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Abstract—High-Level Synthesis (HLS) is used by hardware
developers to achieve higher abstraction in circuit descriptions.
In order to shorten the hardware development time via HLS, we
present an adjustment of the Iterative and Incremental Design
(IID) methodology, frequently used in software development. In
particular, our methodology is relevant for the development of
applications with unusual complexity: the method was applied
here to the development of large modular arithmetic, commonly
used for cryptography applications (e.g., Elliptic Curves). Rapid
feedback on circuit characteristics is used to evaluate deep
architectural changes in short time, greatly reducing the time-
to-market with respect to hand-made designs. In addition, our
approach is highly flexible, since the same generic high-level
description can be used to produce an entire set of circuits,
each with different area/performance trade-offs. Thanks to the
proposed approach, any change to the initial specification (e.g.,
the curve used) is also very fast, while it may require a large
effort in the case of hand-made designs.

I . I N T R O D U C T I O N

Current trends are pushing hardware description towards
higher abstraction. In this context, High-Level Synthesis (HLS)
tools allow for a concise description of circuits [1]. They
offer the best trade-off between precision, the asset of lower
level description languages such as VHDL or Verilog, and the
rapid prototyping often associated with higher level description
languages such as C or C++. These higher-level languages
are historically used in the software development field, even
if the differences between hardware and software design are
numerous. Hardware development is a task involving more
tools and steps than software development in the sense that
the path toward a functional prototype is longer. Moreover,
architectural changes often involve a consequent rewriting and
testing workload. On the other hand, incremental and iterative
methods (also called agile methods) are often applied in the
software field to cope with these issues [2]. These methods
are of multiple types, but they have a few rules in common
including the objective of having a working prototype as fast
as possible. The following design iterations aim at improving
the existing version without breaking anything. Such methods
are not easily applicable to hardware development due to the
usage of verbose hardware description languages.

This paper presents the results of an Incremental and Iterative
Design (IID) method applied to the design of a generic
Elliptic Curve Cryptography (ECC) crypto-coprocessor, based
on an HLS generation flow. HLS is commonly used for some

mainstream applications, but the specific case of ECC requires
architectures based on uncommon operations (e.g., large integer
multiplications or reductions modulo a large prime) that are less
suitable for current HLS tools optimizations. In this particular
case, it is not straightforward to consider a fully automatic HLS
flow giving results that can be compared with the state of the
art. This case study is focusing on this example to highlight
how an HLS flow can still be used and how an IID method
can compensate for some of HLS drawbacks.

By combining HLS and IID during development, we were
able to iterate quickly in order to test multiple architectural
changes until obtaining a satisfactory solution. Additionally,
the generated circuit is described in a high-level language.
Therefore, it is very versatile as it supports updating its
parameters before synthesis. Choosing the supported elliptic
curve or how large integers are partitioned remains easy. Finally,
software tests during the development of prototypes give quick
feedbacks before hardware tests validate the generated circuits.

The paper is organized as follows. We will first describe the
motivations of this work. Then, we will present the proposed
design flow and how the IID method is used. The results are
then discussed in Section IV.

I I . M O T I VAT I O N S

In the first place, the objective was to obtain quickly an effi-
cient but versatile coprocessor for Elliptic Curve Cryptography.
This case study was chosen because it is a difficult case for HLS
tools, which are usually efficient for classical integer operations.
Indeed, very large integers are generally used in cryptography.
We will first provide some details about this application to
emphasize development choices before summarizing the bases
of our methodology.

A. Designing and Updating an ECC Coprocessor

Using Elliptic curves for asymmetric cryptography was
initially proposed in 1985 by Miller [3] and Koblitz [4]. Most
elliptic curves used in cryptography are described by quadratic
equations on two (or more) variables, where each term is defined
over a binary or a prime Galois field. To use such cryptographic
mechanism, participants should agree on one particular elliptic
curve which defines a related security level. Due to recent
progress in mathematical attacks against curves over binary
fields [5], elliptic curves over prime field seem to be a safer
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Fig. 1: ECC history.

choice. Therefore, we focus on curves over GF (p) (prime field)
in this paper. Figure 1 illustrates the ECC history by underlining
some major events. Real life utilizations date back to the early
21st century after governmental and international standardiza-
tions, but also recommendations from consortiums [6]–[11].
This was followed in October 2005 by a new standard with
an alternative curve generation method [12]. Recently, new
curves with specific parameters were proposed [13], [14] and
are already used in some applications. It is even possible for
anyone to send random data in order to participate in the seed
for a new curve generation [15]. Other elliptic curves exist but
are rarely used or with less extensive support by tools. Figure 1
illustrates that new curves are regularly proposed. In the end,
there is still no unanimous consensus about which curve should
be used.

In this context, focusing a hardware development on a
specific elliptic curve could lead to the design of an outdated
circuit at short term. Our proposition is therefore to use
reconfigurable devices (FPGA) to prevent this. The proposed
building process is compatible with all elliptic curves over prime
field even if each built bitstream is specialized for a specific
curve. This permits to efficiently minimize the resource usage,
but requires to provide a simple method to update the supported
curve. This is possible thanks to an automatic building process
as explained in section II-C. The specialization for a selected
curve is done during this build. This automatic process should
also permit to adapt the ratio performance/area. For instance,
from the same input description, we are able to produce very
cheap (but slow) crypto processors, or a fast but more resource
consuming one.

ECC can be used for authentication, cyphering, or secret
exchange protocols. All are based on the same time consuming
operation: the scalar multiplication, which is a one-way function
as no known sub-exponential algorithm currently exists to
reverse it. Since this is the bottleneck of our application, the
case study in this paper is focused on this operation. The

Require:
P = a point of the elliptic curve
O = the infinite point
k = a n-bit width scalar = (kn−1kn−2...k0)2

Ensure: Q = k × P
1: Q← O
2: for i = n− 1 to 0 do
3: R← 2×Q . point doubling
4: S ← R+ P . point addition always done
5: if ki = 1 then
6: Q← S . Write-back: Q = 2×Q+ P
7: else
8: Q← R . Write-back: Q = 2×Q
9: end if

10: end for
11: return Q
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Fig. 2: The Double-And-Add Always ECSM algorithm:
point doublings in white and point additions in black or grey

elliptic curve scalar multiplication (ECSM) is not a classical
integer multiplication, as it is defined between a secret scalar
(classically a 256-bit integer) and a point of the elliptic curve,
whose coordinates are described by large integer values. Several
algorithms for the ECSM exist, but they are usually computed
by using the same two basic point operations: point addition
and point doubling. These operations are not the classical
doubling or addition on integer, because their operands are
actually points of an elliptic curve.

Although we will not consider here the threat of an attacker
with physical access to the device, remote attacks to the
device are often realistic. If an attacker can communicate
with the device, he will be able to measure the computation
time. This can be an important information for accelerating
cryptanalysis [19], and this is why only constant time algorithms
are usually chosen. For the ECSM, the simplest constant time
algorithm is the Double-And-Add Always that is illustrated
in Figure 2. In order to compute the ECSM kP , the scalar
coefficient k is scanned from the most significant to the less
significant bit. For each bit, the point accumulator Q is doubled
and stored in R. A point addition P +R is always computed
and stored in S because of constant time requirement. The
write-back in the accumulator Q depends on the bit ki value
(black or grey boxes in Figure 2). For a 256-bit scalar, the
algorithm will always require 255 point doublings and 255
point additions.

Specific formulas are used to compute coordinates of the



addition and doubling resulting points. Performance of these
formulas depends on the chosen point representation. For
performance considerations, we have selected the Jacobian rep-
resentation [20]. The formulas require large integer operations
over the prime field GF (p): addition, subtraction, inversion,
and multiplication, all modulo p. The prime number p can
be different for each elliptic curve. Some curves over prime
fields may have specific p values in order to implement more
efficient modular reductions [9], but there are also curves with
generic primes and thus less efficient reductions. Since we
want to support any curve over arbitrary prime fields, the latter
approach is thus chosen. In order to minimize the impact of this
choice on global performance, the values are represented in the
Montgomery domain, which allows us using a Montgomery
multiplier and thus avoiding the time consuming reduction
operation [21]. This multiplier is sequential as the result is
computed by splitting the operands into smaller digits which are
processed one cycle at a time. The elementary multiplication
between two digits is computed in 1 clock cycle and defines the
main critical path. The smaller the digit, the higher the operating
frequency, but the more cycles the full integer multiplication
will require. Evaluating the optimal digit width is therefore a
difficult problem.

B. Fast Design Method

Cryptographic choices impose some constraints but due to
many freedom degrees, there are always a lot of non-imposed
implementation details. These details can have important effects
on the overall performance which can be difficult to anticipate.
We thus need a method allowing a fast manual exploration
of the different solutions with relevant and precise indicators.
This means that performance or cost (area) indicators should
be quickly available to fix design choices as soon as possible.
That is why we should have a functional system in a short time,
even if sub-optimal, which we will be able to improve later by
incremental and iterative development steps. The core of our
method is hence to import and adapt IID from the software
field in order to try and rewrite as many circuit descriptions
as required to reach the target. This adaptation may not seem
straightforward for hardware development but it will eventually
allow a fast design process.

C. Using HLS for IID

To adapt an IID method to hardware development, the
key idea is to use an HLS flow in order to benefit from its
advantages. First, a designer needs precise feedback on the
resources and the performance of his circuit. He also needs this
information as soon as possible during the design process, in
order to react and rewrite or adapt the source code. HLS allows
quickly producing a functional circuit as the source code can
be compiled and tested like any software. On the other hand,
the same source code can also go through an HLS flow, where
the tool can provide useful information to the developer, such
as the area of the circuit and performance estimation. With
such data, the developer can immediately change the source
code and both test functionality and estimate performance. One

HLS tool

FPGAHDL Synthesis, PAR
.bit

compiler
bin

HDL
simulation

ok
ko

ok
ko

description

functionnal verif.

Fig. 3: Generic design flow and tool chain requirements.

should note that these iterations are not the classical HLS user
choices (e.g., loop unrolling) but source code modifications in
order to choose for instance a different algorithm.

Secondly, HLS allows for writing complex circuits in a more
concise way compared to a classical method with Hardware
Description Languages (HDLs). A minor variation in the source
code given to an HLS tool can lead to significant architectural
changes that would take a large amount of manpower in order
to apply them in HDL.

Eventually, higher-level languages allow for a very powerful
set of tools (the C preprocessor for instance) giving the
possibility to produce versatile circuits. As seen earlier, in the
ECC context and because of the rapid evolution of the curve
set, such a feature is mandatory. In our case, as an example,
the digit width was never fixed during the development. It was
kept as a parameter that permits to generate a set of crypto-
processors for a curve with different area/performance ratios.
In the end, the designer can select the circuit satisfying his
constraints among the set of generated crypto-processors.

For all these reasons, our proposal is focused on describing
a hardware circuit in a high-level language (not a HDL) to feed
an HLS tool. Figure 3 gives an overview of the different steps
that the source code goes through during the design flow. It is
exploited in two independent build chains: the software one,
used to quickly test the functionality, and the hardware one,
to check the hardware functionality (slower than in software)
and produce a FPGA-ready bitstream. The tedious debug of
hardware functionality is (at least partially) replaced by a faster
software debug.

D. Summary of Needed Operations and Constraints

The top operation is the ECSM. There are hierarchical
dependencies between needed operations:

• The scalar multiplication: a special multiplication between
a scalar and a point of the elliptic curve. The scalar length
is close to the length of the prime p.

• Basic point operations: point doubling and point addition.
• Operations over GF (p): multiplication, subtraction, addi-

tion and inversion of large integers modulo a large prime
number. The typical size of the prime and of the operands
is currently 256-bit for a reasonable security level, but it
may increase in the future.

The sub-section IV-A presents our design method on a limited
part of the crypto-processor: the multiplication over the prime
field GF (p), the most important operation used in ECSM. On
the other hand, we compare our final circuits to the state of the
art at the top-level (the ECSM) in Section IV-B. In addition,
three constraints must be respected:
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• All operations must be computed in constant time to
protect the circuit against timing attacks.

• The elliptic curve must be a parameter (chosen before
synthesis). This permits an easy update when the supported
curve of a design is outdated or a new one is chosen.
This also permits to generate a set of circuits supporting
different curves.

• The digit width must also be a parameter (chosen be-
fore synthesis) because the optimal size is difficult to
anticipate before the place and route step. Additionally,
this permits to generate a set of circuits with different
area/performances ratios.

I I I . H L S A N D I I D

In this section the proposed design flow and the IID method
are discussed in more details. The tools used for building the
ECC coprocessor are then presented.

A. Design Flow

In this paragraph, we describe the method used during
hardware design. Figure 4 represents the flowchart of the design
phases. The first step is to describe the hardware design using
the C language (actually, a subset of ANSI C cf. III-B). This
version can be compiled with gcc for instance in order to
be executed on a standard general purpose processor. The
outputs of the executed program are checked to assert the
algorithmic correctness of the program. As long as the program
outputs are wrong, there are corrections to include in the C
source code. When the modifications are done, the C source
code is given to the HLS tool which produces a hardware
description of the program in standard HDL. The HLS tool
can give some performance information about the circuit. If
these performances are not satisfactory, the designer can try
improving the C source code. The output of the HLS tool is
then given to an HDL simulator for verification and another

C pre-
processor C(hls) GCC bin openssl ok/ko

golden
refsAUGH vhd GHDL ok/ko

wave
tcl Vivado perf.

.bit
Makefile

cycles
perf.

Fig. 5: Set of tools used to setup design flow.

corrective iteration can occur. Eventually, the designer can use
any tool chain, according to the vendor of the targeted FPGA,
to generate the final circuit and obtain precise information that
can lead to further performance-oriented iterations.

B. Tools

Keeping the developed application up to date with current
curves is a major concern. In order to take advantage of newer
FPGAs as they are released, the tools used to build the presented
circuit are relatively independent of the target. Moreover, this
tool chain is Free and Open Source Softwares (FOSS) for
the most part. However, the need for a final estimation of the
design choices and the FPGA implementation imply the usage
of vendor tools so that specific FPGAs can be targeted, and
the design evaluated and built for this specific chip. In this
paper, a Xilinx chip is targeted, hence, the Xilinx tool suite is
used further in this work. Note that any tool suite from other
FPGA vendors could have been used instead.

Figure 5 references all the tools used in the studied design
flow. This entire flow presented in III-A is encapsulated in an
automated environment handled by make. The first step is to
modify the C input to adapt the code to the chosen parameters
(particularly the curve type). This code is given to gcc for
compilation, the produced binary is tested, and the correct
outputs are kept as golden references. In parallel, the HLS tool
Augh [22] generates the circuit in VHDL and reports estimation
of the final circuit latency and performance (i.e. frequency). It
also generates a TCL script in order to automatize the final
circuit generation through Xilinx’s Vivado.

Augh is used in this paper for the following reasons:
• it produces a VHDL output very quickly
• it is vendor agnostic and produces code for various FPGA

families
• it performs a design space exploration automatically, the

user is not involved in the hardware circuit optimization
process

• Eventually, Augh is an academic free and open source
software, hence results are reproducible.

Augh takes a subset of ANSI-C as input and produces VHDL
files.

I V. E VA L U AT I O N O F T H E D E S I G N M E T H O D

How the results were obtained is here as much important
as what the results are. Hence, performance of every obtained
circuit are analysed with respect to the development timeline.



M
o
n

tg
o
m

e
ry

 M
u

lt
ip

li
e
r 

A
re

a
 (

in
 s

li
ce

s)

500

600

700

800

400

300

200

100

0

1

0.5

0

1.5

2

2.5

0 2 4 6 8 10 12
Development time (days)

L
a
te

n
cy

 (
µ

s)

Latency

Area

(a)

(b)

(c)
(e)

(d)

(f)

(g)

(h)

(i)

(j)

(k)

(k)

(l)

(l)

(n)

(m)

(o)

Fig. 6: Area and latency of the Montgomery multiplier vs. time
for 256-bit operands and 32-bit digits.

The mere results are also analysed with a non-exhaustive state of
the art comparison, in order to validate the obtained architecture.

A. Architecture Performances

In this paragraph, we will discuss Figure 6 which presents
the performance and the cost of the obtained Montgomery
multiplier implementations relatively to a three-weeks timeline.
Version controlled code allowed us to plot such data. It should
be noted that with the IID method, every obtained circuit is
a fully functional ECC coprocessor. However, we focus on
the Montgomery multiplier in order to provide the simplest
illustration of our development method. All field multipliers
support arbitrary digit width, but for ease of clarity only those
based on 32-bit digits are represented.

During the first days of development, a functional software
application was developed. Automatic test based on the classical
cryptography library openssl were also implemented to
prevent non functional circuits. The first functional hardware
circuit was obtained after this period: (a) in Figures 6 and 7.
This circuit consumed few resources because parallelism is
not identifiable in the first written code. For the same reason,
this implementation was inefficient. Quickly (b), useless carry
propagations were identified and suppressed: computation time
was reduced by 10 times. The multiplier algorithm contains
several accumulation and bit shifting operations. The next
improvement (c), illustrated in Figure 8, was to merge the bit
shifting with the previous operation by modifying the write-
back destination. Right immediately, the C code was relaxed to
permit parallelism between partial products and a Montgomery
specific digit multiplication before shifting.

After some time, a latency increase can be observed (d).
The final step of our multiplication is a conditional subtraction,
which is always computed to avoid timing attacks. The write-
back is thus disabled when this operation is not required. So far,
the digits of the multiplier operands are incrementally scanned:
in order to reduce routing, operands were hence copied into
local rotating buffers (e). However, it appears that the area cost
of these rotating buffers is very large. Merging two close loops
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Fig. 7: Area × latency of the Montgomery multiplier vs. time
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Require:
a = (am−1, ..., a2, a1, 0)

Ensure: a′ = a >> digit width = (0, a′m−2, ..., a
′
1, a
′
0)

1: a0 = 0
2: for i = 1 to m− 1 do . Compute a
3: ai = ...
4: end for
5: for i = 0 to m− 2 do . Shift a
6: a′i = ai+1

7: end for

⇓
1: for i = 0 to m− 1 do . Compute and shift a
2: if i > 0 then
3: a′i−1 = ...
4: end if
5: end for
6: a′m−1 = 0

Fig. 8: Description of the iteration (c).

offered a latency reduction by increasing the parallelism, but
it also increases the occupied area (f). After two days, it was
clear that our rotating buffers do not fit well on FPGA targets,
hence they were abandoned. Anticipating this fact was not
obvious. Dedicated memory components exist in our FPGA
target (Xilinx Virtex 7 family): RAM blocks were therefore
introduced in the design (g). This significantly reduced the
area occupied by the Montgomery multiplier. In addition, these
memories are large enough to store several integers. Operating
frequency also improved slightly.

The Montgomery multiplier requires a register for the accu-
mulator, which was hence moved into the BRAMs of its first
operand thus simplifying the multiplier usage (h). This reduced
the occupied area but was unfavourable for performances. Loop
unrolling was useful for easiest parallelism of multiplications
without data dependency, but it had a significant cost on area and
it indirectly slew down the system frequency due too additional



Require:
a = (am−1, ..., a0) b = (bm−1, ..., b0)

Ensure: a× b >> m× digit width mod p
1: for i = 0 to m− 1 do
2: rb = bi . Read bi
3: for j = 0 to m− 1 do . Body without data dep.
4: ... = aj × rb + ... . Read aj
5: end for
6: end for

⇓
1: for k = −2 to m2 − 1 do . Body without data dep.
2: if k >= 0 then
3: ... = aj × rb + ... . Read aj
4: end if
5: every m cycles rb update: rb = bi . Read bi
6: compute i and j indexes for the next cycle
7: end for

Fig. 9: Description of the iteration (k).

routing. After having studied the generated unrolled scheduling,
rewriting an internal loop of our multiplier for executing only
operations without data dependency was easy (i). This code
describes a hardware pipeline, hence loop unrolling for this
particular portion of the code was forbidden (j). The pipelined
loop is in a second loop: each loop is used to scan one of the
operands. For each digit of the second operand, the final write-
back of the pipeline was stalled. Figure 9 illustrates the loop
merging (k). Less pipeline stalls reduce the pipeline latency,
significantly reducing the global latency of our multiplier.

Finally, the Montgomery multiplier requires a conditional
final subtraction, which has been deleted by relaxing the
constraint on the range of integers (l). RAM blocks are
inferred by Xilinx’s Vivado from the VHDL generated by
Augh whenever a register linked to a memory is found (i.e.
an array in C). However, the synthesis tool sometimes chose
to absorb this register into an input register of a DSP block
instead of using it as output register for a RAM block. After
solving this problem, some additional data was moved from
LUTRAM to BRAM (m). The latency was reduced thanks to a
shorter critical path, and some area was saved by using a more
compact digit index coding (n). After a final compression of
pipeline stages, the final circuit was built (o).

A lot of radical hardware architecture changes happened
during the development: moving data into BRAMs; pipelining
the Montgomery multiplier; algorithmic update; deletion of the
final subtraction in the multiplier. There has also been changes
in several parts of the design out of the multiplier. However,
all these modifications were always related to small iterations
in the C source code. A lot of small improvements that were
done by iterative development on our high-level description
would have been very time consuming in classical hardware
design.

B. Related Work

In this paragraph, the results of the final architecture for
computing the scalar multiplication (ECSM) are compared with
state-of-the-art solutions. This architecture contains the final
Montgomery multiplier obtained after the iterations previously
detailed. It also contains other operations over GF (p), point
addition, point doubling, and the top-level scalar multiplication.
All these components have been quickly designed using the
same methodology.

ECSM computation time is selected for performance com-
parison. To evaluate the complete circuit cost, two metrics
are proposed. The first one (named unified metric) takes into
account BRAMs, DSPs, and slices. The number of BRAMs
and DSPs is converted in equivalent-slices to allow a fair
comparison. Conversion ratios are computed for each FPGA
device as the ratio between the number of available slices
and the number of available BRAMs and DSPs. The unified
metric as seen in Figure 11 is the maximum of occupied
equivalent-slices by BRAMs, DSPs, and really occupied slices.
This unified metric and the convertion ratio can be calculated
with the following formulas:

rD =
#slicestarget

#DSPstarget
rB =

#slicestarget

#BRAMstarget

unif. metric = max(#slices, rD.#DSPs, rB .#BRAMs)

In the case of our target (xc7v585t) the ratios become:

rD 585t =
91050

1260
' 72.3 rB 585t =

91050

1292
' 70.5

If we consider the last circuit obtained after the iterations
and synthesized for a 256-bit elliptic curve with a digit width
of 32 bits (cf. Table I), the unified metric can be calculated as
follows:

unif. metric = max(633, rD 585t × 8, rB 585t × 1) = 633

Another metric taking into account DSPs and BRAMs
is proposed in [23]. Unfortunately, it uses FPGA-specific
architectural information that is tedious to gather for the
different targets presented here. The second circuit cost metric
is classic: it is the number of occupied slices, where DSPs
and BRAMs are not taken into account. The former metric is
more adapted to the case where all system parts use BRAMs,
DSPs and slices. In Figure 11, area is represented by the latter,
which is for cases where BRAMs and DSPs are not used by
other parts of the system. Thus, they can be considered as
carrying no cost and only slices are included in the area cost.
In order to compare area fairly, the study is limited to Xilinx
Virtex families 5, 6 and 7 because in all these targets each slice
has 4 6-input LUTs. For equitable performance comparisons,
only implementations supporting 256-bit elliptic curves over
the prime field are represented.

In order to obtain interesting area/performance ratios, multi-
plications over GF (p) must be sequential. [24] exhibited the
advantages of using DSP in this context on a Virtex 5 target.
The number of occupied slices can be reduced from 9100 to
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Fig. 10: ECSM Implementation efficiency vs. area for state-
of-the-art circuits and our circuit set using final Montgomery
multiplier implementation (*: unified metric is defined in IV-B)
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Fig. 11: ECSM Implementation efficiency vs. area (slices)
for state-of-the-art circuits and our circuit set using final
Montgomery multiplier implementation

4505 by using 16 DSPs. This number of DSPs is equal to 4320
equivalent-slices (16×rD = 16× 51840

192 for a target xc5vlx330).
The usage of these specific components is reasonable because
it is close to the number of occupied slices. In the same
way, computation time is reduced to 0.59 ms for each scalar
multiplication. This work is based on a manual tiling of DSPs
by taking into account the asymmetry of these components.
This tiling step should be repeated if the implemented circuit
has to support a larger prime. In addition, the modular reduction
is specific to a special prime number [9] and is not compatible
with random curves.

To avoid the reconfiguration required to support multiples
curves, it is possible to design crypto-processors supporting
several curves. For example, [27] proposes an implementation
supporting 5 NIST curves with different prime widths. It is
based on modular operations over a restricted set of prime fields
GF (p). The proposed circuit is efficient (scalar multiplication
in 0.4 ms for a 256-bit curve on a Virtex 6 target). On
the other hand, a lot of resources are required because the
design also supports a 521-bit curve: 11200 slices, 289 DSPs,

and 128 BRAMs. In addition, the number of DSPs is large
comparing to occupied slices. Our proposed area metric in
Figure 10 is 39657 equivalent-slices whereas only 11200 slices
are occupied. For an optimal resource occupation, this design
could be used in conjunction with an application that does
not consume DSPs. In order to minimize area, our choice is
different because the generated designs support only one curve
but an automatic and fast process permits easier curve update.

Another method for increasing the frequency is to use RNS
arithmetic [26]. This can be more complex than classical
arithmetic but more efficient due to shorter critical path
(0.612 ms for a 256-bit scalar multiplication on a Kintex 7).
In order to support a new curve with another prime, however,
a new RNS base must be generated.

All our generated designs use less resources than the
other circuits. Our most efficient circuit occupies a little less
slices than designs proposed by [25] on Kintex 7. In this
paper, a GF (p) Montgomery Multiplier is used as well. The
development was done at the RTL level whereas we used
HLS and IID methods. For comparable performances, our
circuits consume less area due to the larger exploration that is
done by the HLS tool. Althought these circuits use as much
slices as our best circuits, the unified metric (in Figure 10)
illustrates their intense DSP usage. It should be pointed out
that performance and area overheads in their circuits come in
part from a protection against physical attacks.

It is possible to increase the Montgomery multiplier through-
put. For example, a previous implementation on Virtex 5 target
used quotient pipelining to achieve more parallelism [29].
This permits to compute a scalar multiplication in 0.376 ms
with 1725 slices and 37 DSPs. If we want to generate more
efficient circuits by increasing occupied resources, another
iteration in our development may integrate this improvement
on the multiplier pipeline. A simpler improvement may also
be developed to increase parallelism, i.e. compute at the same
time several multiplications. Data dependencies in basic point
operations allow this but in order to minimize area this was
left as future work.

Another very efficient circuit was proposed by Sasdrich and
Günneysu on Zynq 7 target [28]. Data rolls between two
memories through the arithmetic operator. The multiplier is
based on a school method with an efficient reduction because the
field is based on a pseudo Mersenne prime. This implementation
can support only one specific curve (Montgomery curve). For
this particular case, the number of prime field multiplications
required for computing one point doubling and one point
addition is reduced from 26 to 10. It seems difficult to achieve
the same performance when targeting generic curves. A future
iteration in the development focusing on specific curves and
keeping our actual solution as fall-back for generic curves is
always possible, but out of the scope of this paper.

C. Generated Set

Our generated circuits support an arbitrary generic elliptic
curve contrary to some cited designs [27], [28]. We focused
on 256-bit curves for comparison to the state-of-the art,



TABLE I: Area and performance of the scalar multiplication
over curve P-256 [10] for an extract of our generated circuits

Digit width Slices DSPs BRAMs Freq. computation
(bits) (36 kb) (MHz) time (ms)

4 417 0 1 326 97.8
18 467 2 1 356 7.03
32 633 8 1 277 4.38
54 859 18 2 271 2.4
64 1019 32 2 208 3.13

but other security levels can be chosen. In addition, several
crypto-processors with different area/performance ratios can be
generated by modifying the digit width used in the large integer
partitioning. The target is a Virtex 7 FPGA (XC7V585T) and
all results are post place and route. Our circuits in Figures 10
and 11 are generated with digit widths from 4 to 64 on curve P-
256 [10]. With the same high-level source code, our generated
circuits occupy from 417 to 1019 slices (respectively with digit
width 4 and 64) and can compute a scalar multiplication on
256-bit from 97.8 ms to 2.4 ms (respectively with digit width 4
and 54). A subset of all the generated circuits is characterized in
Table I. The design with best performance uses 54-bit digits and
computes the scalar-multiplication in 2.4 ms (651000 cycles
at 271 MHz). The 64-bit digits is faster in term of cycles but
the critical is longer hence computation time is stretched. Our
designs consume less area than other designs thanks to the
proposed method, while achieved performances are close to
equivalent hand-made designs.

D. Discussion

The present contribution is focusing on FPGA for various
reasons. A highly versatile architecture was required given the
fast changing trends in elliptic curve standards. Nonetheless, it
is possible to apply the presented method to any hardware
design that lacks HLS support. Indeed, when a satisfying
architecture is found after few iterations, the hardware developer
can directly write this kind of architecture in HDL and proceed
to the low level improvements that differentiates the output of
an HLS tool from a fully hand-made design. With this solution,
the developer can avoid potentially costly architecture changes
and have final results quicker than with a classical method.

V. C O N C L U S I O N

The reported case study demonstrates the efficiency of
the proposed approach, inspired by some principles of Agile
development methods. Thanks to HLS, powerful and flexible
circuits can be obtained quickly, with various performance/area
trade-offs. The proposed flow also enabled the generation of
a highly versatile Elliptic Curve Cryptography coprocessor,
adapted to any existing and future curve specification.

Future works include the parallelization of some architecture
parts. This improvement could allow us to reach state-of-
the-art latencies. Our verification based on a cryptographic
library is application specific. Better interoperability by using
standardized verification methodology could be beneficial.
Moreover, proving equivalence of designs between iterations
could further improve verification. Taking into account side

channel vulnerabilities (in addition to constant computation
time) during the high-level specification is another objective.
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