
An Energy-Efficient Artefact Detection Accelerator
on FPGAs for Hyper-Spectral Satellite Imagery

Cornell Castelino∗, Shashwat Khandelwal∗, Shanker Shreejith∗, Sharatchandra Varma Bogaraju†
∗Reconfigurable Computing Systems Lab, Electronic & Electrical Engineering Trinity College Dublin, Ireland.

†Faculty of Computing, Ulster University, Jordanstown Campus, Newtownabbey, U.K
{castelic, khandels, shankers}@tcd.ie, s.bogaraju@ulster.ac.uk

Abstract—Hyper-Spectral Imaging (HSI) is a crucial technique
used to analyse remote sensing data acquired from Earth observa-
tion satellites. The rich spatial and spectral information obtained
through HSI allows for better characterisation and exploration
of the Earth’s surface over traditional techniques like RGB and
Multi-Spectral imaging on the downlinked image data at ground
stations. In some cases, these images do not contain meaningful
information due to the presence of clouds or other artefacts,
limiting their usefulness. Transmission of such artefact HSI im-
ages leads to wasteful use of already scarce energy and time costs
required for communication. While detecting such artefacts prior
to transmitting the HSI image is desirable, the computational
complexity of these algorithms and the limited power budget
on satellites (especially CubeSats) are key constraints. This
paper presents an unsupervised learning-based convolutional
autoencoder (CAE) model for artefact identification of acquired
HSI images at the satellite and a deployment architecture on
AMD’s Zynq Ultrascale FPGAs. The model is trained and tested
on widely used HSI image datasets: Indian Pines, Salinas Valley,
the University of Pavia and the Kennedy Space Center. For
deployment, the model is quantised to 8-bit precision, fine-tuned
using the Vitis-AI framework and integrated as a subordinate
accelerator using AMD’s Deep-Learning Processing Units (DPU)
instance on the Zynq device. Our tests show that the model
can process each spectral band in an HSI image in 4 ms, 2.6×
better than INT8 inference on Nvidia’s Jetson platform & 1.27×
better than SOTA artefact detectors. Our model also achieves
an f1-score of 92.8% and FPR of 0% across the dataset, while
consuming 21.52 mJ per HSI image, 3.6× better than INT8 Jetson
inference & 7.5× better than SOTA artefact detectors, making
it a viable architecture for deployment in CubeSats.

I. INTRODUCTION

Hyper-spectral imaging (HSI) provides the footwork to
deeply investigate the Earth’s atmosphere and its surface by
capturing rich spectral and spatial information [1]. Compared
to traditional multi-spectral imaging methods, HSI captures
spatial images in continuous spectral regions, obtaining in-
formation on the spectral radiance of the area for different
spectral bands. Figure 1 illustrates the concept of how HSI
images are captured for remote spaceborne satellites.

HSI imaging sensors are onboard most earth-orbiting satel-
lites and provide valuable information for research and de-
velopment in many fields such as agriculture, land cover,
climate analysis, environment studies and industrial sectors
[2]. Images acquired by these sensors are typically transmitted
to the ground station when the satellite enters its radio range.
These are subsequently processed offline and analysed to pro-
vide useful information to end users. Recently these systems
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Fig. 1: The concept behind imaging spectroscopy. An airborne
or spaceborne satellite samples multiple spectral wavebands
over a preset area. The hyperspectral image cube is then pre-
processed with an onboard image processor before transmit-
ting the cube image to a ground station.

have been increasingly incorporated into smaller satellites (>
500Kg), especially cube satellites [3], [4], [5]. Cube-Satellites
(Nano{1Kg-10Kg} and Micro{10Kg-100Kg}) offer multiple
advantages in the form of reduced costs, higher risk distri-
bution (operated in constellations) and higher data security
among others, compared to conventional satellites which make
them more accessible to a wider pool of companies [6].

Due to the orbiting nature of the satellites and the limited
number of ground stations, there is a minimal window for these
transferring HSI images to the ground station which takes up
to 8 GB on-board memory storage [5]. While downlink capa-
bilities have increased over the past decade, the complexity
and size of data acquired & transmitted to the ground stations
by modern HSI sensors have outpaced this increase. Another
key concern with ground station-based processing is that HSI
images acquired by mini- and CubeSats could contain artefacts
such as clouds or distortions due to a malfunctioning sensor.
Figure 2 shows a cloud artefact within the HSI images that
prevents extraction of useful vegetation information contained
with the specific wavelength bands. Transmission of artefact-
laden HSI leads to wasteful use of energy and communication
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Fig. 2: Example of a frame from an HSI imagecube with a
cloud artefact

bandwidth available with CubeSats with low energy budgets
and tight communication windows. Adding a neural network-
based computation engine (pre-processor) onboard satellites
to filter artefact-laden HSI images could prevent the wasteful
use of precious communication resources. Due to the general
importance of this problem and its advantages, multiple arte-
fact detectors have been presented in the research literature
based on convolutional neural networks (CNNs) [7], [8]. Such
CNN models have shown to be highly accurate in classifying
artefacts in HSI images. After deployment, these detectors
offer an advantage in that they can be continuously improved
with periodic weight updates to maintain operational accuracy,
ensuring the transmission of only useful HSI images, and
indirectly contributing towards extending the operating life of
these satellites.

Integration of ground-station-based HSI processing models
for onboard satellites could be an option; however, even with
their high accuracy, adapting them to satellites, especially
CubeSats, with limited computing capabilities and energy
budget is not considered feasible. Most ground station-based
HSI processing models proposed in the literature make use
of large-scale deep learning models like dynamic routing [9]
and capsule networks [10] with complex layer structures (3D
convolutional layer and group normalisation layer), rendering
them impractical for satellite deployment. Using computa-
tional models to improve energy- (by pre-processing HSI
images on-board satellites) and communication efficiency of
CubeSats are gaining popularity, as shown by authors in [11],
[12] respectively. Model compression techniques such as
quantisation are used to reduce the computational complexity
(and thus energy consumption) of neural network models for
deployment in space applications [13], [14]. Quantised deep-
learning accelerators on Intel Movidius Vision Processing
Units (VPUs) have been integrated into onboard HSI imaging
systems for detecting artefacts within the captured images,
before transmitting them to ground stations [15]. Generalised
FPGA-based acceleration of deep-learning models have also
been shown to perform artefact detection using quantised
neural networks (QNN), increasingly focussing on the energy-

efficiency of these solutions [16], [17].
For the specific problem of artefact detection in HSI images

for on-board applications, most approaches rely on supervised
learning-based DL models [15], [17], [16]. While they per-
form well in detecting specific artefacts (e.g. cloud cover),
they do not generalise well to other capture-time artefacts
(e.g. agricultural/flora spectral changes). Developing artefact
detection models that can generalise to detect the usefulness
of captured HSI images, by detecting and classifying artefact-
laden images, is hence of interest.

In this paper, we propose an unsupervised 2D convolutional
autoencoder network as an artefact detection model for on-
board HSI processing. To enable deployment in a resource-
constrained satellite environment, the model (weights, biases
and activations) is quantised to 8-bit precision targeting a
commercial off-the-shelf (COTS) XCZU7EV FPGA on the
ZCU104 development platform from AMD/Xilinx. The model
is quantised using the Vitis-AI toolchain and deployed on an
off-the-shelf deep learning processing unit accelerator [18],
[19]. The network generalises to the complex features em-
bedded in HSI images and learns to reconstruct them using
unsupervised learning techniques. It then concludes whether
the image contains artefacts based on a custom reconstruction-
loss metric. This gives the model the ability to generalise
beyond regular cloud-clover and classify any capture-time
anomaly in the HSI image as an artefact, making it more robust
and increasing its overall efficiency.

The main contributions of this work are as follows:
• We present a novel 8-bit quantised 2D convolutional au-

toencoder network for anomaly detection in HSI images
with an f1 score of 92.8 % and a 0 % FPR achieving state-
of-the-art accuracy when tested using multiple datasets.

• We present a custom reconstruction error function applied
to the network’s output to detect artefacts in the sensed
image.

• The quantised model is tested on the ZCU104 evaluation
board and achieves a per-image processing latency of
4 ms which is comparable to other works proposed in
the research literature (Section IV).

• We present a comprehensive comparison against the
SOTA and the NVIDIA Jetson Xavier GPU (INT8) and
find the proposed model performs 1.27 ×, 2.6 × and
7.5 ×, 3.6 × better in terms of per image processing la-
tency and per-inference energy consumption respectively.

II. BACKGROUND

A. HSI Classification & Artefact Detection

Hyperspectral images can be represented as a datacube of
(x,y,w) dimensions, where x and y are the spatial dimensions of
the image and w represents the spectral dimension for spatial
images taken in different wavelength ranges. The problem
of HSI classification lies in classifying individual pixels in
a spatial region based on the available spectral information.
Early models for HSI classification include SVM implemen-
tation [20] and unsupervised approaches like mean shift filter-
ing [21]. CNN-based classification architectures such as the



2D autoencoder model described in [22] have been explored
for feature extraction and dimensionality reduction with great
success. Napela et al. [23] proposed a 3D unsupervised autoen-
coder network for segmenting images without known labels
by learning the latent representation through the autoencoder
and then applying clustering over the output. Khodadadzadeh
et al. [9] proposed a deep complex neural network using an
autoencoder with a capsule network to represent the classes
of the pixels better. The current state of artefact/anomaly
detection-based models reviewed comprehensively by Hu et
al. [7] use SOTA models like Convolutions AutoEncoders
(CAEs), Generative Adversarial Network (GAN), Recurrent
Neural Networks (RNN), among others, that aim to classify
which pixels contain anomalies. However, their approaches fo-
cused on searching for small occlusions such as planes, boats,
buildings, and vehicles, and does not perform generalised
anomaly detection for a large spatial region (e.g., a change
in a large spectral region of a spatial location). Unsupervised
models for HSI image classification on the other hand can rely
on the large volume of HSI datasets for land cover found in
USGS earth explorer [24] to train models. Post-training with
clustering can be then implemented to classify the results as
seen with the 3D unsupervised autoencoder model proposed
in [23]. While all discussed models build on the principle
of pixel-accurate classification of classes or small anomalies,
the high computational complexity of these proposed models
limits their adoption for generalised anomaly/defect detection
onboard satellites due to strict restrictions on power usage,
storage and processing power.

B. Related Works

Onboard cloud detection plays a crucial role in transmit-
ting data for land cover applications, where cloud cover in
captured images is considered as an anomaly, and hence the
image needs to be excluded. Giuffrida et al. [15] introduced
the CloudScout CNN model for classifying HSI cloudy im-
ages, achieving 92.3% accuracy with a false positive rate of
1% using a 70% cloudiness threshold. A variation of this
model, quantised at 16b-floating precision implemented on
the Intel Myriad-2 VPU was subsequently deployed on the
Hypserscout-2 Cubesat which completed multiple successful
missions [25]. Rapuano et al. [17] expanded upon the Cloud-
Scout model by implementing INT8 quantisation and deploy-
ing it on the Zynq UltraScale+ ZCU106 at a 0.3% reduced
accuracy trade-off while accelerating the inference by a factor
of 2.4x. More recently, Pitonak et al. [16] enhanced cloud
coverage capabilities by employing a deeper quantised CNN
model with 10 layers, quantising the model to INT4 precision
using the FINN toolchain, and testing it on the Z-turn board
equipped with the Xilinx Zynq 7020 SoC. Their improvements
yielded higher accuracy in classifying cloudy images, along
with a 2.2x increase in inference speed. These studies show the
effectiveness of quantised CNN models on FPGAs for satellite
deployment. These research outputs also provide insights into
latency requirements and energy limits available for satellite
systems in addition to the baseline accuracy metrics. While

our study is similar in scope to the exploration done by Ma
et al. [8], in that both schemes use a stacked autoencoder
(SAE) as an anomaly detector with 8-bit model quantisation
and an FPGA-based SoC as the platform, our study diverges
by focusing on developing a general artefact/anomaly detector
where not only smaller anomalies but large anomalies such as
unexpected spectral changes within agricultural field or flora
changes within a spatial location can be successfully flagged.

TABLE I: Summary of related works

Application Spectral range Model type

HSI classification
Mean Shift Filtering (2010) [20] 400-2500 nm PCA + MSF
SSAE (2015) [22] 430-860 nm SSAE + SVM
3D CAE (2020) [23] 400-2500 nm 3D CAE
HCapsNet (2021) [9] 400-2500 nm PCA +CAE + CapNet

Cloud Detection (Anomalies)
CloudScout (2020) [15] RGB QCNN
CloudScout Extended (2021) [17] RGB QCNN
CloudSatNet (2022) [16] RGB QCNN

III. SYSTEM ARCHITECTURE

A. Convolutional Auto-Encoder as an anomaly detector

The design our generalised anomaly detector, our choice of
convolutional autoencoders (CAE) as the neural architecture
was inspired by the work in [9]. The CAE is divided into
2 layers corresponding to an encoder EW (·) and a decoder
DU (·). It aims to reconstruct the input data x by extracting the
latent features h (eqn. 2) at the bottleneck and then reconstruct
the image using the information present at the bottleneck (eqn.
3), while minimising the mean square error(MSE) between its
input and output, i.e.

Loss = min
W,U

1

n ·m

m∑
j=1

n∑
i=1

|xi,j −DU (EW (xi,j))|2 (1)

For a fully connected convolutional autoencoder,

EW (x) = σ(x ∗W ) ≡ h (2)

DU (h) = σ(h ∗ U) (3)

Where x is the input tensor, h is the latent tensor, W and
U are the weights of the encoder and decoder respectively,
”∗” is the convolutional operator, n and m are the dimension
of the input and σ is the activation function like ReLU or
sigmoid. Using the custom reconstruction error discussed later
in section III-D, we determine a threshold value to classify
anomalies in acquired HSI images.

B. Design Space Exploration for CAE parameters

We explored multiple configurations of the CAE through
a manual design space exploration arriving at the best-
performing configuration using detection accuracy and FPGA
resource estimates as the guiding factors. The exploration
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Fig. 4: MLSE model loss per epoch.

was also guided by the layers supported by the compilation
tools from AMD for mapping the CAE architecture to a
synthesisable/executable design.

In the manual design search, we experimented with [4,6,8]
layer-deep models. We observed the 6-layer-deep model best
learnt the latent representation of the HSI imagecube based
on the validation scores during training. For feature map
sizes in the Conv2D and UpSample2D+Conv2D layers, we
found that the [128,256,512] configuration for the encoder
and [512,256,128] for the decoder gave the highest accuracy
among the other configurations. The encoder’s input Conv2D
layer takes input from an HSI image of size 144x144. The sub-
sequent Conv2D layer processes the image with a stride of 2
reducing its dimensions to size 72x72. The next Conv2D layer
then processes the image with the same size to learn/extract
valuable features.

The decoder is then used to increase the dimensionality
of the bottleneck to reconstruct the input. The 72x72 image
with 512 filters is then squished back into 256 filters with a
Conv2D layer. The image is restored to the original size using
UpSampling2D resulting in a 144x144 image with 128 filters.
This output is then linked to a Conv2D layer with 1 filter
acting as the output of the model as shown in figure 3. The
model is trained for 2000 epochs with no notable over-fitting
or under-fitting as seen in figure 4.

C. Dataset and Training

While HSI datasets are widely available through interna-
tional agencies such as the USGS, almost all sources pro-
vide unlabelled raw HSI frames. Most practical HSI analysis
models previously discussed require the labelling of these HSI

TABLE II: HSI Dataset specification

Dataset Spatial Spectral Spectral
size bands range (nm)

Indian Pines 145x145 200 400-2500
Salinas Valley 512x217 204 400-2500
University of
Pavia

610x610 103 430-860

Kennedy Space
Center

512x614 224 400-2500

images for training the model. In this paper, we use widely
known HSI scenes from Indian Pines (IP), Salinas Valley
(SV) and Kennedy Space Center (KSC) that were captured
using the Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) acquired by NASA. Additionally, the University
of Pavia (UP) captured by the Rosis sensor is also used.
These datasets will serve as a benchmark for testing of the
model architecture and deployment into the XCZU7EV FPGA.
The spectral bands containing water absorption regions that
predominantly capture clouds are removed and datasets like
SV, UP & KSC are divided in patches of 144x144 as inputs
to the model. The final dataset specification is described in
table II. IP and SV patches are used to train the model
in a 67/22/11% train/test/validation split respectively. During
validation, additional test data from UP and KSC is added to
the 11% validation data from IP + SV. The validation data is
classified as ”seen before” (1) and the additional UP + KSC
data is classified as ”not seen before” (0).

The proposed model architecture from section III-B com-
prises 2.95 million parameters with an input dimension of
144 x 144. The HSI cubes with larger dimensions like the
Salinas Valley, University of Pavia and Kennedy Space Center
are portioned into 144x144 regions for input into the model.
Adam optimizer with a learning rate of 0.001 was chosen for
training. Mean Squared Error (MSE) was used as the loss
function. To improve the convergence and prevent overfitting
during training, BatchNormalization layers were used between
each Conv2D layer. After training, the threshold of the model
is determined using the custom reconstruction error from
section III-D by testing the model against its held-out test
dataset.

D. Custom Reconstruction Error after Inference

We construct a combination of mean squared error MSE (4)
and mean squared logarithimic error MSLE (5) loss functions
as the custom-loss function used to obtain the Reconstruction
Error (Rerr) between the input and output HSI images. The
combined metric is the addition of both metrics with a fine-
tuned factor multiplier k for MSLE which is a hyperparameter
for tuning. Evaluation of the error threshold is a vital step
in splitting artefact-free & artefact-laden HSI images. The
reconstruction error that results in the highest f1 score of
the model is chosen as the threshold boundary. The reference
equations are shown below 6.



MSE =

144∑
i=1

144∑
j=1

(x[i, j]− y[i, j])2

n ∗m
(4)

MSLE =

144∑
i=1

144∑
j=1

(log(x[i, j])− log(y[i, j]))2

n ∗m
(5)

Rerr = MSE + k ∗MSLE (6)

The ranges of intensities of the pixels contained within the
HSI datacube described in III-C vary by orders of magnitude
(0-10000) over different bands of wavelengths. Hence, MSE
alone can misguide results in case of outliers in the dataset.
Therefore, we also use MSLE loss function in conjunction
with MSE as it treats outliers on the same scale as normal data
due to logarithm’s properties and also helps amplify smaller
errors that MSE does not take into account. There are three
cases of reconstruction loss possible: images where MSE is
dominant, images where both MSE and MSLE are equal and
lastly, where MSLE is dominant. For deployment, the aim is
to find the value of k where the average contributions of both
loss functions is similar. In our case, threshold is obtained by
finding a reconstruction error value that maximises the f1-score
of the model. Through extensive design-space exploration, a
threshold of ≈ 70000 was found to maximise the f1-score
across our training and validation sets.

E. Hardware Generation and Integration with the CAE Model

Once the model architecture was determined and trained, we
utilised AMD’s Vitis-AI framework to generate the accelerator
with the hybrid Zynq Ultrascale+ as the target platform. The
Zynq Ultrascale+ device integrates a dual-core ARM real-time
core and a quad-core ARM processor within the processing
system (PS) section of the device. The programmable logic
(PL) section of the device enables the addition of specialised
custom logic blocks and accelerators which are accessible
using the Advanced eXtensible Interface (AXI) protocol from
PS. Vitis-AI generates an executable model file, which can
be deployed using AMD’s DPU IP block in the PL. The
DPU is an instruction-based array of programmable processing
engines (PEs) for accelerating deep-learning inference on
FPGAs. The Vitis AI design flow compiles the Tensorflow
model to executable instructions for the DPU’s PE.

Figure 5 shows the high-level system architecture for our
proposed HSI imaging system on a Zynq platform, with our
HSI analyser in the processing pipeline. The HSI camera is
interfaced through the CPU which receives the image for
processing, which is fed to the inference accelerator (our HSI
analyser) via direct memory access (DMA). As mentioned
before, AMD’s DPU IP runs the quantised CAE model to
detect anomalies in the image. Standard Vitis AI Runtime
(VART) APIs are used to configure and communicate with
the DPU-based Artefact Detection System (ADS) engine. The
model uses interrupts indicating the completion of tasks on
the PS, allowing for software tasks to run in a non-blocking

ARM CORE CPU

AXI Interconnect

INT8 QNN CAE ADS on
DPU Accelerator

DRAM

Processing System

Processing Logic

SoC FPGA

HSI Camera

HSI Image Frame

Fig. 5: Proposed system architecture of the integrated ADS.
The quantised CAE model is accelerated on the PL part of the
FPGA device.

fashion. This allows for a continuous flow of frames to process
in the DPU. For our evaluation, we used Linux OS with
Petalinux tools to enable a seamless interface to the accelerator
at the cost of slightly higher software complexity (compared
to a bare-metal or real-time OS).

TABLE III: Inference accuracy percentage metrics of the 2D
CAE in different phases from FP32 to INT8 quantisation

Model Accuracy F1 Recall Precision FNR FPR

Full precision CAE 98.92 94.05 91.0 100.0 11.24 0.0
8-bit QCAE 90.4 0.0 0.0 0.0 100 0.0
8-bit finetuned QCAE 98.70 92.77 88.76 100.0 13.48 0.0

IV. DEPLOYMENT AND EXPERIMENTAL RESULTS

The CAE model is trained using an Nvidia Gforce RTX
3080-Ti GPU using the training, test and validation split
discussed in section III-C. The best model obtained from
this training flow is exported to the Vitis-AI toolchain for
the quantisation of model parameters, with a uniform 8-bit
quantisation applied to all weights, biases and activations.
Vitis-AI’s post-quantisation fine-tuning flow was used with
the same set of training/validation data to mitigate the slight
accuracy loss incurred by the post-training quantisation. The
fine-tuning was executed for 50 epochs and the model achieved
a 92.77% F1 score as seen in table III

The fine-tuned quantised model is then packaged as
an ‘xmodel’ file ready to be deployed on the ZCU104
SoC. This model is executed using the B4096 version of
the DPU accelerator in the PL part of the XCZU7EV
FPGA device (4096 number indicating highest parallelism
attributes{operations/per cycle}). The DPU is synthesized at
a 300 MHz interface clock and a 600 MHz DSP core clock
frequency. Vitis-AI runtime (VART) libraries are used to
facilitate data movement to & fro from the DPU accelerator.

Using a pre-baked reconfigurable processing engine like
the DPU allows for constant updates to the model (with new
model weights) maintaining or in some cases improving the
artefact-detection process allowing it to execute robustly. This



Fig. 6: Shows image ground truth and prediction of frames from IP, SV, KSC and UP datasets. The last row shows the
comparison of the spread of sorted pixels based on intensity between ground truth and inferred images.

allows us to not re-write the bitstream on the FPGA device
which is ∼10× more in size (≈ 23 Mb for our specific Zynq
device) and more computationally expensive than updating
weights of the network proposed in the paper (≈ 2Mb). This
directly leads to savings in operating costs, while still allowing
post-deployment updates to extend the service lifetime of the
anomaly detection system.

To quantify the system’s performance, we measure the
accuracy, per-image inference latency and per-inference energy
consumption and compare them against the state-of-the-art
artefact detectors presented in the literature [15], [16], [17].
We also compare the quantised model with the FP16 & INT8
implementations of the CAE model on a Jetson Xavier NX
module. The Xavier NX architecture features 384 CUDA cores
and 48 Tensor cores [26] to accelerate deep learning tasks. The
GPU is operated in the 10 W desktop mode for our tests, with
4 out of 6 CPU cores operating clocked at 1.9 GHz while the
Xavier NX GPU achieved a peak clock rate of 510 MHz during
inference.

A. Model Performance

The detailed accuracy metrics of the full-precision model
and the quantised version are presented in table III. The
fine-tuned quantised model achieves an F1 score of 92.77 %
slightly lower than the full-precision model which achieved
an F1 score of 94.05%, a loss of < 1.5% due to the model
quantisation. We also benchmarked the performance of the
model on an Nvidia Jetson Xavier platform that also supports
INT8 quantisation. For the same training time of 2000 epochs,
the INT8 PyTorch model used for testing on the Xavier NX
achieved a slightly better F1 score at 95.29%. We can attribute

this difference in performance to the different training and
quantisation frameworks used by AMD (Vitis-AI) and Nvidia.
We also present the confusion matrix of the models in table IV
and see the model’s classification strength in the identification
of anomalous HSI images that contained artefacts.

A sample of comparison between ground truth and the
predicted image by the model is shown in figure 6. We observe
that for the IP and SV images (first two images from the left)
the reconstruction error is below the set threshold of ≈70000
previously mentioned in III-C. Whereas, the remaining KSC

TABLE IV: Confusion matrix of different quantisation and
deployment.

Model Message Type Predicted

Similar Anomalous

FP32 CAE True Similar 79 10
True Anomalous 0 837

Vitis AI INT8 QCAE True Similar 77 12
True Anomalous 0 837

Pytorch INT8 QCAE True Similar 81 8
True Anomalous 0 837

TABLE V: Comparison of inference accuracy against related
works in the literature.

Model Precision Platform Accuracy FPR

CloudScout[15] 16b-float Myriad-2 VPU 92.3 1.03
CloudScout ext.[17] 8b-int ZCU106 92.0 -
CloudSatNet[16] 4b-int Zynq-7020 94.84 2.23
Proposed CAE 8b-int ZCU104 98.70 0.00



TABLE VI: Performance of the QCAE on the B4096 DPU
configuration along with other models.

Impact on per frame latency (ms), FPS & power consumption (W)

Accelerator Latency FPS Pidle Ptot

Ours (ZCU104,INT8) 4 250 4.6 5.38
Ours (Xavier NX,INT8) 10.36 96.52 2.2 7.6
Ours (Xavier NX,FP16) 19.09 52.38 2.2 8.2
CloudScout [15] 325 3.07 - 1.8
CloudScout Extended [17] 141.68 7.05 - 3.4
CloudSatNet [16] 64.68 15.46 2.3 2.5

% Resource Utilisation on the platforms

Accelerator LUT FF DSP BRAM / URAM

Ours (XCZU7EV, INT8) 27.17 25.03 40.74 35.42 / 47.92
CloudScout Ext [17] (XCZU7EV) 23.09 3.79 67.30 21.79 / 56.25
CloudSatNet [16] (Zynq-7020) 69.05 48.61 13.64 62.5 / -

and UP patches (third, fourth and fifth images from the left) are
above the set threshold providing insight that the model is able
to differentiate between new images and images used during
training. The predicted IP & SV images are almost identical.
However, for the KSC and UP images, slight distortions occur
due to the inability of the model to reconstruct unseen input
HSI images faithfully. The thresholds were chosen to achieve
zero false positive detections (0% FPR) since we want the
model to always detect artefacts in acquired images; however,
this leads to a higher false negative rate (13.48% FNR in
our case). We believe that this is an acceptable trade-off as
the model would only transmit 13.48% of overall artefact-
laden images that it observes leading to the transmission of a
high percentage of useful data from a CubeSat to the ground
stations for further processing.

We compare the inference performance of our CAE model
against the state-of-the-art artefact detectors proposed in the
research literature: CloudScout (Float16 model on Intel VPU
) [15], CloudScout Extended( INT4 model generated with
FINN deployed on AMD/Xilinx FPGA ) [17] & CloudSatNet
(custom quantised model implementation on Xilinx FPGA
) [16] as shown in Table V, comparing them in terms of
accuracy and FPR. In terms of accuracy, our proposed model
performs better than all the SOTA artefact detectors by 6.4%,
6.7% & 3.8% respectively. In terms of FPR, the proposed
model is better than [15] & [16] by 1.03% & 2.23% respec-
tively, while FPR is not reported for the CloudScout Extended
model.

B. Latency, Power and Resource Consumption

We quantified the latency of the quantised CAE model for
each inference operation and observed this to be an average of
4.0 ms averaged across 1000 runs. This leads to a throughput
of 250 HSI images per second, which is much higher than
the typical acquisition rate of satellite imagery systems. Ta-
ble VI compares our results against other approaches in the
literature, that utilise different platforms (Xilinx’s ZCU106
& Zynq-7020 FPGA devices). Compared to the state-of-the-
art CloudSatNet model [16], our model achieves a 1.27×
improvement in per-inference processing latency at identical
image frame patch size. The higher throughput also allows
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Fig. 7: Energy consumption per inference (Einf) comparison
of our model v/s the state-of-the-art.

our model to dynamically scale inference performance, trading
off inference throughput for energy consumption through
simple frequency scaling schemes. We also quantified the per-
inference latency of the model on a Jetson Xavier NX GPU
using the torch2trt framework that acts as a wrapper and
utilises Nvidia’s TensorRT framework to perform inference
with reduced precision (FP16 & INT8) on GPUs. We observe
that our model implementation is 4.7× & 2.6× faster than
the FP16 & INT8 implementations on the Jetson Xavier NX
GPU respectively, as shown in Table VI. We quantify the
energy consumption of the FPGA monitoring PYNQ-PMBus
power rails during inference. The active power consumption
was observed to be 5.38 W, which leads to a per-inference
energy consumption of 21.52 mJ. Compared to state-of-the-
art detectors, our model shows a 7.5× improvement in per-
inference energy consumption [16]. We also quantify the
energy consumption of the FP16 & INT8 variants of the Jetson
device using the jtop utility. We find that the proposed model
is 3.6× & 7.2× more energy efficient than the INT8 & FP16
implementations of the model on the Jetson device. Figure 7
shows the energy-per-inference comparison of the proposed
model with the state-of-the-art detectors and the Jetson device
implementations along with their classification accuracies.

In terms of resource utilisation, our model consumes slightly
higher general purpose resources (LUTs, FFs, BRAMs) in
place of lower DSP and URAM compared to the Cloud-
Scout Extended model which uses the same FPGA device
(XCZU7EV-2FFVC1156) on the ZCU106 platform.

V. CONCLUSION

In this paper, we proposed an unsupervised learning-based
2D convolutional autoencoder model integrated as an FPGA-
accelerated energy-efficient model for onboard HSI image
analysis in a satellite imagery system. We used openly avail-



able HSI datasets to train and fine-tune the model and deployed
them using AMD’s Vitis-AI framework using a DPU IP block
on the Zynq Ultrascale+ platform. Our evaluation shows that
the model can achieve an F1-score of 92.77% with an FPR
of 0.0% when trained on two distinct HSI datasets (IP and
SV) and effectively determining artefacts in withheld datasets
(UP and KSC) datasets. We also achieve 1.27× improvement
in latency and 7.51× improvement in energy per inference
compared to state-of-the-art models in the literature, making
our solution more appealing for satellite onboard processing.

The solutions we have presented have some limitations
due to unbalanced test dataset distributions, which could be
improved in future works by equalizing the distributions and
also exploring additional datasets from USGS [24]. In the
future, we aim to integrate additional datasets to train and
test our model against, as well as explore lower precision
arithmetic for the model to improve the scalability of our
approach.
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C. van Dijk, M. Esposito, J. Hefele, N. Vercruyssen, G. Furano, M. Pas-
tena, and J. Aschbacher, “The ϕ-Sat-1 Mission: The First On-Board
Deep Neural Network Demonstrator for Satellite Earth Observation,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–
14, 2022.

[12] Y. Dua, V. Kumar, and R. S. Singh, “Comprehensive review of hyper-
spectral image compression algorithms,” Optical Engineering, vol. 59,
no. 9, pp. 090902–090902, 2020.

[13] M. Ghiglione, V. Serra, A. Raoofy, G. Dax, C. Trinitis, M. Werner,
M. Schulz, and G. Furano, “Survey of frameworks for inference of neural
networks in space data systems,” Data Systems in Aerospace (DASIA).
Eurospace, 2022.

[14] X. Wei, W. Liu, L. Chen, L. Ma, H. Chen, and Y. Zhuang, “FPGA-based
hybrid-type implementation of quantized neural networks for remote
sensing applications,” Sensors, vol. 19, no. 4, p. 924, 2019.

[15] G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni, M. Donati,
and L. Fanucci, “CloudScout: A Deep Neural Network for On-Board
Cloud Detection on Hyperspectral Images,” Remote Sensing, vol. 12,
p. 2205, Jul 2020.

[16] R. Pitonak, J. Mucha, L. Dobis, M. Javorka, and M. Marusin,
“CloudSatNet-1: FPGA-based hardware-accelerated quantized CNN
for satellite on-Board cloud coverage classification,” Remote Sensing,
vol. 14, no. 13, p. 3180, 2022.

[17] E. Rapuano, G. Meoni, T. Pacini, G. Dinelli, G. Furano, G. Giuffrida, and
L. Fanucci, “An FPGA-based hardware accelerator for cnns inference
on board satellites: Benchmarking with Myriad 2-based solution for the
cloudscout case study,” Remote Sensing, vol. 13, no. 8, p. 1518, 2021.

[18] Xilinx, “Vitis-AI Overview.”
[19] Xilinx, “Zynq DPU v3.2,2020.”
[20] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote

sensing images with support vector machines,” IEEE Transactions on
geoscience and remote sensing, vol. 42, no. 8, pp. 1778–1790, 2004.

[21] S. Lee and C. Lee, “Unsupervised segmentation for hyperspectral
images using mean shift segmentation,” in Satellite Data Compression,
Communications, and Processing VI, vol. 7810, pp. 271–276, SPIE,
2010.

[22] C. Tao, H. Pan, Y. Li, and Z. Zou, “Unsupervised spectral–spatial feature
learning with stacked sparse autoencoder for hyperspectral imagery
classification,” IEEE Geoscience and remote sensing letters, vol. 12,
no. 12, pp. 2438–2442, 2015.

[23] J. Nalepa, M. Myller, Y. Imai, K.-I. Honda, T. Takeda, and M. Anto-
niak, “Unsupervised Segmentation of Hyperspectral Images Using 3-D
Convolutional Autoencoders,” IEEE Geoscience and Remote Sensing
Letters, vol. 17, no. 11, pp. 1948–1952, 2020.

[24] U. S. G. S. (USGS), “Earth Explorer.”
[25] A. Camps, J. Munoz-Martin, J. Ruiz-de Azua, L. Fernandez, A. Perez-

Portero, D. Llaveria, C. Herbert, M. Pablos, A. Golkar, A. Gutier-
rrez, C. Antonio, J. Bandeiras, J. Andrade, D. Cordeiro, S. Briatore,
N. Garzaniti, F. Nichele, R. Mozzillo, A. Piumatti, M. Cardi, M. Espos-
ito, B. C. Dominguez, M. Pastena, G. Filippazzo, and A. Reagan, “Fsscat
mission description and first scientific results of the fmpl-2 onboard
3cat-5/a,” in International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 1291–1294, 2021.

[26] Nvidia, “Jetson Xavier NX Series SoM Datasheet.”


	Introduction
	Background
	HSI Classification & Artefact Detection
	Related Works

	System Architecture
	Convolutional Auto-Encoder as an anomaly detector
	Design Space Exploration for CAE parameters
	Dataset and Training
	Custom Reconstruction Error after Inference
	Hardware Generation and Integration with the CAE Model

	Deployment and Experimental Results
	Model Performance
	Latency, Power and Resource Consumption

	Conclusion
	References

