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Abstract— Real-time face recognition by computer systems is 
required in many commercial and security applications because 
it is the only way to protect privacy and security in the sea of 
peoples. On the other hand, face recognition generates huge 
amounts of data in real-time. Filtering out meaningful data from 
this raw data with high accuracy is a complex task. Most of the 
existing techniques primarily focus on the accuracy aspect using 
extensive matrix-oriented computations. Efficient realizations 
primarily reduce the computational space using eigenvalues. On 
the other hand, an eigenvalues oriented evaluation has minimum 
time complexity of O (n3), where n is the rank of the covariance 
matrix; the computation cost for co-variance generation is extra. 
Our frequency distribution curve (FDC) technique avoids matrix 
decomposition and other high computational matrix operations. 
FDC is formulated with a bias towards efficient hardware 
realization and high accuracy by using simple vector operations. 
FDC requires pattern vector (PV) extraction from an image 
within O (n2) time. Our enhanced FDC-based architecture 
proposed in this paper further shifts a computationally expensive 
component of FDC to the offline layer of the system, thus 
resulting in very fast online evaluation of the input data. 
Furthermore, efficient online testing is pursued as well using an 
adaptive controller (AC) for PV classification utilizing the 
Euclidian vector norm length. The pipelined AC architecture 
adapts to the availability of resources in the target silicon device. 
Our implementation on an XC5VSX50t FPGA demonstrates a 
high accuracy of 99% in face recognition for 400 images in the 
ORL database, generally requiring less than 200 nsec per image. 

Keywords-component: Real-time, Face Recognition, 
Reconfigurable. 

I.  INTRODUCTION  
Intrusive and non-intrusive are the main categories of 
biometric techniques. Researchers for defense, security and 
commercial applications increasingly demand face 
recognition that employs non-intrusive biometric 
approaches, thus protecting both security and privacy [1]. 
Such systems generate a lot of raw data in real-time. 
Numerous engineering applications that make a decision 
based on raw data employ pattern recognition approaches 
that first extract meaningful data [2] and then generate 
eigenvalues to represent this dataset.  Furthermore, PCA 
(Principal Component Analysis) is such a common technique 
associated with face recognition algorithms [2] [3] [4] [5] [6] 
[7] [8] [9]. 

PCA computes the eigenvalues, usually in O (n3) time, 
where n is the rank of the co-variance matrix [20]. PCA 

provides less than 85% accuracy even when using 50% of 
the training images per subject [10] [11] [12] [13] [14]. 
Many variants of PCA improve the accuracy and/or speedup 
the computation [15] [16]. Linear Discriminant Analysis 
(LDA) normally provides better accuracy than PCA when 
the dimensionality of the transformed space is one less than 
the classes used in the training set. Furthermore LDA needs 
more than 80% of the stored images per subject for training 
purposes [13] [14].  In fact, LDA’s accuracy deteriorates 
badly when the system is trained with only one or two 
images per subject in the training  set. Furthermore, it has 
higher computational cost than PCA because it uses PCA 
along with the multivariable normal distribution of the 
covariance matrix.  

Fisher Discriminant Analysis (FDA) works well with the 
reduced space created by PCA. FDA uses LDA to optimize 
the sample data point projections [13] [14]. FDA and LDA 
use a global Euclidian structure for the extraction of features 
and ignore local face details. Therefore, FDA may not 
achieve 99% accuracy that is frequently required for reliable 
real-time processing.  Real-time pattern recognition needs 
algorithms that can extract and identify known features in 
minimum time [29]. Relevant embedded systems are 
expected to recognize faces in a fraction of a µsec. Such a 
real-time system proposed by Microsoft can handle 15 
frames, with two frames of face detection per second, when 
implemented on a 700 MHz Intel or a 200 MIPS-strong 
ARM processor [17]. Any software-based application 
realization is normally slower compared to its hardware-
based counterpart. For example, hardware-based face 
recognition using an artificial neural network and eigenfaces 
has been implemented on an analog ADSP-BF535 EZ-KIT 
device [18]. This system provides recognition with a 
maximum accuracy of 80%, consumes 36 msec each time, 
and uses more than one MB of storage for each face. A 
multi-processor architecture that includes a smart camera 
achieves recognition in 4.3 msec with 90% accuracy [19].  

Many algorithms have been developed to achieve 
maximum accuracy within minimum time [10] [20] [11] [21] 
[22] [23]. However, none of them demonstrates ~99% 
accuracy within O (n2) time with a single training image per 
subject, for popular benchmark databases of faces. Our 
proposed technique extracts both global and local details 
using the simple FDC matching method that requires 
storage space for ݉ 256 ݔ array of gray levels on the host 
machine and two vectors simultaneously in the BRAM 



memory of the FPGA, where m is the number of subjects.   
Our herein proposed technique needs only one training 
image per subject, with frontal pose and good lighting, to 
provide reliable recognition within O (n2) time. Accuracy 
may reduce in case training images are acquired with bad 
lighting or angled pose, but decision will be provided within 
O (n2) time.  

Hardware realization can be customized considering 
FPGA resource constraints in memory and other on-chip 
areas that can be configured for computations. With our 
FPGA-based architecture, the generation of PVs, a 
computationally expensive process, is accomplished offline. 
These PVs are then grouped at static time according to their 
similarities in order to intelligently   minimize the online 
recognition time by focusing at runtime only on those PVs 
that have a high probability to match the input. An adaptive 
controller in the online layer speeds up the recognition rate 
very substantially. It is shown here that the architecture with 
the adaptive PV-Controller (APVC) improves the 
recognition rate of the basic, non-adaptive architecture by 
80%. Furthermore, the APVC-based pipelined architecture 
can be configured to match available device resources and 
application time requirements. 

II. EIGENVALUE METHODS  
Let m1, m2, …, md  be the square matrices of rank n 
representing the training images for a subject.  Assume the 

transformation  ݉ ՜ ݔ  of each training image i into a 
column vector representing the original n2 pixels. Then 
define a matrix A = {x1,x2,….,xd}, for i=1, 2, …, d, where 
each column of A  represents an image and belongs to one 
of m classes {X1,X2,…,Xm}. Let us also consider a linear 
transformation mapping the original d*n2-dimensional 
image space of A into a reduced d-dimensional feature space 
using PCA (as described below). 

 

A. PCA Reduced Eigen Spaces 
The basis vectors are computed in the reduced dimensional 
space for the eigenfaces. The eigenvectors of the co-
variance square matrix generate an Eigen space. The 
eigenvectors are denoted by ݆ ݎ݂ ,ߤ  ൌ 1,2,3 … , ݀ . These 
vectors are computed usually by tridiagonalization and 
subsequent decomposition of the co-variance matrix [15]. 
The co-variance matrix is computed as ܥ ൌ  and the ,ܣ்ܣ 
basis vectors for the n2xd dimensions are computed with an 
original space of n2xn2, that is 

ݐ   ൌ ௨
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Then, the projection of each of the L leading eigenvectors is 
computed and stored in a matrix hdW × as follows: 
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Let N be a column vector of length n2, representing an 
input image. Define three column vectors ND , NW , NV , as 
follows: 
ேܦ ൌ ܰ െ  (3) .……                                                         ܬ
where ܬ  is the row mean of the A matrix having 
dimensionality 1 x n2. The following equation represents the 
projected space and Equation (5) represents an error vector 
whose entries are associated with an input test image. 
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Equation (5) is part of the PCA classifier, after a statistical 
scalar value is computed in relation to each input test image 
followed by threshold error limit analysis to achieve 
recognition. However, the underlying PCA reduction 
process requires O (n3) minimum time. 

B. Fisher Faces 
Eigenfaces maximize the variance between classes while 
ignoring the within-class variance.  Fisher faces use LDA to 
compute both variances separately to seek the direction of 
an efficient discrimination between classes [12] [24]. Fisher 
faces usually perform better than LDA and PCA when data 
for the classes are uni-modal and the training data set 
includes a large number of images per subject [13] [14].  
Let Kb and Kw be the variance between classes and within a 
class, respectively:   
∑   ୀܭ  
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where ܰis the number of images in class j, m is the total 
number of classes,   and ܺ

   is the jth sample in the ith class. 
An optimal projection can be obtained by maximizing the 
ratio of the determinant in Equation (8): 

ܹ ൌ arg ௐ
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                      ………… (8) 

ܹ ൌ  ൣ ଵܹ, ଶܹ, … . , ܹ൧ contains the L largest eigenvectors. 
Projections between classes can be derived using Equation (7) 
and the corresponding eigenvalues [24]. However, LDA uses 
supervised learning and focuses on global structure because 
the denominator in Equation (8) is to be minimized or the 
numerator to be maximized. 

III. PROPOSED FACE RECOGNITION ALGORITHM  
Various pattern classifiers have been applied to face 
recognition, such as nearest neighbor, Bayesian, and support 
vector machine [3] [21] [25] [26]. However, they do not 
show a close to 100% accuracy while they consume O (n2) 
time with just one or two training images from three popular 
benchmark face databases. In this paper, we develop a new 
classifier based on cumulative frequency distribution and 
use the standard variance vector (SVV). SVV acts as a 
template kernel and is represented by a graph.  



Figure-1 shows the plots of the cumulative frequency 
against the gray levels. Two same class images and three 
other class images are used for the proposed transformation. 
We can observe that plots belonging to the same class do 
not deviate substantially in Figure-1. The graphs are divided 
into three regions using three threshold values. It has been 
observed that the exclusiveness of the three regions provides 
better decision quality. Further, it cannot increase the search 
time by more than O (n) and the computing time for an 
input image is not more than O (n2). The input image has to 
pass through the same computing steps which were used to 
extract the features in the training process. The proposed 
classifier provides linear time decision making for the input 
test image.  

Let ܶ ൌ  ሼݔଵ, ,ଶݔ … , ሽݔ  be a training set having m 
classes/columns. Define a transformation P on T which 
computes the gray level distribution as follows: 

ܲ ൫ݔ൯ ൌ ݊, where ݅ ൌ 1,2, … , ݉  
ܽ݊݀ ݆ ൌ 0,1,2, … ,255                                                …  (9) 
We then normalize the distribution: ܲ݊ ൌ  

ೕ


     … (10) 

where ܿݎ defines the resolution of the images. We 
accumulate the distribution as calculated in Equation (9) and 
then do sorting which provides a gradually increasing order 
of the frequencies of gray level appearance. Each row in the 
normalized ܲ݊ matrix represents a reference for the 
respective class.  

Let ܲݐ be a transformed testing PV vector obtained by 
applying Equations (9) and (10) to the incoming test image, 
which is then subtracted from a  column of the ܲ݊ matrix to 
populate a vector M. The content of the M vector is over 
written for each input test image, because the decision entry 
is simultaneously stored in the ܷ vector.   

ேܯ  ൌ ܲ݊ െ     ,ேݐܲ 
 (11) ….   ݏ݁݃ܽ݉݅ ݐݏ݁ݐ ݂ ݎܾ݁݉ݑ݊ ݄݁ݐ ݏ݅ ܰ ݁ݎ݄݁ݓ 

To maximize the variance between classes, each vector in 
Equation (11) is divided into three regions because the 
distribution in Equation (11) shows Gaussian behavior [27].  
The minimization of the following objective function, which 
has been developed for efficient face recognition, provides a 
better discrimination analysis: 
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It is observed that distinguishing among three regions in 
Equation (12) for the variance vector improves the 
discriminating power of the proposed technique. The 
variance vector has a critical role as observed in Figure-1. 
Furthermore, 1݆ ݄݁ݐ, ݆2, ݆3 lengths have to be defined in such 
a way that the computed thresholds can be compared 
with ߝଵ,   ߝଶ,   ߝଷ, respectively It has been observed that j1+j3 
<= j2 and ߝଷ provides better results under the constraint 
݆1   ݆2  ݆3 ൌ 255 [27]. TrIM1 TrIM2 and TrIM3 
represent the FDCs of randomly selected images from the 
same class in Figure-1. While TestIm1, TestIm2 and 

TestIm3 represent FDCs, they are for randomly selected 
images from other classes in the ORL face database (used in 
our experiments) [28].  

IV. ARCHITECTURE 
Our FDC-based three-layer architecture is shown in Figure-
2. The feature extraction for the set of training images using 
the proposed FDC technique is a computationally expensive 
process that is handled offline during pre-processing. This 
process produces the PVs in time depending upon the 
number of subjects d in the given data set. The PVs are 
stored in the host machine’s RAM memory. One PV is 
transferred at a time to the online layer through the PCI or 
other bus interface. The number of pre-stored images per 
subject determines the total test space.  

The second layer of the architecture is used for online 
testing. The digital image, which is treated as a matrix of 
gray levels, requires substantial bandwidth to be transferred 
to the FPGA. Such a bandwidth may not be available due to 
their rather limited number of input/output pins and their 
operating frequencies. For this reason, our approach here 
converts the image matrix into the one-dimensional input 
pattern vector (IPV) on the host machine for transmission to 
the FPGA board. An FPGA buffer directs this data to the 
on-chip BRAM memory for efficient FDC computation. 
FDC applies the mathematical steps in Equations (10) and 
(11). 

One PV from the pre-stored collection of PVs in the host 
RAM is transferred while the IPV is being computed, thus 
overlapping computations with data transfers. After the IPV 
is computed in the FPGA, the classifier determines 
statistically, as per Equations (11) to (12), a possible match 
(binary decision). This process repeats for all PVs pre-stored 
in the host RAM unless a true decision is made by the 
classifier. Our experiments show that, on the average twelve 
iterations are needed for a successful recognition. We 
further improve the efficiency of the architecture in Figure-2 
by introducing an adaptive classification technique for the 
pre-stored (training set based) PVs.  

The enhanced architecture relies on a process that 
eliminates the need to test all the pre-stored PVs against the 
online produced IPV. The proposed architecture 
modifications are minimal. The new architecture is shown in 
Figure-3. In this architecture, the Euclidian normalization 
length of a vector is proposed to calculate tags for the pre-
stored PVs. The tags are scalar real values computed for the 
PVs.  The objective is to minimize the number of false 
attempts by introducing the following algorithm in the host 
machine. 

 
Algorithm for the controller to locate the most suitable PV for the 
incoming test image 

 
Step (1): Using the Euclidian normalization length formula 

ݔ ൌ ቂ∑ ቀܾܽݏ൫ݔ
ଶ൯ቁଶହ
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  calculate tags for the stored 

PVs. 



Step (2): The computed tags for PVs are stored in a vector 
ܸ ൌ 1  ݁ݎ݄݁ݓ ,   ݔ   ݆ 

 ݁ݏܾܽܽݐܽ݀ ܽ ݊݅ ݏݐ݆ܾܿ݁ݑݏ ݂ ݎܾ݁݉ݑ݊ ݁�ݐ ݏ݅ ݉ ݀݊ܽ ݉
Step (3): Apply step (1) for the test image and get the y 

vector, and subtract y from each element of ܸ to generate 
a Euclidian length difference vector Diff_PV of dimension 
m. 

Step (4):Sort the Diff_PV in ascending order and store the 
difference values with their indices in another array F_PV 
having dimension 2 x m.  

 Step (5): The index associated to the first value in F_PV is 
used to send the first PV having the maximum probability 
to match with the IPV. If recognition is not successful, 
then choose the next value from F_PV and repeat this 
process until a successful recognition signal is received 
from the next hardware layer. 

Step (6): Repeat steps 3 to 5 for each test image. 
 

 
In Figure-3, the host layer has a tag vector of length m 

generated during step (2) of the above algorithm. In the 
online layer, two signals are introduced to control the next 
transfer of the PV from the host layer to the online layer. 
The signal TF_Fag has a “true” value for a matching and 
“false” otherwise (i.e., demanding the next PV). A “true” 
value for TF_Fag is also transmitted to the I/O butter to get 
a new test image. Furthermore, for a “true “signal, a new 
ID_IPV is sent to the host layer. 

Our simulation results in histogram form for the new 
algorithm using the ORL database are shown in Figure-4 
[28]. The column length indicates the frequency of 
successful attempts whereas the horizontal axis shows the 
number of required tests against PVs. The proposed 
controller algorithm provides significant improvement for 
face recognition compared to the original architecture in 
Figure-2. The first column in Figure-4 shows that ~190 test 
images will get a successful PV from the PV_controller 
within the fifth iteration. The average number of run-time 
tested PVs is reduced to 7.7 from 20. 

A. Pipelining 

In Figure-5 a pipelined architecture is formulated to take 
advantage  of  regularity  in PV_ID, IPV_ID and Vm array 
data. In this architecture, PV_controller is replaced with a 
new layer for PV classification. This layer has three major 
components, namely Trained_PV, P_PV_controller and 
PV_Cache. Trained_PV isrepresents  the collection of  PVs, 
similar to the architecture without the pipeline. 
P_PV_Controller has two extra components compared to 
the architecture in Figure-3. These components are Circular 
FIFO and a k-dimensional array containing the sorted tags 
of PVs in the corresponding pipelined modules. Circular 
FIFO is introduced in the PV_Controller to handle the 
sequence of identification tags for incoming test images. It 
is assumed that the k modules can get their most suitable 
trained PVs from the controller layer; these PVs are stored 
in advance in the PV_Cache area. 

The diamond block provides input to the OR gates to 
preempt early any further processing after a successful 
match/recognition. This block generates a positive decision 
if the test image belongs to a person in the training database; 
otherwise, its feedback signal to the host machine requests 
the next appropriate PV. This block plays an important role 
in the pipelined architecture using the PV_Cache area, as 
shown in Figure-5.  

A “true” or “1” answer for the Boolean expression in 
Equation (12) means that the input image matches that 
particular PV; otherwise, the next appropriate PV has to be 
sent from PV_cache to the online layer. PV_Cache holds the 
PVs according to the number of test images being under 
process in the online layer. PV_Cache will be flushed when 
a “true” signal is received from one of the OR gates.  

The horizontal modules in the online layer in Figure-5 
depend upon the target FPGA resources and the vertical 
elements determine the number of FPGAs on the target 
board. Therefore, the proposed pipelined architecture is a 
modular, robust reconfigurable system as shown in Figure-
6. The obtained architecture speed as a function of the 
pipeline stages was simulated and the result is shown in 
Figure-6, assuming a 10% overhead for new stages.   

The output of the OR gates that generate a feedback to 
the controller further improves the decision time for an 
appropriate PV identification that leads to a transmission to 
the online layer.  A high speed face recognition process can 
then be obtained. 

V. RESULTS  
Table-1 shows the resource utilization data and the 
execution time when implementing our architectures on a 
Xilinx Virtex5 FPGA device. The Xilinx 11.1 suite was 
used that includes the AccelDSP tool with MATLAB files 
for floating-point verification. According to the synthesis 
report, 15 32-bit multipliers, 53 adders and 47 subtractors 
are used in the implementation. Pipelining in the multipliers, 
adders and subtractors improves the time further but the 
resource consumption reaches 36% of the FPGA real estate. 
On the other hand, an approximate 80 nsec execution time 
makes our system a very viable choice for real-time face 
recognition. Our chosen development tool provides two 
frequencies for the designed system, one being the requested 
frequency and the other the maximum based on the circuit’s 
critical path after RTL implementation. The execution time 
for both frequencies is shown in Table-1 using the ORL 
database. The worst frequency is the selected value before 
the synthesis process mentioned in Table-1. The pipelined 
architecture shows an improvement of more than 87 % 
compared to the architecture in Figure-3 for the 
XC5VSX50t Virtex5 device since up to three modules in 
Figure-5 can work simultaneously. The testing of any image 
using the proposed system provides a decision within 0.6 
µsec with accuracy of 98.3%. This was validated with the 
ORL database of 400 images with 40 subjects and 5600 
pixels in each gray level image. While Microsoft real-time 



system provides decision in 0.5 sec and analog system gives 
result in 36 msec with 80% accuracy.  

VI. CONCLUSION 
Real-time face recognition systems have very high 
computation demands while also requiring high accuracy. 
These requirements are more vital when dealing with 
security applications. Most of the existing face recognition 
algorithms have been developed for desktop-based offline 
systems. Our proposed frequency distribution curve 
matching technique primarily pre-calculates pattern vectors 
(PVs) that can be subsequently used by the online classifier. 
Novel FDC-based architectures were presented that achieve 
substantial speedups while also providing highly accurate 
recognition. The adaptive PV_controller-based FDC 
architecture yields high speedups with due consideration to 
resource constraints stemming from the chosen FPGA 
device.  Furthermore, the pipelined architecture exploits the 
parallelism capabilities of configurable devices, thus 
providing even more viable solutions for real-time face 
recognition tasks. 

 

Table-1. Resource consumption and performance for FDC-based face 
recognition  

ORL face database with 40 subjects Utilization   
FPGA Device: Xilinx XC5VSX50T Resources   

Slices 36%   
BRAM 1% 

Multipliers 15 
Adders 53 

Subtractors 47 
DSP units 19% 

Time of Execution  Best Worst 
Frequency in MHz  188 100  

Data feeding Time (ns) 118.72 224 
Binary decision data out time (ns) 0.0053 0.01 
Test time for a pattern vector (ns) 126.39 233.97 

Test time for the ORL database (ns) 2527.71 4679.40 
Time for online testing using the adaptive 

controller (ns) 973.17 1801.57 
Time for the pipelined architecture (ns) 421.70 780.67 

Improvement with pipelined architecture % 
(100-(PA/AC)*100) 83.316 83.316 
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Figure1. Cumulative frequency distribution of gray levels for three 
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levels for the ORL database. 
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Figure 2. FDC-based face recognition architecture.
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Figure3. FDC-based face recognition architecture using adaptive control for pattern classification 



 

 

 

Figure 5. Pipelined  FDC-based face recognition architecture.


