.

The technical whitepaper produced by the OMG Archi-
tecture Board [19] clarifies this situation somewhat by mak-
ing clear that PIM to PSM transformation is a pattern that
can be applied at many levels of abstraction - and that the
pattern must be reified in term of a particular platform. For
example, a data model expressed in UML as a set of classes
(the PSM) may be mapped to a set of SQL tables (the PIM),
where the independence and specificity of the models are
relative to the platform of relational databases. A layered
example is a component-based design in the EDOC ECA
modeling language [17] which can be mapped to a model
of some CORBA Components. In this case the platform is
CORBA 3.0. However, the component descriptions may be
further mapped to a set of C++ classes and their associated
stub code and libraries. This PIM/PSM pair is relative to the
platform of, say, Solaris 2.5, Visibroker for C++ and gcc.

However, there are many other kinds of model to model
transformations in which the level of abstraction remains
the same, or even becomes greater. Transforming data
models from Relational to Object Oriented, or generating
a CORBA IDL wrapper interface from a legacy COBOL
system are two examples.

5.1 Source-driven Transformations

Our transformation language is capable of expressing
mappings between a single source model instance or even a
single property thereof to a complex set of target elements
with relationships between them. This style of transforma-
tion is most common when doing PIM to PSM transforma-
tions. It works well when the source instance is tree-like,
but is less suited to graph-like sources.

5.2 Target-driven Transformations

Conversely the transformation language may have a sin-
gle specific target model element as the subject of each rule,
and match an arbitrarily complex set of model elements in
the source model which entail its creation.

5.3 Aspect-driven Transformations

This approach, which is inspired by the viewpoint con-
cept from RM-ODP [7], and more recently, by aspect-
oriented programming [10, 11], structures rules around con-
cepts rather than objects. Transformation descriptions writ-
ten in this style will have some rules that imply the cre-
ation of only one part of a target object based on some com-
plex pattern in the source model, and others that create a set
of target objects and associations between them based on a
simple property match in the source model.

A typical example of a PIM to PSM transformation in the
aspect-driven style is the transformation of an architectural
design for a component-based system into a set of interfaces
suitable for a middleware platform. In this style we would
have one set of rules which map, say EDOC ECA pro-
cess components into Java interfaces to support EJBs. An-
other set of rules would map properties in the ECA model
to transactional policies for the EJBs. Perhaps a third set
of rules would match a configuration model external to the
ECA model against the components in that model, and cre-
ate additional target model elements, like deployment de-
scriptor elements.

Aspect-driven transformations are the reason for many of
the usability requirements given in Section 3. In particular
the need for multiple rules per object and implicit object
creation is motivated by the aspect-driven approach. When
several rules may result in the creation of a target object, and
it is unknown which of these will match the source model, it
is impossible for the transformation architect to know which
rule will be responsible for creation, and implicit creation is
therefore the only useful semantics.

There are several motivations for modeling the relation-
ships between the source and target models, which we call
trackings. The primary reason is so that rules may cross-
reference other rules, and refer to the objects in the source
model which may have been matched by another rule, as
well as the objects in the target model whose creation is im-
plied by a match of another rule.

6 Transformation Model Semantics

The MOF model diagram in Figure 2 represents the
Transformation model specified in [5]. The following sub-
sections explain the important metaclasses.

6.1 Terms and Expressions

The lower part of Figure 2 is an expression language
metamodel constructed specifically for identifying MOF
model elements in patterns and rules. Its three main abstract
metaclasses are CompoundTerm which deals with boolean
algebra, and owns a number of Terms, which represent the
operands to the boolean operators.

Expression is the superclass to SimpleExpr whose sub-
types are all of the literal values in the language, such as
strings and integers. Its other subtypes include Collection-
Expr for literal set, bag and list expressions, FunctionExpr
for calling MOF operations, and NamedExpr for access to
library functions. Finally, VarUse is the place in which a
variable name may be used in an expression.
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Figure 2. The Transformation Metamodel.
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SimpleTerm is the superclass to all of the interesting
MOF and Transformation related terms. It optionally owns
a number of expressions, which are the “arguments” to its
concrete subtypes.

PatternUse is a use of a pattern definition in which the
expressions owned by the SimpleTerm represent the vari-
ables or values to be bound to the parameters of a pattern
definition.

MofTerm is the place in the model where MOF class in-
stances, attribute values and link values can be denoted.

Condition is a boolean valued expression.
TrackingUse is the place where a named relationship be-

tween source and target model elements is declared in a
rule, or referenced by another rule. It is fully explained in
Section 6.5

6.2 Variables

The Var metaclass is a variable declaration. Variables
in this model are dynamically typed, and a Var slot may
contain any valid MOF type. MOF reflection is used to de-
termine the type of any variable, and this is not explicitly
modelled here. The reader will note however, that in the ex-
amples given below, a number of type assertions are made
on Variables. This is an assumed capability of a transfor-
mation tool, and is a shorthand for something that can be
explicitly represented in the Transformation model by us-
ing the MOF metamodel itself.

Vars have extended and superseded relationships with
other Vars. This is for the purpose of identifying which
Vars in a rule bind to the same values as those in other rules
related by rule extension and supersession. Section 6.4 ex-
plains these relationships between rules.

The other relationship, not visible to the Var, in which a
Var may be involved is the context association. This is to
allow a Term in a Rule to identify the MOF extent with re-
spect to which it is to be evaluated. Transformations may
have multiple source models and may produce multiple tar-
get models. They will declare Vars as parameters to allow
users of the Transformation to pass in the MOF extents con-
taining the source models, and the MOF extents in which
the target model will be created. In concrete syntax rep-
resentations of a Transformation description, the context is
unambiguous, but we do have a notation to allow a specific
variable name (representing an extent parameter) to be as-
sociated with a rule’s source term.

6.3 Patterns

The PatternDefn model element is used for two distinct
purposes in the model. In the source of a transformation
rule it is used to match model elements in a source model,

and in the target of a rule it is used as a template for new
model elements.

Pattern Definitions are VarScopes, which means they
own Vars, which are declarations of variables. These can be
seen as formal by-reference parameters to the pattern. They
are used in the source to bind values in the source model
(when the pattern matches) to the the Variables passed in to
the PatternDefn by a PatternUse. When used in the target,
a PatternDefn is passed in Variables by a PatternUse which
have values, and these are used to instantiate the model ele-
ments that the Pattern defines.

Here is an example pattern definition which matches
UML Classes and their attributes, both those owned by the
Class, and all of its superclasses.

PATTERN hasAttr(C, A)
FORALL Class C, Attribute A, Class C2
WHERE A.owner = C

OR (C.super = C2 AND hasAttr(C2, A))

We will see a usage of this pattern in an example rule
below.

6.4 Transformation Rules

The TRule model element in Figure 2 is a description of
how a pattern in a source model is to be used to create some
part of a target model element. A rule owns a “src” Term,
which is a predicate stating under what conditions the “tgt”
SimpleTerm (some MOF model elements) are to be created.
In addition, the rule will typically declare a number of local
variables, which are assigned values when the source model
is matched, and those values are then used to populate the
target model elements.

Rules are named for the convenience of concrete syntax
representations, but the results of a rule being used to cre-
ate model elements are stored in Trackings, as explained in
Section 6.5. This is the mechanism by which one rule can
refer to the results of the execution of another rule.

Transformation rules may be related to other rules in two
ways

• A rule which extends another rule can add additional
clauses to the source matching predicate, and it can
also add additional Terms to the set of target elements
and Trackings to be created.

• A rule which supersedes another can also refine its
matching predicate, but its target Term replaces the
Term for the superseded rule. This mechanism may
be used to alter or turn off rules in particular circum-
stances.

Both rule extension and supersession allow for Transfor-
mations to be reused, and specialised. They also allow rules
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to be written simply for a general case, and then superseded
for some exception.

The syntax we use for rules is exemplified by the follow-
ing mapping of UML Class to a Java Interface:

RULE Uclass2Jintf(Cls)
FORALL Class Cls
MAKE Interface Intf

6.5 Trackings

Trackings are declarations of the kinds of relationships
between source and target models that need to be stored
for traceability, as well as being a mechanism for cross-
references between rules that address the same types of
model element.

A TrackingUse is the expression of such a relationship,
which either asserts that the relationship exists (when used
in the target of a rule) or queries whether such a relationship
exists (when used in the source of a rule). Its arguments (via
the arg association of its supertype SimpleTerm), are usu-
ally variable names (VarUses) whose values are references
to model elements for which a tracking relationship is as-
serted by a TrackingUse. To extend the example above, we
add a TrackingUse to the target part of the rule.

RULE Uclass2Jintf(Cls)
FORALL Class Cls
MAKE Interface Intf,
LINKING Cls to Intf by Uclass2Jint

Then this tracking name is used in the source of a (naive)
rule to map each attribute of the UML Class to a Java Prop-
erty. And we will create another tracking to note the cre-
ation of the Property.

RULE Uattr2Jprop(Attr, Cls)
FORALL Attribute Attr, Class Cls
WHERE hasAttr(Cls, Attr)
AND Uclass2Jint LINKS Cls to Intf
MAKE Property Pr,

Pr.owner = Intf,
Pr.name = Attr.name,

LINKING Attr to Pr by Uattr2Jprop

Trackings are related to other Trackings by a parent/child
association. It allows for the definition of tracking hierar-
chies which act like object-oriented inheritance. A link-
age created between objects in a child tracking will also
be present and queryable in the parent tracking. This can
be useful when writing rules that address features of base
types in the source and target models without the need to
know what the most derived type of the objects in question
are. It may also be used in combination with rule extending
and superseding.

6.6 Transformation

The Transformation metaclass is the container for all of
the patterns, rules, tracking declarations variable declara-
tions required to define some mapping from a MOF source
extent to a MOF target extent. It defines a name space for
rules, so that name clashes may be avoided, and explicit
reuse of rules from other transformations can be facilitated
in concrete syntaxes.

7 “Simple” Mappings

The core of the EDOC specification is called the Enter-
prise Collaboration Architecture (ECA). It is a structured
framework for recursive definitions of computational ob-
jects and their interactions. It can represent designs for B2B
interactions, container managed entities and components,
synchronous and asynchronous messaging, and workflow-
style processes. ECA is represented both as a Profile for
UML Classes and their Collaborations, as well as a MOF
meta-model. In this paper we will concentrate on the Entity
model in ECA, which is an abstraction of the capabilities of
distributed component middleware such as CORBA Com-
ponents [15], Distributed COM [12], and Enterprise Java
Beans [24] (EJB). This part of the language was chosen for
its familiarity to readers, as space does not permit an in-
depth introduction to the ECA meta-model and its seman-
tics.

Figure 3 shows an excerpt of the ECA Entity meta-
model. The concept of Composite Data should be familiar
to readers as a data type model consisting of nested struc-
tures of named data Attributes, with some of those attributes
identified as Keys. Data Managers are the computational
interfaces that expose the data to the application via Op-
erations. Entities are special Data Managers that can be
identified via Key attributes.

As an example source model to illustrate the issues cov-
ered in this paper we use an ECA Entity model instance
that describes simple aspects of customers and customer
records. This model is shown in Figure 4 in familiar UML
Class Diagram notation. It is also shown in Figure 5 us-
ing UML Object Diagram notation since it is an instance of
the ECA Model, this notation shows all the attribute details,
and it is this view that is appropriate for understanding the
transformation rules.

The model shows several CompositeData types, Address
and Customer where an attribute of Customer has the type
Address. It also includes a CustomerRecord which is an
identifiable Customer with an attribute ID that is the Key of
the CustomerRecord. These CustomerRecords are then ex-
posed to clients via the CustomerManager that is both net-
workAccessible and sharable (meaning that it is persistent
and must participate in transactions).
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EntityData

CompositeData

-primeKey

Key

1
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*

KeyElement

KeyAttribute1
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*

-name
-byValue
-required
-many
-type : DataElement

Attribute
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-networkAccessible
-sharable

DataManager

0..1

-manages

1

-managed

Entity

DataElement

DataType

ProcessComponent

1

-feature*

-type

1

Figure 3. Part of the ECA Entity Model.

Part of a simple mapping from a CCA CompositeData to
a Java Interface is given below. We omit appropriate getter
and setter methods for the sake of brevity.

A mapping rule consists of a number of clauses. The
RULE clause declares the rule’s name and parameters, and
any extended or superseded rules. The FORALL clause
declares a set of source model variables and their types.
These variables are further constrained by conditions in the
WHERE clause, including references to previously popu-
lated tracking relationships. The MAKE clause declares
target model variables and sets their properties. The LINK-
ING clause establishes named tracking relationships be-
tween source and target model elements.

The rule below, cd, says that for every instance of a CCA
CompositeData we must generate an instance of a Java In-
terface with the same name.

More specifically, for every binding of the variable CD
such that CD is an instance of CompositeData in the source
model, there must be an instance JIFace of Interface with
name equal to CD.name in the target model, and that the
tracking relationships cdmap and dtmap hold between the
correlated pairs of CompositeData and Interface instances.

RULE cd(CD)
FORALL CCA::CompositeData CD
MAKE Java::Interface JIFace,

JIFace.name = CD.name

LINKING CD to JIFace by cdmap,
CD to JIFace by dtmap

The following rule, cda, extends the previous rule, cd,
meaning that it is applied to exactly those instances of CCA
CompositeData matched by the source expression of the
rule cd. It generates a Java Attribute with the same name as
each CCA Attribute, and with a type determined by look-
ing up the dtmap tracking relationship. These Attribute
instances are associated with the Interface instance gener-
ated in the rule cd that corresponds to the CompositeData
instance by using the tracking relationship cdmap.

RULE cda(A, CD) extends cd(CD)
FORALL CCA::CompositeData CD,

CCA::Attribute A,
CCA::DataType Type

WHERE cdmap LINKS CD to JIFace
AND dtmap LINKS Type to JType
AND CD.feature = A
AND A.type = Type

MAKE Java::Interface JIFace,
Java::Attribute JAttr,
Java::Type JType,
JIFace.attributes = JAttr,
JAttr.name = A.name,
JAttr.type = JType
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-street : String
-postCode : String

Address

-name:String

Customer

1

-address

1

-name:String

Customer

#ID:String

CustomerRecord

1

-cust*

+// operations omitted()

CustomerManager-manages

1 0..1

Figure 4. UML Class notation of example instance of the ECA Entity Model.

LINKING A to JAttr by cdattrmap

The previous rule is incomplete because it does not deal
with the case where the CCA Attribute is multi-valued (i.e.,
its many attribute is true). We can deal with this by writing
another rule, cdaMul, which supersedes the previous rule,
cda as follows.

RULE cdaMult(A, CD) supersedes cda(A, CD)
FORALL CCA::CompositeData CD,

CCA::Attribute A
WHERE A.many = true
AND cdmap LINKS CD to JIFace

MAKE Java::Interface JIFace,
Java::Attribute JAttr,
Java::Interface ListFace,
JAttr.name = A.name,
JIFace.attributes = JAttr,
JAttr.type = ListFace,
ListFace.name = "java.util.List"

LINKING A to JAttr by cdattrmap

This rule actually changes the way the superseded rule
cda is evaluated so that it will no longer be applied to those
source elements that match the src pattern of the supersed-
ing rule.

8 Capturing Best Practice in the Mapping

In this section we discuss the drawbacks of using the
primitives of the middleware platform as the basis for an
application design, and the benefits of having a PIM and
mapping rules. We then go on to show how the mapping in
the previous section may be improved to encapsulate some
known optimisations for EJB.

8.1 Design to Platform vs Model the Business

When designing an implementation of a middleware-
based application, there is a body of knowledge in the de-
veloper community that provides advice and guidelines for
getting the best performance and scalability from the appli-
cation by altering the design to avoid known pitfalls, and to
exploit known optimisations [3, 23, 8].

The best practice for design of EJB applications often
avoids using the very features that were designed to provide
a close correspondence between the domain concepts be-
ing supported by the application, and the application server
platform itself. EJB Entities were originally designed to
provide a Smalltalk-style class extent (Home) for a number
of business entities (Entity Beans) whose state could auto-
matically be managed by the container supporting the Entity
Beans (Container Managed Persistence). It is now recog-
nised that for most business entities, this model is far too
fine-grained. For example, our Customer Records, even if
they were real examples with many more attributes, would
not be best implemented using a Home to manage a set of
Entity Beans which represent the Customers.

The implication, as we will see below, is that the “natu-
ral” model implied by the platform provides a poor imple-
mentation. However, given that we have used a platform
independent language to model our Customer Records, we
have cleanly represented the business concept of a Cus-
tomer as data and a data manager entity, without concern
for performance. Now we can exploit the mapping process
to produce a more performant implementation by encoding
this expert knowledge in the mapping rules rather than al-
tering, and consequently obfuscating, the original platform
independent design.
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name = Street
byValue = true
required = true
many = true
type : DataElement = String

 : Attribute

Address : CompositeData

feature

name = PostCode
byValue = true
required = true
many = false
type : DataElement = String

 : Attribute

feature

Customer : CompositeData

name = Name
byValue = true
required = true
many = false
type : DataElement = String

 : Attribute

name = Address
byValue = true
required = true
many = false
type : DataElement = Address

 : Attribute

featurefeature

CustomerRecord : EntityData

name = ID
byValue = true
required = true
many = false
type : DataElement = String

 : Attribute

name = Details
byValue = true
required = true
many = false
type : DataElement = Customer

 : Attribute

feature feature

primeKey = true

 : Key

key

keyAttribute  : KeyAttribute

networkAccessible = true
sharable = true
managed = true

CustomerManager : Entity manages

Figure 5. UML Object notation of example instance of the ECA Entity Model.

8.2 A Mapping Capturing Best-Practice Design
Patterns

In the following mappings we show only those parts
relevant to illustrating the main issues. We omit the de-
tails of Home interfaces and finder methods, implementa-
tion classes for the interfaces, etc.

The first mapping rule dm produces a Java Interface in-
stance for every ECA DataManager instance in a similar
manner to rule cd from Section 7. The second rule dm2 ex-
tends dm for the case where the generated Interface must be
network accessible. That is, the generated Interface instance
inherits from the RMI java.rmi.Remote interface.

RULE dm (DM)
FORALL ECA::DataManager DM
MAKE Java::Interface JIFace,

JIFace.name = DM.name
LINKING DM to JIFace by dmmap

RULE dm2 (DM) extends dm (DM)
FORALL ECA::DataManager DM
WHERE dm LINKS DM to JIFace
AND DM.networkAccessible = true

MAKE Java::Interface JIFace,
Java::Interface SuperFace,
SuperFace.name = "java.rmi.Remote",

JIFace.extends = SuperFace

The following rule both extends and supersedes the pre-
vious rule. This means that dm3 only applies for instances
of ECA Entity where the networkAccessible attribute is true
while dm2 only applies for instances of ECA DataManager
that are not also instances of the subtype ECA Entity.

RULE dm3 (DM) extends and supersedes dm2 (DM)
FORALL ECA::Entity DM
WHERE dmmap LINKS DM to JIFace
MAKE Java::Interface JIFace,

Java::Interface SuperFace,
Java::Interface HomeSuperFace,
Java::Interface JIFaceHome,
SuperFace.name =

"javax.ejb.EntityBean",
JIFace.extends = SuperFace,
JIFaceHome.name = DM.Name + "Home",
HomeSuperFace = "javax.ejb.EJBHome",
JIFaceHome.extends = HomeSuperFace

LINKING DM to JIFaceHome by dmhome

The astute reader may observe that the above mapping
directly to an EntityBean is somewhat naive and may result
in consequent performance penalties. A more sophisticated
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mapping would employ the Session Facade Pattern as de-
scribed very lucidly by Kyle Brown in “Rules and Patterns
for Session Facades” [3]. Other examples of expert knowl-
edge regarding EJBs can be found on the Java Performance
Tuning website [23].

The goal of employing the Facade pattern here is to ab-
stract from the actual system objects (the objects represent-
ing ECA Entity) making them simpler to use and concealing
unnecessary information such as Entity relationships.

A full mapping employing the Session Facade Pattern
is beyond the scope and size limitations of this paper, but
the essence can be captured in the following mapping rule.
Remote access will now interact with a (Stateless) Session-
Bean which will then delegate methods to a local Entity-
Bean.

RULE dm4 (DM) supersedes dm3 (DM)
FORALL ECA::Entity DM
WHERE dmmap LINKS DM to JIFace
MAKE Java::Interface JIFace,

Java::Interface SessionBean,
Java::Interface JIFaceLocal,
Java::Interface EJBLocalObject,
Java::Interface JIFaceHome,
Java::Interface EJBLocalHome,
JIFace.extends = SessionBean,
SessionBean.name =

"javax.ejb.SessionBean",
JIFaceLocal.name = DM.name + "Local",
JIFaceLocal.extends = EJBLocalObject,
EJBLocalObject.name =

"javax.ejb.EJBLocalObject",
JIFaceHome.name =

DM.name + "LocalHome",
JIFaceHome.extends = EJBLocalHome,
EJBLocalHome.name =

"javax.ejb.EJBLocalHome"
LINKING DM to JIFaceLocal by dmlocal,

DM to JIFaceHome by dmhome

The rule dm4 effectively replaces the rule dm3 since
the source patterns are the same. Any other rules that in-
volve referencing the generated Home object will do so via
a lookup of the tracking relationship dmhome and will get
the EJBLocalHome version rather than the superseded EJB-
Home version.

9 Conclusion

The benefits of an MDA approach to middleware appli-
cation development have been demonstrated in the small by
the example mapping of some instances of an ECA applica-
tion model to an EJB implementation.

Firstly, the application architecture can be expressed in
a “pure” form, without regard for the optimisation concerns
of a particular middleware platform. This results in a con-
sistent, easy to understand, domain-focussed model which
can be easily explained to domain experts in diagrams.

Although platforms such as EJB attempt to offer appli-
cations a number of simplifying services to aid implemen-
tation, performance considerations often dictate that these
services are worked around, or used only in certain con-
strained ways [23].

Thanks to the power of the proposed DSTC MOF Trans-
formation specification the experience of multiple archi-
tects over multiple projects can be expressed as a concrete,
declarative mapping from the concepts available in the PIM
language to the concepts of the implementation platform.
This mapping specification can capture the best practice
for implementation of domain concepts on a particular plat-
form.

In addition to mappings based only on the PIM concepts,
configuration models can be exploited to add back the de-
tails of a platform that are abstracted out in languages like
ECA. This effectively allows tools to query architects about
which of the available implementation styles to choose for
each PIM artifact based on, among other things, knowledge
of the domain, and knowledge of probable usage patterns,
performance, and robustness requirements.

In the future we envisage that modeling languages like
ECA will be become more widely used. We expect that
the MOF Transformation standard will form the key en-
abling technology for MDA. Transformation descriptions
from PIM languages to PSM languages will become in-
creasingly sophisticated, and will capture best practice in
middleware design from highly legible domain-centric ar-
chitectures.
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model transformation. In XML Europe 2000, pages
1–17, Paris, France, June 2000. Graphic Communica-
tions Association.

[22] Request for Proposal: MOF 2.0 Query/Views/
Transformations RFP. OMG Document: ad/02-04-10,
Apr. 2002.

[23] J. Shirazi. EJB Performance Tips. http://
www.javaperformancetuning.com/tips/j2ee ejb.shtml,
Nov. 2002.

[24] Sun Microsystems. Enterprise
JavaBeansTMSpecification, Version 2.0 . Sun
Microsystems: http://java.sun.com/produc ts/ejb/
index.html, Aug. 2001.

[25] Tata Consultancy Services. Initial Submission to MOF
Query/Views/Transformations RFP. OMG Document:
ad/03-03-27, Mar. 2003.
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