
Predictable paging in real-time systems: a compiler approach�

Isabelle Puaut Damien Hardy
Université Européenne de Bretagne / IRISA, Rennes, France

Abstract

Conventionally, the use of virtual memory in real-time
systems has been avoided, the main reason being the diffi-
culties it provides to timing analysis. However, there is a
trend towards systems where different functions are imple-
mented by concurrent processes. Such systems need spa-
tial separation between processes, which can be easily im-
plemented via the use of the Memory Management Unit
(MMU) of commercial processors. In addition, some sys-
tems have a limited amount of physical memory available.
So far, attempts to provide real-time address spaces have
focused on the predictability of virtual to physical address
translation and do not implement demand-paging.

In this paper we propose a compiler approach to intro-
duce a predictable form of paging, in which page-in and
page-out points are selected at compile-time. The problem
under study can be formulated as a graph coloring prob-
lem, as in register allocation within compilers. Since the
graph coloring problem is NP-complete for more than three
colors, we define a heuristic, which in contrast to those used
for register allocation, aim at minimizing worst-case perfor-
mance instead of average-case performance. Experimental
results applied on tasks code show that predictability does
not come at the price of performance loss as compared to
standard (dynamic) demand paging.

1 Introduction

Memory management is a major concern when devel-
oping real-time and embedded applications. Predictabil-
ity issues have resulted in real-time systems being most
of the times strictly static, avoiding dynamic alloca-
tion/deallocation and virtual memory. However, as these
systems are getting increasingly large and complex, there is
now a need to escape from this strictly static memory man-
agement.

In particular, a recent trend towards systems where dif-
ferent functions are implemented by concurrent processes
can be observed, for instance in Integrated Modular Avion-

�This study was partially supported by the french National Research
Agency project Mascotte (ANR-05-PDIT-018-01)

ics (IMA) systems or for the automotive industry. Such sys-
tems need spatial separation between processes, which can
be easily implemented via the use of the Memory Manage-
ment Unit (MMU) of commercial processors. Moreover,
cost constraints may limit the amount of physical memory
available.

Virtual memory consists in using hardware support
(MMU, Memory Management Unit) to compute at run-time
where an address (called virtual address) is located in phys-
ical memory. The virtual address space of a program is di-
vided up into fixed-size units called pages. The mapping
between virtual pages and physical pages is stored in data
structures scanned by the MMU at every memory access
(page tables stored in RAM and a fully-associative cache
named TLB, for Translation Look-aside Buffer to speed-up
accesses to page tables). When a program attempts to refer-
ence an unmapped page, the MMU notices that the page is
unmapped and traps to the operating system; such a trap is
called a page fault. Upon a page fault, the operating system
loads the page from disk (page-in). Symmetrically, when
there is no free physical page anymore, a replacement pol-
icy implemented by the operating system selects one phys-
ical page to evict from main memory (page-out). Modified
pages have to be copied back to disk before being evicted;
this is done either in the page fault handler or by an inde-
pendent process depending on the operating system. The
interests of virtual memory are twofold: (i) it provides spa-
tial protection between processes, since each process has a
private page table; (ii) it allows to execute tasks whose ad-
dress space is larger than the capacity of physical memory,
since pages are paged-in and out on demand, in a transpar-
ent manner to the programmer.

In real-time systems, it is crucial to prove that tasks will
meet their temporal constraints in all situations, including
the worst-case situation. Therefore, predictability of perfor-
mance is as important as average-case performance. One
should be able to predict the Worst-Case Execution Time
(WCET) of pieces of software for the system timing valida-
tion [13]. Virtual memory raises predictability issues at two
levels:

� Level of address translation: getting the mapping be-
tween virtual to physical pages requires a TLB lookup



plus possibly a page table lookup if the mapping is ab-
sent from the TLB. The duration of address translation
is hard-to-predict, because: (i) not all mappings can be
stored in the TLB because of its limited capacity, thus
it is difficult to know which mappings will be served
by the TLB and which ones will require a page table
lookup; (ii) the TLB is shared between concurrent pro-
cesses;

� Level of paging activity: knowing whether or not a
reference to a virtual page will result in a page fault
is hard to predict. This is because physical memory
is shared between concurrent processes, and in general
any physical page regardless of its owner process may
be selected by the page replacement algorithm. In ad-
dition, the replacement algorithm is never strict Least
Recently Used (LRU), because it would be too costly
to maintain the ordering of page references using cur-
rent MMUs. Furthermore, common replacement poli-
cies may be arbitrarily complex and in general not,
or not enough, documented, because they are imple-
mented in software inside the operating system. For
instance, a process may be used to update the disk for
dirty pages; some physical pages may be temporarily
locked during a page-in or a page-out.

So far, attempts to provide real-time address spaces have
focused on the predictability of virtual to physical address
translation [11, 2]. Demand-paging is carefully avoided: all
physical pages are voluntarily created in memory at process
load-time, or wired in memory, to avoid unpredictability
due to page faults. Surprisingly, little effort has been de-
voted to reconciliate the benefits of the paging activity (in
particular its ability to execute programs larger than main
memory) and predictability. Providing some form of pre-
dictable paging seems to us very important, in a context
where the volume of software embedded into devices grows
and cost considerations limit the amount of available mem-
ory in some systems.

This paper makes a first step in that direction. We pro-
pose a compiler approach to introduce a predictable form
of paging, in which page-in and page-out points of vir-
tual pages are selected at compile-time, thanks to the static
knowledge of possible references to virtual pages. Our ap-
proach operates on a single task1 and currently considers
references to code only. The problem under study can be
expressed as a graph coloring problem, heavily used in com-
pilers for register allocation. Since the graph coloring prob-
lem is NP-complete for more than three colors, we define a
heuristic, which in contrast to those used for register allo-
cation, aims at minimizing the worst-case performance in-
stead of the average-case performance. Experimental re-
sults applied on tasks code show that predictability does not

1To be used in a multi-task system, one may use our approach in combi-
nation with a memory partitioning scheme, like the one presented in [15].

come at the price of performance loss as compared to stan-
dard demand paging.

The rest of the paper is organized as follows. Related
work is surveyed in Section 2. Section 3 formulates the
problem of off-line selection of page-in and page-out points
as a graph coloring problem and proposes a WCET-oriented
graph coloring heuristic. Experimental results applied on
code are given in Section 4. Implementation issues and di-
rections for future work are dealt with in Section 5.

2 Related work

A very predictable approach called overlaying [12] was
used before the hardware support for virtual memory be-
came common. The software is divided into pieces called
overlays. When an overlay is needed, the overlay is ex-
plicitly loaded into memory by the program, overwriting an
overlay that was no longer needed. Overlaying techniques,
while highly predictable, were in most systems non auto-
matic, requiring manual work from the programmer to de-
fine the overlays.

Virtual memory appeared in the sixties to provide spatial
isolation between concurrent processes and allow programs
larger than the amount of physical memory to execute. The
definition of efficient page replacement algorithms has re-
ceived considerable attention in the seventies. The optimal
page replacement algorithm as defined in [1] evicts the page
that will not be used for the longest time. Obviously, op-
timal replacement cannot be implemented in practice be-
cause it requires an exact knowledge of future memory ac-
cesses. Instead, existing page replacement strategies exploit
the knowledge of past references to guess future ones. The
mostly used replacement algorithms are approximations of
the Least Recently Used (LRU) replacement. LRU evicts
the page that has not been used for the longest time. Ap-
proximations of LRU are used instead of strict LRU because
strict LRU would be too costly to implement using standard
hardware. Indeed, most MMUs use only 2 bits per page: U
(for Used) and M (for Modified). The U (resp. M) bit is set
by the MMU at every reference (resp. modification); these
two bits are reset by software to implement efficient in the
average-case but approximated LRU replacement. The dif-
ference of our work with existing page replacement strate-
gies is that we predetermine page-in and page-out points at
compile-time rather than at run-time as in standard demand
paging.

So far, demand paging is avoided in real-time operating
systems. Demand paging simply cannot be implemented
in real-time operating systems running on processors with-
out MMU. For processors with a MMU, some systems like
Spring [10] use the MMU for protection between processes
only. In Spring, all the pages of a program are loaded at pro-
cess start such that pages faults do not occur. Furthermore,



the number of pages used by a process is limited, such that
all address translations are served by the TLB without re-
sorting to page table lookups. Other real-time systems like
RT-Mach [16] and real-time extensions of POSIX provide
a system call to wire pages in memory for real-time tasks.
VxWorks [17] provides a library to control address transla-
tion, but does not provide any support for demand paging.
Bennett and Audsley [2] focus on page table structure for
address translation predictability. Our work builds on these
studies ensuring predictability of address translation, and
focuses on the predictability of the paging activity.

One may view the predictability issues caused by pag-
ing systems as identical to those raised by caches. Many
methods have been designed in the last years to estimate
worst-case execution times on architectures with instruc-
tions and/or data caches [9, 5], for different cache struc-
tures and replacement policies. The tightest predictions are
obtained for LRU replacement. In contrast, pseudo round-
robin and random replacement yield to looser timing esti-
mates [6]. Analysis methods originally defined for caches
cannot be directly transposed to paging systems. The main
reason is that page replacement policies are more sophisti-
cated and less documented than cache replacement policies
because they are software-implemented. Moreover due to
hardware-software interactions, page replacement policies
are not strict LRU. Thus, to the best of our knowledge no
attempt to statically analyze page replacement policies has
been made so far. In this paper, for the above-mentioned
reasons, we do not try to predict the worst-case behavior of
dynamic paging. Instead, we predict page in and page out
points at compile time thanks to the knowledge of possible
future page references.

Graph coloring was recently used by Li et al in [8] for au-
tomatically managing transfers between scratchpad mem-
ory and off-chip memory, with performance considerations
in mind. In contrast, our work focuses on transfers be-
tween RAM and disk and is predictability-oriented rather
than performance-oriented.

3 Predictable paging: a graph coloring ap-
proach

This section is devoted to the modeling of predictable
paging as a graph coloring problem. We first make an infor-
mal parallel between predictable paging and graph coloring
in paragraph 3.1. Paragraphs 3.2, 3.3 and 3.4 then describe
our algorithm for static selection of page-in and page-out
points in more details.

��� Informal description

Assuming that referenced virtual pages are known stati-
cally, which is common in real-time systems for predictabil-

ity considerations, it is possible to define the program re-
gions where these pages are used. We will term such re-
gions Webs. A web for a virtual page vp is the set of basic
blocks that reference vp (see Fig. 1.a, in which three virtual
pages are used).

Two webs are said to interfere if their intersection is not
empty. An interference graph can then be defined: a node in
the interference graph corresponds to a web, and an (undi-
rected) edge corresponds to an interference between two
webs (see Fig. 1.b).

Defining a mapping between virtual and physical pages
amounts to assigning a physical page to every web, assum-
ing a limited number of physical pages. It is equivalent to
coloring the interference graph, with a limited number of
colors, one per physical page (see Fig. 1.c, with two physi-
cal pages represented by colors black and grey). Obviously,
it might happen that the interference graph is not colorable.
Then, webs have to be split, resulting in extra page-ins and
page-outs. This iterative process has to be repeated until the
interference graph becomes colorable.

The mapping between virtual and physical memory
pages is a straightforward result of the coloring process (see
rectangles in Fig. 1.d). Similarly, the location of page-in and
page-out points is a direct result of the coloring: page-in
points are on the web incoming edges, and page-out points
are on the web outgoing edges (see small bullets in Fig. 1.d,
shown for virtual page 2 only).

This problem is similar to register allocation in compil-
ers [3], where webs represent variable usage and colors the
processor physical registers. Spill code is the register allo-
cation equivalent of page-ins/page-outs in our problem.

In the following, we will use the term N-colorable to note
an interference graph colorable using N colors. The degree
of a node in the interference graph will denote its number
of neighbors in the interference graph.

��� Webs and interference graph

Webs and interference graph are defined for every task.
An inter-procedural Control Flow Graph (CFG) is con-
structed at compile-time. There is one node per basic block
and an edge for every possible sequence between two basic
blocks (caused by conditional and unconditional branches,
function calls and function returns). The set of virtual pages
that may be referenced by a basic block is assumed to be
known at compile-time.

Let us note G � �V�E� the program CFG, with V the
set of basic blocks andE the set of transitions between basic
blocks.

Ideally, if the number of physical pages was large
enough, a virtual page should be paged-in before its very
first use, and paged-out after its last use only, regardless of
the references to the virtual pages in-between. As a conse-
quence, the start point of the coloring process is the interfer-



vp1 −> pp black

vp2 −> pp grey

vp3 −> pp black

Web 1 Web 2

Web 3

����

�
�
�
�

Web 1
(virtual page 1)

Web 2

(virtual page 3)

a

f

e

dc

b

e

dc

b

a

f

Web 1 Web 2

Web 3

(virtual page 2)

Web 3

a. Virtual page liveness (Webs)
on control flow graph (CFG) c. Colored interference graph

b. Interference graph

d. Virtual between virtual and physical pages
after coloring

Figure 1. Predictable paging formulated as a graph coloring problem

ence graph between the largest live-ranges of virtual pages,
called maximal webs in the following. Maximal webs are
split in the course of the coloring process when the interfer-
ence graph is not colorable.

More formally, a maximal web for a virtual page vp is
defined as the set of basic blocks either using a virtual page
vp or belonging to an execution path between two basic
blocks using vp (see figure 2). Let pages�x� denote the set
of virtual pages used by basic block x, and sucs�x� denote
the set of direct or indirect successors of x in the CFG, the
maximal web of virtual page vp is defined as follows:

maxweb�vp� � fx � V j vp � pages�x� �
��y� z� � V j vp � pages�y� � vp � pages�z�
�x � sucs�y� � z � sucs�x�g

a

f

e

dc

b

for page vp
Maximal web

vp in pages(b) 

vp in pages(c) 

vp in pages(f) 

Figure 2. Maximal webs

��� Graph coloring algorithm

The start point of the coloring algorithm is the set of
maximal webs. Once a web is colored, its assigned color
is not changed (greedy algorithm). Every web is assigned
an integer weight used as a heuristic in the coloring process,

and defining the ordering of web coloring. In the following,
constant nbcol will represent the number of colors (num-
ber of physical pages). The algorithm assumes that every
basic block uses a number of virtual pages lower or equal
than nbcol, but obviously it supports a total number of used
virtual pages much larger than nbcol.

The algorithm for coloring the interference graph is
sketched below. The data structures used by the coloring
algorithm are first built (lines 6 and 7). Function Assign-
Weight called at line 8 assigns a weight to every maximal
web (see paragraph 3.4 for a description of the weight func-
tions). The algorithm then iteratively tries to color the inter-
ference graph through a call to function Color (loop at lines
10 to 14). Function splitWeb splits the web having caused
the coloring process to fail, if any.

1 var CFG: tCFG; // Control flow graph
2 IG: tIG; // Interference graph
3 Webs: set of tWeb; // Set of webs
4 ncWeb: bool; // First non colorable web
5 begin
6 Webs := BuildMaximalWebs(CFG);
7 IG := BuildInterferenceGraph(Webs);
8 AssignWeight(IG);
9 ncWeb := Color(IG,nbcol);

10 while (ncWeb �� NULL) do
11 IG := splitWeb(ncWeb,IG,nbcol);
12 AssignWeight(IG);
13 ncWeb := Color(IG,nbcol);
14 done
15 end

The pseudo code of function Color is presented be-
low. Functions getWebsGreaterOrEqual (resp. getWeb-
sLowerThan) returns the set of webs in the interference
graph with a degree greater or equal to (resp. lower than)
parameter nbcol. Function Color scans and colors webs by
decreasing weight value (loop in lines 11 to 14). Function
AssignColor called at line 13 assigns a color to web w, such
that the assigned color is different from those of the inter-



���
���
���

���
���
���

���
���
���
���

Web 1

a

f

e

dc

b

Web 3

Web 2

(vp 1)

(vp 2)

(vp3)

Web 1 Web 3

Web 2

Web 1

a

f

e

dc

b

Web 3

(vp 1)

(vp3)

Web 2.2
Web 1 Web 3

Web 2.1 Web 2.2

Web 2.1

a. Non 2−colorable interference graph b. After splitting Web 2, the graph becomes 2−colorable

Figure 3. Web splitting

fering webs, if possible. The second loop colors naturally
colorable webs, those with a degree lower or equal to the
number of colors.

1 funct Color(IG: tIG, nbcol: integer): Web
2 var w1,w2: tWeb; // Particular webs
3 colorable: bool; // True if IG colorable
4 ncIG: tIG; // Not yet colored subset of IG
5 Webs: set of tWeb; // Set of webs
6 begin
7 // Color webs with degree � nbcol
8 colorable := true;
9 Webs := getWebsGreaterOrEqual(IG,nbcol);

10 ncIG := notColored(Webs);
11 while (�empty(Webs) and colorable) do
12 w1 := RemoveWebWithMaxWeight(Webs);
13 colorable := AssignColor(w1,nbcol);
14 done
15 // Color remaining webs
16 Webs := getWebsLowerThan(ncIG,nbcol);
17 while (�empty(Webs)) do
18 w2 := RemoveFirstWeb(Webs);
19 AssignColor(w2,nbcol);
20 done
21 if (�colorable) then return w1; else return NULL;
22 end

The web splitting procedure splitWeb, whose algorithm
is not detailed for space considerations, splits the first non
colorable web detected by procedure Color. Let us assume
that a particular web w is to be split and interferes with a set
of already colored webs. Procedure splitWeb extracts from
w the fully connected sub-web containing the smaller set of
interfering nodes. An illustration of procedure splitWeb is
given in figure 3. Assuming that webs 1 and 3 are already
colored, the interference graph is not 2-colorable and thus
web 2 has to be split. The smallest set of nodes interfering
with webs 1 and 3 is fbg, which is excluded from web 2,
thus split in webs 2.1 and 2.2. In this small example the
resulting interference graph becomes 2-colorable.

��� Heuristics for web coloring

Webs are colored by decreasing weight order. As our tar-
get applications have real-time constraints, we are primar-
ily interested in minimizing their worst-case timing require-
ments. As a consequence, the weight function for a web w,
called Wwcet�w� hereafter, accounts for the impact of the
web on the task worst-case execution time. Wwcet�w� is
defined as follows:

Wwcet�w� �
X

x�wjvp�pages�x�

frequency�x� (1)

where vp is the virtual page associated to web w and
frequency�x� is the number of references to basic block
x along the program worst-case execution path (WCEP).
Execution frequencies along the worst-case execution path
are a direct result of WCET estimation tools using Integer
Linear Programming (ILP) to estimate WCETs [14]. Since
the WCEP may change due to coloring decisions, it is re-
evaluated regularly. The re-evaluation period can be param-
eterized from � (re-evaluation at every coloring) to � (no
re-evaluation).

A second weight function, named Wnesting�w� was
also defined for comparison purpose. Contrary to Wwcet,
Wnesting�w� does not use any frequency information and
thus can be used without any WCET estimation tool avail-
able. Wnesting�w� is a common heuristic used in compilers
for register allocation [3]. It favors webs with deeply nested
basic blocks. Wnesting�w� is defined as follows:

Wnesting�w� �
X

x�wjvp�pages�x�

��nesting�x� (2)

with nesting�x� the nesting level of basic block x. The
nesting level of a basic block in the main function is �. A
basic block in the loop body of a loop l enclosed in a loop
l� is assigned a nesting level of nesting�l�� � �.



Name Description Code size
(bytes)

minver Matrix inversion for 3x3 floating point matrices 4516
compress Compression of a 128 x 128 pixel image using discrete cosine transform 3056
matmult Multiplication of two 50x50 integer matrices 804
crc CRC (Cyclic Redundancy Check) 1232
jfdctint integer implementation of the forward DCT (Discrete Cosine Transform) 3604
qurt the root computation of a quadratic equation 1748
fft Fast Fourier Transform 3520

Table 1. Benchmark characteristics

4 Performance evaluation

We are interested in evaluating the worst-case timing be-
havior of programs. Estimation of WCETs is completed
using static program analysis. Experimental conditions are
described in paragraph 4.1. Experimental results are given
in paragraph 4.2.

��� Experimental setup

WCET estimation. Our experiments were conducted on
MIPS R2000/R3000 binary code. The WCETs of tasks are
computed by the Heptane2 static WCET analysis tool [4].
One may configure Heptane to estimate WCETs using ei-
ther: a tree-based method, through a bottom-up traversal
of the syntactic tree of the analyzed C programs; an IPET
(Implicit Path Enumeration Technique) method, generating
a set of linear constraints from the program control-flow
graph. Here, the IPET WCET estimation method is used,
because we are interested in the frequency of basic blocks
along the WCEP, which is a direct result of IPET estimation
methods.

Heptane includes hardware modeling capabilities to es-
timate WCETs for programs running on architectures with
instruction caches, (in-order) pipeline, simple branch pre-
diction. In this paper, the hardware analysis phase of Hep-
tane is bypassed and a constant � cycle execution time per
instruction is considered. A page-in time of � million cycles
is assumed. The page-out delays are zero because only code
pages are considered.

Unless explicitly stated, the Wwcet weight function is
used, and the WCEP is not re-evaluated during graph color-
ing. We use pages of ��� bytes; page size is small to stress
the paging activity even on rather small benchmarks.

Benchmarks. The experiments were conducted on
seven benchmarks, whose features are summarized
in Table 1. All benchmarks but compress are bench-
marks maintained by the Mälardalen WCET research
(http://www.mrtc.mdh.se/projects/wcet/benchmarks.html).

2Heptane is an open-source static WCET analysis tool available at
http://www.irisa.fr/aces/software/software.html.

Compress is from the UTDSP Benchmark
(http://www.eecg.toronto.edu/).

��� Results

The main performance metric used in the following para-
graphs is the number of page-ins along the worst-case exe-
cution path. Such a number is a direct output of the Heptane
WCET estimation tool.

Influence of number of physical pages. The left part of
figure 4 depicts the impact of the number of physical pages
on the number of page-ins along the WCEP. For space con-
siderations, results for only four benchmarks are given, the
raw numbers for all benchmarks are given in an appendix
available on demand. The figure shows that the smaller the
number of physical pages, the higher the number of page-
ins along the WCEP.

The right part of figure 4 gives the measured number of
page faults for a demand-paging system using a LRU re-
placement policy, obtained using a small operating system
running on a simulated MIPS processor3. A comparison
of the two figures shows the same evolution of the number
of page loads when making the number of physical pages
vary. In particular, the number of page-ins gets unaccept-
ably high for a small number of physical pages (trashing
phenomenon). The measured number of page-ins is in most
cases lower than the estimated one, because WCET estima-
tion tools estimate the longest path executed and not only
one path. Furthermore, WCET estimation tools may over-
estimate the length of the WCEP (e.g. overestimation of
number of loop iterations like in the fft application, having
nested non-rectangular loops). All in all, except for fft the
number of page-ins is close to the one of a dynamic paging
system, which shows predictability does not come at the
price of performance loss.

Predictable paging vs analysis of LRU replacement.
We have introduced our predictable paging technique be-
cause current page replacement policies used in real-time

3Nachos web site, http://www.cs.washington.edu/homes/tom/nachos/



minver

0

50

100

150

200

250

300

350

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

minver

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e 

fa
u

lt
s

 
(m

e
a

s
u

re
d

)

compress

0

50000

100000

150000

200000

250000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

compress

0

50000

100000

150000

200000

250000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e 

fa
u

lt
s

 
(m

e
a

s
u

re
d

)

jfdctint

0

50

100

150

200

250

300

350

400

450

500

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

jfdctint

0

50

100

150

200

250

300

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e 

fa
u

lt
s

 
(m

e
a

s
u

re
d

)

fft

0

500

1000

1500

2000

2500

3000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

fft

0

100

200

300

400

500

600

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e 

fa
u

lt
s

 
(m

e
a

s
u

re
d

)

Figure 4. Impact of number of physical pages on number of page-ins

minver

0

50

100

150

200

250

300

350

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

Wwcet (no reeval)

LRU

compress

0

50000

100000

150000

200000

250000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

Wwcet (no reeval)

LRU

jfdctint

0

50

100

150

200

250

300

350

400

450

500

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

Wwcet (no reeval)

LRU

fft

0

500

1000

1500

2000

2500

3000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

Wwcet (no reeval)

LRU

Figure 5. Predictable paging vs analysis of LRU replacement



minver

0

100

200

300

400

500

600

700

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
) Wwcet (no reeval)

Wnesting

compress

0

100000

200000

300000

400000

500000

600000

700000

800000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

Wwcet (no reeval)

Wnesting

jfdctint

0

50

100

150

200

250

300

350

400

450

500

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

Wwcet (no reeval)

Wnesting

fft

0

1000

2000

3000

4000

5000

6000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of physical pages

N
u

m
b

er
 o

f 
p

ag
e-

in
s 

(e
s

ti
m

a
te

d
)

Wwcet (no reeval)

Wnesting

Figure 6. Impact of weight function

operating systems are not predictable enough. As a conse-
quence, it is not possible to compare WCETs of programs
with state-of-the-art page replacement policies with our pre-
dictable paging method. Thus, we have compared our pro-
posal with a static analysis LRU page replacement, a highly
predictable replacement policy. Our analysis of LRU page
replacement uses Heptane static instruction cache analy-
sis method for fully associative caches. The cache analy-
sis method of Heptane (see [4] for details) is based on F.
Mueller’s static cache simulation [9]. Results are expressed
in Fig. 5 in terms of number of page-ins along the worst-
case execution path.

When the memory is not too scarce, our predictable pag-
ing yields to lower WCET estimate than LRU. We have ob-
served on small examples two situations explaining the pes-
simism of the analysis of LRU page replacement:

� Circular access to a set of pages of cardinal P within
a loop, on a system with less than P physical pages.
In that situation, LRU replacement behaves poorly be-
cause every evicted page will be reused shortly after in
the loop. This deficiency, detailed in [7] is a deficiency
of LRU replacement itself and not the static analysis of
LRU replacement.

� Classifications as misses of references to pages ac-
cessed both in the body of a loop and the loop exit. In
that situations, the static analysis of LRU page replace-
ment considers that the loop may iterate zero times and
thus the page may have to be loaded from disk. This
pessimism may become important in the case of nested
loops. Here, the problem is with the static analysis of
LRU replacement and not with LRU replacement it-
self. This problem could be fixed if a lower bound of
the number of iterations of loops was provided to the
WCET estimation tool.

When the number of physical pages is extremely low,
in most cases the analysis of LRU yields to tighter WCET
estimates than our scheme. A closer analysis of the sources
of pessimism of our proposal in that situations is still needed
and is left for future work.

Impact of weight function. The two weight functions
Wwcet and Wnesting presented in paragraph 3.4 have been
implemented and tested. Figure 6 gives the number of page-
ins along the worst-case execution path for these two weight
functions.

Except on very rare cases, the number of estimated page
faults is much lower when using the Wwcet heuristic than
when using Wnesting . Using frequency information is thus
valuable for obtaining as tight WCET estimates.

The numbers given in the appendix show that re-
evaluating the worst-case execution path during the graph
coloring has no impact. This is not surprising for the tasks
with little data-dependencies (matmult, jfdctint) but needs
further investigations for the others.

5 Implementation issues and future work

Some hardware and/or operating system support is re-
quired to fully implement our proposal. The first require-
ment is to have support for executing code (here, page-ins
and page-outs) at specific code locations. This could be
done by using hardware debug registers or operating sys-
tem support for debug, if any. Another requirement is to
have support for changing translation information. This is
expected to be straightforward for operating systems with
page locking facilities like in RT-Mach, real-time exten-
sions of POSIX, or a library to control address translation
like in VxWorks. Further work is required to evaluate the



implementation cost of our proposal, in particular in pres-
ence of shared libraries/code/memory segments or multiple
threads sharing the same address space.

The algorithm for off-line selection of page-in and page-
out points is independent of the type of pages referenced
(code, data), as far as referenced pages are known at com-
pile time. The difficulty of applying our scheme to data
comes from the identification of data pages referenced by
every instruction, in case data addresses are computed dy-
namically (accesses to arrays, stack allocated data, dynami-
cally allocated data). The identification of referenced pages
need not be exact, it is sufficient that all pages that may
be referenced are known. Our ongoing work evaluates the
practical feasibility of identifying possibly referenced data
pages, and to quantify the negative impact of an imprecise
knowledge of data references.

Furthermore, to be used in hard real-time systems, disks
(or any other classes of secondary storage) with predictable
access times are required. This is a direction for future re-
search.

Finally, this paper has focused on a single task, and has
left open the choice of the number of pages assigned to ev-
ery task. In [15] an algorithm for optimally partitioning
two-level memory and minimize the task utilization is de-
scribed. Such an algorithm can be used to select the number
of physical pages assigned to each task such as to minimize
utilization. A research direction would be to improve that
algorithm to optimize schedulability rather than utilization.

Acknowledgments. The authors would like to thank E.
Abgrall who implemented the algorithm together with D.
Hardy, as well as J. F. Deverge and K. Brifault for their
comments on earlier drafts of this paper.

References

[1] L. A. Belady. A study of replacement algorithms for a virtual
storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[2] M. D. Bennett and N. C. Audsley. Predictable and effi-
cient virtual addressing for safety-critical real-time systems.
In Proceedings of the 13th Euromicro Conference on Real-
Time Systems, pages 183–190, Delft, The Netherlands, June
2001.

[3] G. J. Chaitin. Register allocation and spilling via graph col-
oring. In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN
symposium on Compiler construction, pages 98–105, 1982.

[4] A. Colin and I. Puaut. A modular and retargetable frame-
work for tree-based WCET analysis. In Proceedings of the
13th Euromicro Conference on Real-Time Systems, pages
37–44, Delft, The Netherlands, June 2001.

[5] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Re-
liable and precise WCET determination for real-life proces-
sor. In Proceedings of the first international workshop on

embedded software (EMSOFT 2001), volume 2211 of Lec-
ture Notes in Computer Sciences, pages 469–485, Tahoe
City, CA, USA, Oct. 2001.

[6] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and the
results of WCET tools. Proceedings of the IEEE, 91(7), July
2003.

[7] B. Juurlink. Approximating the optimal replacement algo-
rithm. In CF ’04: Proceedings of the 1st conference on Com-
puting frontiers, pages 313–319, 2004.

[8] L. Li, L. Gao, and J. Xue. Memory coloring: A compiler
approach for scratchpad memory management. In Proc. of
the 14th International Conference on Parallel Architectures
and Compilation Techniques, 2005.

[9] F. Mueller. Timing analysis for instruction caches. Real-
Time Systems, 18(2):217–247, May 2000.

[10] D. Niehaus. Program Representation and Execution in Real-
Time Multiprocessor Systems. PhD thesis, University of
Massachusetts, Feb. 1994.

[11] D. Niehaus, E. Nahum, J. Stankovic, and K. Ramamritham.
Architecture and OS support for predictable real-time sys-
tems. Technical report, University of Massachusetts, Mar.
1992.

[12] R. J. Pankhurst. Program overlay techniques. Communica-
tions of the ACM, 11(2):119–125, Feb. 1968.

[13] P. Puschner and A. Burns. A review of worst-case execution-
time analysis. Real-Time Systems, 18(2-3):115–128, May
2000. Guest Editorial.

[14] P. Puschner and A. Schedl. Computing maximum task exe-
cution times with linear programming techniques. Technical
report, Technische Universitat, Institut fur Technische Infor-
matik, Wien, Apr. 1995.

[15] J. E. Sasinowski and J. K. Strosnider. A dynamic pro-
gramming algorithm for cache/memory partitioning for real-
time systems. IEEE Transactions on Computers, 42(8):997–
1001, Aug. 1993.

[16] H. Tokuda, T. Nakajima, and T. Rao. Real-time mach: To-
wards predictable real-time systems. In Proceedings of the
USENIX Mach Workshop, Oct. 1990.

[17] WindRiver Systems. VxWorks programmer’s guide, Nov.
1998.

A Appendix: Raw numbers

In the following tables, the first column indicates the
number of pages used. The next three columns then give
the estimated number of page-ins along the worst-case ex-
ecution path using respectively: the Wwcet weight function
with and without re-evaluation of the WCEP (R and no-R)
and the Wnesting weight function. Column LRU gives the
estimeted number of page-ins along the worst-case execu-
tion path when assuming a LRU page replacement policy.
Finally, the last column gives the measured number of page
faults for a LRU page replacement policy when following
one execution path.



minver Wwcet Wwcet Wnesting LRU Measured
page nb (R) (no-R)
4 305 305 623 241 117
5 278 278 473 198 86
6 253 253 352 113 74
7 284 284 322 103 73
8 124 124 246 79 73
9 111 111 236 71 63
10 94 94 252 65 63
11 92 92 199 59 53
12 72 72 166 63 53
13 68 68 137 63 53
14 64 64 108 61 53
15 61 61 58 57 53
16 59 59 56 57 53
17 54 54 70 57 53
18 71 71 95 57 39
19 51 51 75 57 39
20 49 49 55 52 39
21 35 35 35 52 39
22 35 35 35 52 39
23 35 35 35 52 39
24 35 35 35 52 38
25 35 35 35 51 38
26 35 35 35 52 37
27 35 35 35 51 37
28 35 35 35 51 37
29 35 35 35 51 37
30 35 35 35 51 37
31 35 35 35 49 37
32 35 35 35 49 36
33 35 35 35 49 36

compress Wwcet Wwcet Wnesting LRU Measured
page nb (R) (no-R)
2 201142 201142 758112 213793 205333
3 149706 149706 704797 95433 84179
4 131146 131146 704262 72265 70135
5 91723 91723 421127 37202 17685
6 87116 87116 85512 36626 6180
7 54349 54349 83721 36370 5638
8 14926 14926 80906 36370 5638
9 14143 14143 80394 36115 5624
10 12063 12063 44299 19731 5382
11 11807 11807 44300 19731 5382
12 11552 11552 10765 19475 5382
13 11809 11809 9742 19475 5382
14 10529 10529 11023 3096 5381
15 9762 9762 41489 3096 5006
16 8739 8739 37650 3096 5382
17 7956 7956 51219 3096 5043
18 3606 3606 18452 3096 4912
19 2071 2071 18453 3096 5100
20 25 25 34839 3096 2550
21 24 24 24 3096 25
22 24 24 24 2584 25
23 24 24 24 2584 25
24 24 24 24 2584 25
25 24 24 24 2584 24
26 24 24 24 2584 24

qurt Wwcet Wwcet Wnesting LRU Measured
page nb (R) (no-R)
2 388 388 385 387 116
3 271 271 386 330 103
4 158 158 327 270 98
5 99 99 156 270 45
6 97 97 148 159 44
7 89 89 148 156 42
8 89 89 146 102 42
9 87 87 144 100 42
10 84 84 141 43 41
11 25 25 82 42 40
12 23 23 77 40 29
13 18 18 19 39 20
14 14 14 14 40 15
15 14 14 14 39 14
16 14 14 14 37 14

matmult Wwcet Wwcet Wnesting LRU Measured
page nb (R) (no-R)
3 7657 7657 257655 132604 12504
4 5158 5158 252506 5060 2504
5 7 7 7 2512 7
6 7 7 7 2512 7
7 7 7 7 13 7
8 7 7 7 13 7

crc Wwcet Wwcet Wnesting LRU Measured
page nb (R) (no-R)
2 1376 1376 1376 1165 1669
3 782 782 862 863 1288
4 12 12 607 525 1286
5 11 11 523 524 12
6 10 10 10 525 12
7 10 10 10 523 12
8 10 10 10 523 12
9 10 10 10 523 12
10 10 10 10 12 10
11 10 10 10 12 10

jfdctint Wwcet Wwcet Wnesting LRU Measured
page nb (R) (no-R)
6 442 442 455 248 243
7 409 409 417 248 243
8 378 378 377 248 226
9 347 347 322 248 235
10 316 316 330 240 230
11 284 284 299 240 228
12 254 254 267 217 205
13 238 238 237 215 205
14 223 223 222 216 133
15 207 207 207 215 32
16 191 191 191 215 32
17 176 176 176 215 32
18 162 162 162 215 31
19 148 148 148 215 31
20 134 134 134 215 31
21 119 119 119 215 31
22 104 104 104 215 31
23 89 89 89 215 32
24 74 74 74 215 32
25 59 59 59 215 31
26 44 44 44 215 31
27 29 29 29 215 31
28 29 29 29 215 30
29 29 29 29 215 29
30 29 29 29 215 29

fft Wwcet Wwcet Wnesting LRU Measured
page nb (R) (no-R)
6 2436 2436 4783 2825 480
7 2131 2131 4778 2669 475
8 1740 1740 4276 1237 411
9 1709 1709 3627 1207 333
10 1701 1701 3626 449 324
11 1414 1414 3655 419 252
12 1127 1127 2992 411 250
13 1096 1096 2271 379 224
14 1065 1065 2220 331 199
15 1007 1007 2177 331 107
16 980 980 2537 267 64
17 953 953 2450 251 63
18 952 952 2421 177 63
19 951 951 1675 177 61
20 950 950 1406 177 57
21 802 802 1373 179 56
22 761 761 1086 171 53
23 690 690 799 170 44
24 691 691 512 135 43
25 689 689 225 137 42
26 686 686 82 137 42
27 35 35 55 136 29
28 28 28 28 135 29
29 28 28 28 135 28
30 28 28 28 136 28


