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Abstract—Anomaly detection algorithms solve the problem
of identifying unexpected values in data sets. Such algorithms
have been classically used for cleaning unlabelled data sets
from potentially unwanted values. However, the ability to detect
outlying values in data sets can also be used to detect anomalies
in systems. Semi-supervised anomaly detection algorithms learn
from data for known correct behavior. Such algorithms have
been used in various fields, e.g., system security, fault detection,
medical applications.

In this paper, we use the Area Under the Receiver Operating
Characteristic (AUROC) score to evaluate algorithms for semi-
supervised anomaly detection when applied to high-integrity
distributed digital systems. We identify the relevant parameter
for each algorithm and observe how the parameter influences the
score and the runtime.

Index Terms—anomaly detection, novelty detection, outlier
detection, semi-supervised, comparative analysis

I. INTRODUCTION

Anomaly detection deals with the problem of identifying
unexpected values in data sets. Anomaly detection is
commonly used in very different fields such as intrusion
detection [1]–[3], fraud detection [4], [5], medical
applications [6], fault detection [7]–[9], and more [10]–
[13]. Since very different fields use anomaly detection, a
variety of different techniques have been developed over
the course of the years. However, not all the techniques
can be used for all possible data sets and application fields.
This is because the nature and characteristics of the data
vary significantly depending on the application field. As
highlighted in [14], the algorithm’s ability to detect anomalies
depends on the characteristics of the data analysed, which are
depending on the problem to be studied.

In high-integrity systems, traditional classification methods
are not suited due to the low number of abnormalities
occurring in such systems. The low number of anomalies,
in addition to the difficulty of retrieving data describing all
possible fault modes of such systems, makes semi-supervised
anomaly detection, also referred to as novelty detection, the
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technique of choice for building self-adaptive high-integrity
systems. This is because semi-supervised anomaly detection
algorithms can classify data given a single class during the
training phase.

In this paper, we focus on analysing the performance
of several anomaly detection techniques using real sensor
data coming from a field-programmable gate array (FPGA)
based subsystem of the European X-Ray Free-Electron Laser
(XFEL). The subsystem considered is the digital portion of
the Low-Level Radio Frequency (LLRF) system. In addition
to that, the experiments are conducted using publicly available
data describing other high-integrity systems. The contributions
of this paper are twofold: on the one hand, we give a
coherent description of the algorithms selected; since, to
our knowledge, this has not been done for semi-supervised
anomaly detection, such an organized description could help
in identifying the strong and weak points of each algorithm for
other applications. On the other hand, the evaluation of state-
of-the-art algorithms applied to high-integrity digital systems
can help in the design phase in choosing the correct algorithm
for a given set of requirements.

The paper is organized as follows: in Section II, we
present a selection of publications and describe the differences;
in Section III, we introduce some concepts used later; in
Section IV, we give a coherent description of the algorithms
selected for the evaluation; in Section V, we describe and
motivate the performance metric chosen; in Section VI,
we describe the experiments and present the results; in
Section VII, we conclude the work giving some general
indications.

II. RELATED WORK

Despite extensive literature about semi-supervised anomaly
detection, existing literature gives no clear indication of the
performance of existing algorithms when the application is
monitoring high-integrity distributed digital systems.

In [15], the authors thoroughly compare and evaluate a wide
range of algorithms using a set of publicly available data
sets. The evaluation method used makes it easy to make new
comparisons when new algorithms or new implementations



are proposed. However, they consider only unsupervised
anomaly detection methods. In [16], the authors perform an
experimental evaluation of semi-supervised anomaly detection
methods to deduct general guidelines on semi-supervised
anomaly detection. In the experiments, they use a wide
variety of data sets consisting of publicly available data.
However, they perform the evaluation using only a few
models representing whole classes of algorithms: a Gaussian
Mixture model, for density estimation method; two k-nearest
neighbor models; and an SVDD model, for support vector
machine method. Also, the data sets chosen are not related to
hardware systems. In [17], the authors conduct an experimental
evaluation of novelty detection methods for discrete sequences.
They consider a different set of algorithms with respect to the
previous works. However, the main focus of their analysis is on
stable discrete sequences. The use cases considered are protein
identification for genomics, fraud and intrusion detection, and
user behavior analysis. In [18]–[21], the authors surveyed
state-of-the-art methods for outlier detection for temporal data
and novelty detection. However, they do not evaluate the
algorithms. Other comparisons can be found in other papers
presenting specific algorithms, but the results give only partial
indications.

III. BACKGROUND

Anomaly detection techniques use data sets containing
vastly varying information, e.g., temperature (real number),
distance (non-negative number), activation status (binary
class). Additionally, the same type of information could be
represented in different ways, e.g., measuring temperatures
using different measurement units. An important step for the
anomaly detection algorithms is to represent all the different
dimensions of the data set in a common reference frame. This
pre-processing step is called normalization. In the experiments,
we use Z-normalization, calculating the mean value and
standard deviation on the training set.

Anomaly detection is usually categorized [15] as follows:
• supervised anomaly detection, when the algorithm uses

a set of labeled training data for the detector’s initial
training. In this category, we can find algorithms
traditionally used for pattern recognition;

• semi-supervised anomaly detection or novelty detection,
when the algorithm requires a training phase using a
data set containing only positive examples, i.e., correct
behavior, or negative examples, i.e., anomalous behavior;

• unsupervised anomaly detection, when the data available
are not labelled. In this case, the algorithm will use the
same data for both the training phase and the inference
phase.

In the following, we refer to a data set as an m× n-matrix
where m is the number of dimensions of the data, i.e., the
values coming from all the different signals at each time step,
and n is the number of time steps. A sample p is the vector of
size m containing the values of all the dimensions in a single
time step.

IV. SELECTED ALGORITHMS

In the next sections, we will give a description of the
algorithms and their implementation for semi-supervised
anomaly detection.

A. K-Nearest Neighbors (KNN/aKNN)

K-nearest neighbors (KNN) [22], not to be confused with
k-nearest neighbor classification, uses either the distance to
the kth-nearest neighbor (KNN) or the average of the distances
with the k-nearest neighbors (aKNN) to calculate a score. The
aKNN score for a sample p is calculated as follows:

aKNN(p) =

∑
∀o∈Nk

Dist(p, o)
k

(1)

where k is the number of neighbors, Nk is the set of k-nearest
neighbors, and Dist(p, o) is the distance between the data point
p and the data point o.

B. Local Outlier Factor (LOF)

The local outlier factor (LOF) [23] is an anomaly detection
algorithm that gives a score based on the local densities of
both the sample and the k-nearest neighbors. The LOF score
for each sample p is defined as:

LOF(p) =

∑
∀o∈Nk(p)

LRDk(o)
LRDk(p)

|Nk(p)|
(2)

with:

LRDk(p) = 1/

∑
∀o∈Nk(p)

ReachDistk(p, o)

|Nk(p)|
(3)

where |Nk(p)| is the number of k-nearest-neighbors to
p, ReachDistk(p, o) is the reachability distance between
p and o, and LRD is the local reachability density. The
implementation used in this paper is available as part of the
framework Scikit-learn [24]. The usage as a semi-supervised
anomaly detection algorithm involves a training phase that
produces a threshold and a prediction phase where the
threshold is used for the classification. The threshold is
selected as the value of the cth percentile of the LOF score for
the training set, where c is the estimated proportion of outliers
in the data set.

C. Cluster-based Local Outlier Factor (CBLOF)

The cluster-based local outlier factor (CBLOF) [25] was
proposed to solve the problem of not properly considering both
clustering and outlier discovery in the data set with previous
algorithms. The algorithm gives a score based on the distances
between the clusters and the samples, and on the clusters’ size.
The CBLOF distinguishes between small and large clusters
using the parameters α and β. In particular, the authors use
the numeric parameters α and β to construct a formula that
defines the boundary between small and large clusters.

The CBLOF is defined as:

CBLOF(p) =

{
minCj∈CCC Dist(p, Cj) if p ∈ SC
Dist(p, Ci) if p ∈ LC

(4)



where p ∈ Ci. The set CCC is the set of all clusters, SC and
LC are the set of small clusters and large clusters, respectively,
Dist(p, C) is the distance between the data point p and the
center of the cluster C.

For clustering, the authors propose the Squeezer
algorithm [26], but any clustering algorithm can be used in
practice.

D. Histogram-based Outlier Detection (HBOS)

The histogram-based outlier detection (HBOS) [27] is a
statistical anomaly detection algorithm. This algorithm’s main
characteristic is that each dimension of the data is considered
independent of the others. The HBOS is defined as:

HBOS(p) =
d∑

i=0

log

(
1

Histi(p)

)
(5)

where d is the number of dimensions of the data and Hist(p)
is the height of the bin of p after the normalization of the
histograms, a density estimation of the data point p. The
creation of the bins of a histogram should use the dynamic
bins method, which means that the number of elements in a
single bin depends on the element’s values, such that larger
values form smaller bins.

E. Angle-based Outlier Detector (ABOD/FastABOD)

Angle-based outlier detector (ABOD) [28] was designed
for solving the issues that other algorithms have with high-
dimensional data. The main idea is to consider the directions
of the distance vectors between the points of the data set. If
the spectrum of the observed directions by a point is wide,
the point is inside (or close to) a cluster. Otherwise, it is an
outlier.

The angle-based outlier factor (ABOF) is calculated
considering each triplet of points and calculating:

ABOF(p) = Var∀o′,o′′∈D

(
〈po′, po′′〉∥∥po′∥∥2 · ∥∥po′′∥∥2

)
(6)

where D is the data set, po′ and po′′ represent the distance
vector from p to o′ and from p to o′′, respectively, ‖·‖ is the
norm of a vector, and 〈·, ·〉 is the scalar product of two vectors.

To use this algorithm as a semi-supervised anomaly
detection algorithm, the data points to which each sample is
compared are only the ones of the training set.

Since the complexity is O(n3) due to the need to consider
each triplet in the data set, the FastABOD solves this problem
by restricting the set of points to be considered for each point
to the k-nearest neighbors.

F. Minimum Covariance Determinant (MCD)

The minimum covariance determinant (MCD)
estimator [29] is a robust estimator of a data set’s covariance.
MCD is used to estimate the covariance matrix of a portion
of the training data such that the determinant results minimal.

The idea is that the covariance matrix having the minimal
determinant represents the set of data closer to each other.

The score is then the Mahalanobis distance between the
sample considered and the distribution represented by the
covariance matrix:

D(p) =
√
(p−m)T · C−1 · (p−m) (7)

where m is the average of the subset of the training data used
to construct the covariance matrix, and C−1 is the inverse of
the covariance matrix.

G. One-class Support Vector Machine (OCSVM)

A classifier that is based on a one-class support vector
machine (OCSVM) [30] constructs a hyperplane and finds a
linear boundary on the hyperplane. The classifier separates
between anomalous data and non-anomalous data using the
boundary defined. The hyperplane constructed, also known as
kernel space, is commonly obtained from the training data
using a transformation based on the radial basis function
(RBF) kernel [31].

After having a defined transformation function, the decision
function gives a classification score based on the sample’s
position on the hyperplane with respect to the linear boundary
defined.

H. Principal Component Analysis (PCA)

Principal component analysis (PCA) [32] is commonly used
for the reduction of the data dimensionality by identifying the
principal components and then using the main ones discarding
the others. The same technique can be used for anomaly
detection [33]. In this case, the entity of deviation from the
components identified can be used as an anomaly score.

For calculating the set of principal components, which
is the set of new variables obtained by linearly combining
the random variables of the data, an eigenanalysis of the
covariance matrix is sufficient. The new set of variables will be
uncorrelated and ordered from the component with the highest
variance to the component with the least variance.

The usage for semi-supervised anomaly detection requires
a training phase where the set of principal components are
identified. Using the new data, the score is then calculated as
follows:

PCA(p) =
∑
∀c∈C

Dist(p, c)
cw

(8)

where c ∈ C is a component, part of the set of components C,
identified during the training phase and cw is the component
weighted by the eigenvalue.

V. PERFORMANCE METRIC

In order to be able to communicate the result of the
evaluation in a synthetic way, we use a score that gives an
idea of the performances of each algorithm. For this reason, the
Area Under the Receiver Operating Characteristic (AUROC)
score was adopted. The AUROC score takes into account



both the capability of the algorithms to detect anomalies, i.e.,
distinguishing between classes, and the scores assigned to each
datapoint [34]. It is defined as the area underneath the ROC
curve and ranges between 0 and 1. An AUROC score of 1
represents a predictor whose predictions are 100% correct. An
AUROC score of 0 represents a predictor whose predictions
are 100% wrong, i.e., opposite predictions. Finally an AUROC
score of 0.5 represents a predictor whose predictions are
random guesses.

The AUROC score is the most used performance metric for
evaluating classifiers when the data to be analysed present an
imbalance between the classes [35]. This is because the metric
can cope with the imbalances of the data without showing
a bias. However, the main factor to be considered for the
choice of the performance metric is the focus on classification
success shown by this metric [36], [37]. Like the one presented
in this paper, some applications can tolerate classification
errors, and the score does not mask poor performances.
Different applications, i.e., medical diagnostic, should instead
use different metrics.

VI. EVALUATION

The experiments were performed using the Python libraries
PyOD [38] and Scikit-learn [24]. The runtimes were measured
on a system running Python 3.7 on Windows 10 with a
processor Intel(R) Core(TM) i7-8750H @ 2.20GHz and 32
GB of RAM.

A. Datasets Summary

The evaluation of semi-supervised anomaly detection
algorithms requires two sets of unlabelled data:
• a training set used for training the detector, containing

only positive samples, i.e., non-anomalous data;
• a testing set used for the inference phase, including both

normal data and anomalies;
In the following paragraphs, we give a brief description of

each data set used for the evaluation.
xfel-dcm This data set was extracted from the European X-Ray
Free-Electron Laser (XFEL). When the data was recorded, a
component of the LLRF subsytem was turned off for a short
period of time, and then turned on again . The signals include
temperature, current, voltage and load of the power suppliers.
xfel-door Also this data set was extracted from XFEL. The
data describes another anomaly artificially created. In this case,
a door of the rack containing one of the LLRF stations was
opened. The signals used include temperature, current, load
and voltage of the system contained in the opened rack.
xfel-pcie In this case, the data describes a failure in the PCI
Express interface that stops all communication between a
specific board and the host system. The signals used include
temperature, current, and voltage of the failing board.
shuttle This data set containing data from the shuttle statlog
was obtained from the UCI Machine Learning Repository [39].
The 9 dimensions of this data set describe the radiator position

during flight. For the experiments, all anomalous data points
were removed from the training set.

Table I shows a summary of the properties of the data sets
used. For all the experiments, the data sets were normalized
using Z-normalization [40].

TABLE I: Data sets summary

Data set Dimensions Training Testing Outliers %Outliers

xfel-dcm 70 40000 100000 5188 5.19%
xfel-door 83 40000 166837 40617 24.35%
xfel-pcie 12 43308 57743 15731 27.24%
shuttle 9 34108 14500 3022 20.84%

B. Algorithms Parameters

All the algorithms selected contain a controllable parameter.
The value of the parameter influences different aspects of the
calculations, both during testing and inference. A summary of
all the parameters used is presented in Table II.

TABLE II: Summary of the algorithms’ parameters

Algorithm Parameter Interval Step Size

ABOD #neighbors 5 - 50 0005
AKNN #neighbors 5 - 50 0005
CBLOF #clusters 5 - 50 0005
HBOS #bins 5 - 50 0005
KNN #neighbors 5 - 50 0005
LOF #neighbors 5 - 50 0005
MCD support fraction 0.1 - 0.9 0000.2
OCSVM ν 0.1 - 0.9 0000.2
PCA #components 1 - 111 0001

For AKNN and KNN, the parameter chosen is the number
of neighbors used during the clustering phase. The interval is
between 5 and 50 since a value in that range is the typical
choice. The step size selected is 5, i.e., the interval between
each selected experimental value. For evaluating ABOD, we
use the FastABOD implementation with the same parameters
and intervals used for the previous algorithms. We use the
same parameters and intervals also for LOF. In this case, we
fix the parameter c to 0.1. The parameter chosen for CBLOF
is the number of clusters formed during the execution of the
clustering step. Additionally, we use k-means for clustering,
and we fix the parameters α and β to 0.9 and 5, respectively,
which means that the large clusters will contain 90% of the
data and that the large clusters are a least five times bigger
than the small clusters. For HBOS, the parameter chosen is
the number of bins composing the histograms. Also in these
cases, the interval chosen is between 5 and 50, and the step
size selected is 5. In the case of MCD, the parameter chosen is
the support fraction, i.e., the proportion of points to include in
the MCD estimation support. The parameter values are chosen
in the interval between 0.1 and 0.9. The step size is 0.2. For
OCSVM, the parameter ν is both an upper bound on the

1In the data set shuttle, the interval is 1 - 8 due to the lower number of
dimensions available.



(a) xfel-dcm (b) xfel-door

(c) xfel-pcie (d) shuttle

Fig. 1: AUROC scores for the data sets at different values of the selected parameter

fraction of outliers in the training set and a lower bound on the
fraction of examples used as support vectors. The values for
the parameter are chosen in the interval between 0.1 and 0.9,
and the step size is 0.2 also in this case. Finally, the parameter
used for PCA is the number of components selected from the
training phase. In this case, all cases between 1 and the number
of dimensions of the data sets are considered.

We use the Minkowski distance for all algorithms using a
calculation of the distance between points.

C. Results

The experimental results were obtained by running each
algorithm once for each value of the parameter. We show the
results for all data sets in Fig. 1. We plot the value of the
AUROC score for each value of the parameter. Each plot is
then rescaled in the X-axis to fit in the interval 0–100. For
example, for KNN, the value 5 of the parameter is represented
as 0, and the value 50 is represented as 100; for MCD, the
value 0.1 of the parameter is represented as 0, and the value
0.9 is represented as 100. This is done to show comparably



TABLE III: Runtime results for each value of the parameter

Algorithm Phase Runtimes [s]

ABOD Training 61.778 106.874 124.179 133.455 181.943 239.390 293.399 364.965 438.775 516.536
Inference 298.511 349.968 425.240 536.542 574.979 743.492 895.438 1010.831 1210.836 1448.307

AKNN Training 83.041 123.916 126.315 131.549 152.409 138.919 146.942 143.617 145.615 133.765
Inference 424.036 410.104 424.954 418.653 423.985 442.249 438.314 451.077 456.117 457.288

CBLOF Training 1.848 2.523 2.782 3.368 4.331 4.758 5.485 6.334 6.885 7.467
Inference 0.012 0.178 0.191 0.197 0.214 0.212 0.215 0.215 0.219 0.246

HBOS Training 1.975 0.110 0.098 0.102 0.096 0.094 0.091 0.093 0.100 0.115
Inference 0.223 0.215 0.213 0.216 0.216 0.220 0.226 0.226 0.226 0.229

KNN Training 88.032 125.650 127.860 130.078 131.072 132.761 134.993 134.728 135.493 137.127
Inference 418.207 448.857 457.032 464.615 463.075 465.926 472.526 468.538 485.157 498.525

LOF Training 92.161 134.313 136.824 145.971 145.057 139.354 140.069 136.827 142.165 143.569
Inference 424.946 436.484 432.711 457.123 449.688 452.324 453.971 453.710 493.484 450.258

MCD Training 23.265 24.797 27.282 27.762 26.714
Inference 0.395 0.379 0.379 0.391 0.381

OCSVM Training 45.013 120.807 174.803 211.216 225.742
Inference 31.136 102.501 167.109 233.242 296.449

PCA Training 0.166 0.175 0.182 0.188 0.196 0.197 0.189 0.188 0.230 0.207 0.217
Inference 0.051 0.058 0.062 0.067 0.072 0.077 0.089 0.087 0.120 0.128 0.132

the trend created by the variation of the value, regardless of
its meaning.

In Fig. 1a, we can see that for the xfel-dcm data set, all
algorithms but ABOD and MCD have a score of 0.99 or above
for all values of the parameter. ABOD has a lower score only
when using 5 as the parameter for the number of neighbors to
consider. In MCD’s case, the AUROC score stays lower but
reaches a maximum value of 0.99 for a value of the support
fraction of 0.9. In Fig. 1b, we see that the data set xfel-door
is more challenging for all the algorithms. In this case, all
algorithms perform much worse than for the other data sets.
We also notice that the AUROC score of HBOS has large
swings depending on the value of the parameter. In Fig. 1c,
we can see that for the xfel-pcie data set, all algorithms but
ABOD perform very well for all values of the parameters. In
ABOD’s case, selecting only 5 neighbors, the AUROC score
is 0.50, i.e., a random guess. In Fig. 1d, we can see that most
of the algorithms tend to perform the same or better, using
a higher value of the parameter. The only exception to this
is OCSVM, for which the AUROC score decreases linearly
from 0.97 to 0.92. Also in this case, we notice the swinging
behavior of HBOS, although with lower variability than the
xfel-door case.

From Fig. 1, we deduce that the effect of the parameter is
not always noticeable in the AUROC score. Another general
takeaway point is that choosing a higher value of the parameter
returns better results for the interval that we considered.
Especially when using ABOD, a value of the parameter that
is too low results in a decreased AUROC score. However,
the parameter sometimes also influences the runtime of some
algorithms. Table III shows the average runtimes for both
the training and the inference phases at each value of the
parameter over all data sets. Here, we can see that the runtimes
of ABOD, CBLOF, OCSVM depend on the parameter. We also

notice that using only 5 neighbors with HBOS, the training
phase runtime increases by almost 20 times. This behavior is
consistent across all considered data sets.

Table IV reports the mean value and the standard deviation
over all the runs for each data set. The last two columns give a
summative result for all data sets: in the first column, we report
the average of the scores reported in the previous columns for
all the data sets; in the second column, we report the average
variance’s square root. The last row gives a summative result
for all algorithms instead. Also in this case, the first column
contains the average of the scores reported in the previous
rows for all the data sets, and the second column contains the
average variance’s square root.

The table shows that almost all algorithms have a very good
AUROC score for the data set xfel-dcm. Only MCD and, to
a lower extent, ABOD have a worse score. In the data set
xfel-door, all algorithms have a lower score. The algorithms
PCA and OCSVM perform only slightly better than a random
guess. In this case, only HBOS, and only for some values of
the parameter, achieves a maximum AUROC score of 0.88.
The table shows very well also the minor differences in the
xfel-pcie data set. ABOD is penalized in this table by the low
score obtained with a lower number of neighbors. For this
algorithm, the mean is 0.9804, and the standard deviation is
0.0042, removing the first two values obtained (0.50 and 0.88,
respectively). For the shuttle data set, Table IV shows that
ABOD has the best overall score. In this case, the AUROC
score remains above 0.99 for all values of the parameter. From
the last two columns, we can see that LOF has the best overall
score, and MCD has the worst overall score.

Table V and Table VI report the runtime values for the
training and testing phases, respectively. From the two tables,
we can immediately understand that the number of samples
considered for each phase is the main factor for the differences.



TABLE IV: AUROC results

Algorithm xfel-dcm xfel-door xfel-pcie shuttle Summary
Mean SD Mean SD Mean SD Mean SD Mean SD

ABOD 0.9786 0.0639 0.7158 0.0545 0.9234 0.1420 0.9993 0.0002 0.9043 0.0825
AKNN 1.0000 0.0000 0.6604 0.0052 0.9992 0.0001 0.9976 0.0004 0.9143 0.0026
CBLOF 1.0000 0.0000 0.6107 0.0080 0.9991 0.0000 0.9766 0.0087 0.8966 0.0059
HBOS 0.9999 0.0001 0.7568 0.1119 1.0000 0.0000 0.9033 0.0249 0.9150 0.0573
KNN 1.0000 0.0000 0.6497 0.0076 0.9991 0.0001 0.9958 0.0015 0.9112 0.0039
LOF 1.0000 0.0001 0.7248 0.0471 0.9885 0.0053 0.9988 0.0004 0.9280 0.0237
MCD 0.9143 0.0522 0.6577 0.0277 0.9997 0.0004 0.8489 0.0599 0.8552 0.0421
OCSVM 0.9999 0.0000 0.5776 0.0154 0.9996 0.0000 0.9463 0.0192 0.8809 0.0123
PCA 1.0000 0.0000 0.5490 0.0040 0.9991 0.0000 0.8904 0.0068 0.8596 0.0040

Summary 0.9881 0.0275 0.6558 0.0458 0.9898 0.0474 0.9508 0.0229 0.8961 0.0375

In particular, in Table VI, we can see that, since the number
of samples of the testing set of the xfel-pcie data set is 4
times larger than the shuttle training set, the runtime numbers
are 4 times larger as well. Another difference that affects the
runtimes is the number of dimensions. Considering this time
the training time for the data sets xfel-door and xfel-pcie, we
have very similar ratios in the number of dimensions of the
two training sets and average training times.

The algorithm summaries show that the most noticeable
result is the poor runtime of ABOD with respect to the other
algorithms. From the same columns, we can also see that the
best performing algorithms in the training phase are HBOS
and PCA. Since, as seen in Table III, HBOS requires a much
larger time for training using 5 bins. We calculated that the
mean value is 0.1 s removing those values. The best runtimes
for the testing phase are obtained using CBLOF, HBOS, MCD,
and PCA.

VII. CONCLUSION

In this work, we performed a comprehensive evaluation of
novelty detection methods and studied their performance and
scalability when applied to the data produced by distributed
high-integrity systems. We tested a wide variety of algorithms
using 3 data sets that we produced and characterized, coming
from the European X-Ray Free-Electron Laser, and a standard
data set acquired from the public UCI Machine Learning
Repository [39]. The data sets selected show the distinct
characteristics of each algorithm. Besides that, we also gave
a unified description of the algorithms. This has a twofold
use: it gives a precise representation of the algorithms to the
researchers of the novelty detection community. It also gives
the users a better understanding of the algorithms and the
performances.

From the experimental results, we conclude that for semi-
supervised anomaly detection, simple algorithms can perform
satisfactorily. This makes it feasible to use such algorithms for
real-time or near real-time monitoring of high-integrity digital
systems. Also, a careful selection of the signals is necessary
since the prediction can be more or less accurate depending
on the anomaly observed.
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