
Efficient High Hamming Distance CRCs for Embedded Networks

Justin Ray, Philip Koopman
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15217

Email: {justinr2, koopman}@ece.cmu.edu

Abstract

Cyclic redundancy codes (CRCs) are widely used in
network transmission and data storage applications be-
cause they provide better error detection than lighter weight
checksum techniques. 24- and 32-bit CRC computations
are becoming necessary to provide sufficient error detec-
tion capability (Hamming distance) for critical embedded
network applications. However, the computational cost of
such CRCs can be too high for resource-constrained em-
bedded systems, which are predominantly equipped with 8-
bit microcontrollers that have limited computing power and
small memory size. We evaluate the options for speeding
up CRC computations on 8-bit processors, including com-
paring variants of table lookup approaches for memory cost
and speed. We also evaluate classes of CRC generator poly-
nomials which have the same computational cost as 24- or
16-bit CRCs, but provide 32-bit CRC levels of error detec-
tion, and recommend good polynomials within those classes
for data word lengths typical of embedded networking ap-
plications.

1 Introduction
Using cyclic redundancy codes (CRCs) for error detec-

tion in embedded systems involves a tradeoff among speed,
memory consumption, and error detection effectiveness.
Because many embedded systems have significant resource
constraints, it is important to understand the available trade-
off options and, if possible, find ways to attain better error
detection at lower computational cost. In this paper we an-
alyze existing algorithm tradeoffs to quantify typical trade-
off parameters for embedded applications. Additionally, we
identify two new classes of 32-bit CRCs that can be calcu-
lated with the same computational cost as existing 16- and
24-bit CRCs while providing improved error detection ef-
fectiveness. For these special case polynomials, we have
computed the bound for error detection and provided a list
of polynomials with good error detection performance.

In general, codes that provide better error detection re-
quire greater effort to compute. The primary drawback to
the CRC is its computational cost, which is much higher
than simpler error codes such as the Fletcher checksum or
other addition-based checksums [7]. For the embedded do-
main, computational cost can be a major design factor be-
cause of the severe cost constraints on many systems. How-
ever, for those applications that must attain high levels of er-
ror detection, CRCs are the only practical alternative proven
in field use.

CRCs are commonly used in enterprise, desktop,
and high-end embedded applications, including standards
such as Ethernet [12], ATM networks [4], and IEEE
1394(FirewireTM) [10]. More recently, CRCs with high
Hamming distances have become increasingly important for
deeply embedded systems. The Hamming distance (HD)
of an error code is the minimum number of bit errors that
must be present to potentially be undetected. For example,
a Hamming distance 6 code (HD=6) guarantees detection
of up to 5 bit errors in a single network message, but fails to
detect some fraction of possible 6-bit errors.

Safety critical embedded applications in particular re-
quire high Hamming distances. Applications such as au-
tomotive X-by-Wire protocols [8, 26] and train control net-
works typically require HD=6 at all message lengths. High
HD CRCs are also employed as auxiliary protection mecha-
nisms, often called “safety CRCs,” to provide additional er-
ror detection beyond the capability of ordinary network pro-
tocols. For example, the Multifunction Vehicle Bus (MVB)
train network uses an 8-bit CRC for each 64-bit packet of
data transmitted at the link layer. But the MVB logical
frame format (which can be as long as 256 bytes) uses a
32-bit CRC, called a “safety code” [16] to provide HD=6
protection for critical messages. Another rail example of
this is the “vital CRC” given in [11].

A particularly demanding constraint is that embedded
networks usually have a mix of high-end and low-end
nodes, and even the lowest cost node on a system must be
able to compute CRC values quickly enough to keep up with

Phil
Text Box
Preprint, Dependable Systems and Networks (DSN), June 25-28 2006, Philadelphia PA.

Phil
Text Box

network traffic. This requirement becomes even more diffi-
cult if high-level services such as a protocol’s group mem-
bership approach require the active participation of all net-
work nodes. Because of this, we focus this paper on under-
standing CRCs performance tradeoffs for 8-bit microcon-
trollers, because they are by far the most prevalent devices
being used in embedded systems [27].

While CRCs have been in use for decades, it is difficult
to find engineering guidance for them, and even harder to
find comprehensive design tradeoff information. In order to
explore the CRC computation in the embedded domain, we
have implemented various known CRC algorithms in mod-
ern 8-bit processors and have analyzed performance and re-
source requirements. In the process of implementing these
algorithms, we have identified some discrepancies in the ex-
isting literature, including confusion about what constitutes
a “correct” software implementation, incorrect check val-
ues, and problems with data processing order.

In addition to studying existing algorithms, we have de-
veloped and evaluated techniques which are optimized for
a special class of 32-bit CRC checksums that speed up cal-
culations and reduce memory requirements while achiev-
ing good error detection performance. We also present the
result of an exhaustive search of the space of these spe-
cial polynomials wherein we define the Hamming distance
bound and identify a list of “good” polynomials.

The remainder of this paper will focus on analyzing the
algorithms for and performance of correct, efficient imple-
mentations of the CRC algorithm in the embedded domain.
Section 2 discusses the background and related work in this
area. Section 3 explores the tradeoffs among various al-
gorithms when implementation in low-end processors. Sec-
tion 4 describes a novel class of CRC generator polynomials
and how they may be used to achieve better performance
and error detection. Section 5 describes the experiments
we performed to measure the tradeoffs of various imple-
mentations. Section 6 compares the performance of new
and existing algorithms. Section 7 describes the correct im-
plementation of the core CRC computation and identifies
known implementation issues. Section 8 summarizes the
paper and provides recommendations for system designers.

2 Background and Related Work
CRCs are widely used for error detection in a variety of

applications. Despite their prevalence, there are significant
gaps in understanding the engineering tradeoffs in their use.
Commonly, there are even larger gaps between known best
approaches and common engineering practices.

2.1 Terminology

Some terms used in the following discussion are:
data word — the data that is fed into the CRC computa-

tion to produce the checksum.

Table 1. Bitwise Left-Shift CRC Algorithm

for (i=0; i<sizeof(data); i++) {
if (msb(data) ˆ msb(crc)) {

crc = (crc << 1) ˆ (poly);
} else {

crc = (crc << 1);
}
data <<= 1;

}

frame check sequence (FCS) — the value produced by
the CRC computation. This digest or checksum provides
the redundant information necessary for error detection.

code word — the data word with the FCS appended
undetected error — result of an error which happens to

corrupt bits in the code word in such a way that it produces
another valid code word. It is important to note that corrup-
tions can and often do occur in both the data word and FCS
portions of a code word.

burst error — an error pattern stated in terms of a length
m (i.e. an m-bit burst error) where two up to m bit errors
may occur exclusively in an m bit range.

Hamming distance (HD) — in the context of error de-
tection, the minimum number of bits in the code word that
must be independently corrupted in order to cause an unde-
tected error. For a CRC, the HD depends on the data word
length, the FCS length, and the generator polynomial used.
For example, the polynomial x8 +x5 +x2 +x1 +x0, which
has HD=4 for data words of 18 to 55 bits, will detect all 1-,
2-, and 3-bit errors for those lengths.

2.2 Mathematical Foundation

Mathematically, the CRC algorithm used to generate the
FCS can be described as modulo-two polynomial division.
Binary data can be represented as a polynomial where the
bit values are the coefficients of various powers of x. In
other words, the data byte “01001001” can be represented
as “0·x7+1·x6+0·x5+0·x4+1·x3+0·x2+0·x1+1·x0”.
The CRC checksum is defined by the equation:

crc(x) =
(
data(x) · xk

)
mod g(x)

where g(x) is the ”generator polynomial” of order k. A
more detailed description can be found in [24].

A C implementation of the CRC is given in Table 1.
For clarity, we will refer to this as the “left-shift algo-
rithm.” This algorithm processes the data most significant
bit (MSB) first, so the data is left-shifted through the regis-
ter, hence the name.

A polynomial of a given order m has m + 1 terms (from
xm term to the x0 term). In the software implementation,
the generator polynomial is an m-bit binary representation
of the CRC polynomial, where the most significant term
(xm) is not actually present, but is implicitly understood to
be present. For example, the CCITT-16 polynomial (given

in [24] as x16 + x12 + x5 + 1) should be represented as
0x1021. Polynomials discussed in [14] have a binary ex-
pression which includes most significant term (xm) but has
an implicit lowest order term (x0). Either form can be
used, depending on the implementation, but when speci-
fying polynomials, it is important to specify which form is
being used. The polynomial representation is unambiguous.

While arithmetic checksum codes can only provide
HD=2 or HD=3 for most data lengths, CRCs can give much
higher HD for the same FCS length. In addition, they detect
all burst errors up to the length of the FCS, and greater than
99% of burst errors longer than the FCS length [2]. As pre-
viously mentioned, critical embedded applications usually
have a high HD requirement of HD=6.

There are five basic parameters that affect the FCS out-
put by the CRC implementations in real systems: 1) CRC
polynomial, 2) initial CRC value, 3) final value which is
XORed in the CRC register, 4) order in which data bits are
processed, and 5) order in which CRC bits are placed into
the FCS field.

A partial list of these parameters for various standards
can be found in [1, 28]. A change in any of these parameters
will affect the final FCS value. The orders of bit processing
and in which bits are placed into the FCS must be consistent
to preserve burst error properties (this is discussed further in
a Section 7). Having a non-zero initial value can be useful
for detecting bit-slip errors in data with a series of leading 0
bits. The initial and final values do not affect HD; only the
CRC polynomial and data word length affect HD.

Given a maximum message length and required HD per-
formance, the art of selecting a CRC is choosing a good
generator polynomial, g(x), which determines the error de-
tecting performance of the CRC checksum [14, 5]. Conven-
tional wisdom suggests picking one of the “standard” poly-
nomials is safer than choosing one at random (e.g., [1]).
However, many “standard” polynomials have poor perfor-
mance, or suboptimal performance compared to identified
“good” polynomials [14]. As we will discuss later, there
are some special case situations where other polynomials
may be chosen to achieve more efficient implementation.

In the discussion that follows, we use the notation
CRC32, CRC24, and CRC16 to refer to a generic (i.e.
no specific generator polynomial) CRC implementations
which have a 32-, 24- and 16-bit FCS sizes, respectively.
Any reference to a particular standard, such as the CRC32
standard, will be named specifically.

2.3 Related Work

There are a number of algorithms for producing an FCS
with desirable error detection properties, including arith-
metic checksums (e.g. Fletcher checksum), weighted sum
codes (WSC), and cyclic redundancy codes (CRC). Arith-
metic checksums are employed in TCP because they can be

computed very efficiently [3], but safety-critical and high-
reliability systems typically require error codes with HD of
six or greater [26, 8]. CRCs can achieve this, but at a higher
computational cost [18] than other checksum approaches.

Error detecting codes in general and cyclic redundancy
codes in particular have been studied for many years.
Castagnoli et al. [5], Lin et al. [17], and Peterson et al.
[23] are standard references in the field. However, until
recently the difficult problem of finding optimal codes re-
mained unsolved because of the significant amount of com-
puting power required to examine all possible codes. Re-
cent advances enabled exhaustive searches for optimal poly-
nomials for CRC3 up to CRC16 to identify the optimal HD
bound [14]. [13] also presents the results for exhaustive
search for HD=6 polynomials for data words lengths up to
and beyond the Ethernet MTU size.

There is a significant amount of research into improv-
ing CRC performance by using optimized or parallel imple-
mentations in special purpose hardware (e.g. VLSI [21] and
FPGA [20]). While this approach is essential for some high-
speed applications, there is still a need for software-based
implementations to support the common situation where
off-the-shelf components are used to reduce costs and im-
prove time to market.

Software implementations of the CRC take various
forms and have been published in [1, 6, 22, 24, 25, 28].
They detail various algorithms which we will discuss in
Section 3. Research addressing the relative speed of various
algorithms has been presented by [7, 15]. Generally, perfor-
mance studies deal with the effects of memory caching and
number of instructions for various algorithms on high-end
processors with large memory caches. However, deeply em-
bedded system designers need to understand performance
on processors that usually have no cache memory and have
different instruction sets.

We are aware of occasional instances where specialized
CRC polynomials such as the ones we discuss to speed
up computations have been considered for use in indus-
try projects. However, we have not been able to find any
discussion of this topic in the academic literature, nor any
published analysis of performance tradeoffs or discussion
of which polynomials perform well in such situations.

3 CRC Implementations for Embedded
Processors

A key tradeoff in implementing CRC error detection is
the memory space versus computation time tradeoff of the
algorithm used to compute the checksum. In this section we
examine different algorithms that use varying amounts of
memory to speed up CRC computations beyond the simple,
but slow, left-shift algorithm already described.

8-bit processors are sensitive to this tradeoff because
they often have relatively slow clocks and limited instruc-

tion sets. They also have restricted memory capacity and
narrow addressing buses. For an embedded protocol to be
viable in many situations, it must be feasible to implement
the protocol on these processors using some type of opti-
mized CRC algorithm. In our examination of performance
tradeoffs, we focus on code word lengths of up to 2048 bits,
which is at or well beyond maximum message lengths for
typical embedded networks.

For these implementations, we examine optimized as-
sembly implementations in two 8-bit microcontroller ar-
chitectures, the PIC16F series from MicrochipTM[19] and
the HS08 series from FreescaleTM[9]. These were selected
because they are representative of typical small microcon-
trollers in widespread use. The PIC16F has a Harvard ar-
chitecture, meaning it has separate buses for program and
data memory. All instructions take 4 clock cycles to exe-
cute, except jump instructions, which take 8 clock cycles
(due to prefetch queue flushing). The HS08 architecture is
a von Neumann machine, with a single memory space for
addressing data RAM and program memory. Instructions
take a varying number of clock cycles to complete. Both
architectures utilize an accumulator register for arithmetic
operations. Every attempt was made to introduce an equiv-
alent implementation in both systems, but some differences
remain due to the inherently different natures of the archi-
tectures. These differences are of minimal importance be-
cause our goal is simply to illustrate typical approaches.

We wish to emphasize that our goal is not to analyze the
relative performance of the Microchip and Freescale prod-
ucts, to evaluate their fitness for the purpose of computing
CRCs, or to recommend their use for embedded or safety-
critical embedded applications. Rather, our goal is to show
that there is a performance relationship among the various
algorithms, and that the trends in performance are general
rather than peculiar to only a single architecture.

In the remainder of this section, we describe four typi-
cal classes of implementation for the CRC algorithm, and
compare the performance tradeoffs in low-end embedded
systems. For each CPU architecture, assembly language
implementations were developed for each software algo-
rithm for CRC16, CRC24, CRC32, and the special purpose
optimized polynomials. Implementations of CRC8 were
not considered because that size CRC cannot achieve high
enough HD for critical applications.

3.1 Bit-shift Algorithm

The bit-shift algorithm (BSA) is exactly the algorithm
previously described in Section 2 and Figure 1. This “ba-
sic” algorithm is directly derived from the binary division
operation. It is simple to implement and requires minimal
program memory. However, the loop must execute once for
every bit of the data word, hence it is also the slowest exe-
cuting algorithm.

3.2 Table Lookup Algorithm

The table lookup algorithm (TLA) is described in [22]
and [25]. This algorithm can update the accumulated FCS
value for multiple bits of the data word in a single compu-
tation. The TLA is optimized through the use of a precom-
puted table of values. Each table entry is the CRC checksum
of the table index value, and is k bits in length (the block
size of the FCS). Processing n bits of data at a time requires
table of size k ∗ 2n bits. Because the entries depend only on
the CRC generator polynomial, they can be computed and
stored at design time. When the algorithm is being run, the
index for the table lookup is a combination of the current
CRC value and the new data. As the algorithm iterates over
each n bits of data, the current CRC value is shifted by n
bits and XORed with the table entry.

For our implementation, the algorithm iterates the com-
putation over 8-bit blocks of data (n = 8), with table en-
tries being the same width as the FCS. Thus the total ta-
ble sizes are 512, 768, and 1024 bytes for CRC16, CRC24,
and CRC32, respectively. Because the 8-bit architectures
only have an 8-bit data bus, the table is organized as several
256-byte tables, each requiring a separate computed goto or
memory fetch (depending on the architecture). The TLA is
commonly considered the fastest executing algorithm, but
its memory footprint can be prohibitively large for embed-
ded processors that might only have a few kilobits of mem-
ory. In a real system, the high memory requirement is likely
to be further exacerbated by memory paging problems. In
both architectures, the table lookup instructions use an 8-
bit operand, so each 256-byte table must start on a page
boundary. Any memory between the end of the program in-
structions and the beginning of the table entries is therefore
wasted.

3.3 Virtual Table Algorithm

The virtual table algorithm (VTA) is based on an algo-
rithm in [24]. Like the TLA, it can operate on multiple bits
of the data word concurrently. However, instead of retriev-
ing the table entry from memory, a virtual table entry is
computed on the fly. The table entries are computed based
on the contribution of each bit of index value to the final
table value, with each virtual table entry computation re-
sulting in the identical value that would have been fetched
from memory had a physical table been precomputed and
stored in memory per the TLA approach.

For processing n bits of data at a time, the index can be
denoted by the XOR of single bit values b0 − bn−1:

index = (bn−1 × (2n−1)) ⊕ . . . ⊕ (b1 × (21)) ⊕ b0

Then because the CRC is linear over XOR, we have:

crc(index) = crc(bn−1 × (2n−1))
⊕ . . .
⊕crc(b1 × (21))
⊕crc(b0)

Thus, for processing n bits of data at a time, only the
precomputed values crc(bi × 2i), i ε {0, . . . , n} are stored.
The index is computed and the current CRC value shifted
(as in the TLA). If bit i of the index is a 1, the value crc(bi×
2i) is XORed with the CRC.

This algorithm is similar to the “reduced table algo-
rithm” described in [24]. We prefer to term this algo-
rithm as “virtual table” rather than “reduced table” because
an important aspect of this algorithm is that the values of
crc(bi × 2i) do not depend on the current state of the com-
putation. Thus the precomputed values can be hard coded
into the routine and do not actually require the overhead
associated with multiple table lookups (this optimization is
not mentioned in [24]).

In general, the VTA is faster than the BSA (because of
bytewise processing), but slower than the TLA. However,
the memory savings over TLA are substantial because there
is very little memory spent on a table – n in-line data entries
rather than a 2n entry table plus the code to fetch the values.

3.4 Optimized Virtual Table Algorithm

The optimized virtual table algorithm (OVTA) is a spe-
cial case of the VTA, and is suggested by [6], as well as
being similar to the on-the-fly algorithm suggested by [22].
Rather than computing table entries by bit-testing various
positions in the index, the table entry can in some cases be
constructed by observing patterns in the table values and
devising a series of shift-and-XOR operations.

As we will show, the OVTA can be faster than the VTA.
In some cases, it can even approach the speed of the TLA.
There is one important difference between this algorithm
and the others. For the BSA, TLA, and VTA, the computa-
tional speed of the algorithm is independent of the poly-
nomial chosen. However, for the OVTA, the optimiza-
tion over VTA depends completely on the characteristics
of the generator polynomial chosen. Table 2 shows the
improvement over the VTA for several different polyno-
mials (refer to Section 4 for a description of CRC32sub8
and CRC32sub16) . Note that for the particular CRC24
and CRC32 polynomials we used for our experiments, the
OVTA has no improvement at all over the VTA. This is be-
cause the pattern of bits was too complicated to develop
a shift-and-XOR implementation that was faster than the
VTA. The performance of the VTA represents the upper
bound on the performance of OVTA, because a designer
can fall back to the VTA if the optimization strategy has
a negative effect on performance.

4 Algorithm Optimization for Special Poly-
nomial Classes

The four algorithmic approaches discussed in Section 3
provide speed vs. memory size tradeoff points widely used
in current CRC implementations. However, it is possible

Table 2. Speedup in Worst-Case Execution
Time for Optimized Virtual Table Algorithm

Architecture
Algorithm Polynomial PIC HS08

CRC16 1021 42.1% 55.0%
CRC32sub8 0x000001ED 11.5% 30.2%

CRC24∗ 0x5D6DCB 0.0% 0.0%
CRC32sub16 0x0001B435 29.9% 34.1%

CRC32∗ 0x4C11DB7 0.0% 0.0%
* 0% speedup reflects an algorithm where no polynomial spe-
cific optimization could be made over standard virtual table al-
gorithm.

to get further speed increases for some of the methods by
careful selection of CRC polynomials.

It seems obvious that the CRC32 computation should re-
quire more cycles than the CRC24 computation, which in
turn should require more cycles than the CRC16 computa-
tion. In this section, we examine the actual source of the ad-
ditional overhead and identify some optimizations that can
be used to improve the speed of the computation of CRC32
to rival CRC24 and CRC16 computation speed while simul-
taneously improving error detection capabilities to CRC32
levels of error detection (for shorter data words).

For each algorithm described in Section 3, all arithmetic
and shift operations must be done byte-by-byte. For exam-
ple, an XOR in the generic algorithm (Table 1) requires 2, 3,
and 4 XOR operations in the embedded implementations of
the CRC16, CRC24, and CRC32, respectively. By eliminat-
ing some of these operations, the performance of the CRC
algorithm can be significantly improved.

We begin this optimization by observing the characteris-
tics of certain CRC32 polynomials. We specify this class of
polynomials as CRCksubr, with the form1 :

xk + ar ∗ xr + . . . + a1 ∗ x1 + a0 ∗ x0

These polynomials have the desirable characteristic that
the generator polynomial and the resulting table entries have
whole bytes of zeros. Table 3 compares table values for
a regular CRC32 polynomial to a CRC32sub8 polynomial.
Note that the upper two bytes of the CRC32sub8 polyno-
mial table entries are always 0.

Because XOR with a zero value is the identity operation,
using the CRCksubr polynomials allows us to eliminate
some of the overhead of the CRC computation of longer
FCS values. In the BSA, we only need to consider the non-
zero bytes when XORing in the CRC polynomial. In the
TLA, VTA, and OVTA, the size of the table entries (and
therefore the computational cost of looking them up or com-

1The reverse polynomials (i.e. those of the form xk +ak−1 ∗xk−1 +
. . . + ak−r ∗ xk−r + a0 ∗ x0) have the similar table properties and
identical error performance, so we omit them from this discussion.

Table 3. Sample Table-Lookup Entries for
CRC32 and CRC32sub8

Table Index CRC32sub8 CRC32

(0x000001ed) (0x04c11db7)

0 0x00000000 0x00000000

1 0x000001ed 0x04c11db7

.

254 0x0000a5b6 0xb5365d03

255 0x0000a45b 0xb1f740b4
Note that the upper two bytes of the table entries for the
polynomial 0x000001ED are always 0.

puting them) is also reduced. Additionally, this approach re-
duces the lookup table memory size for the TLA algorithm.

The CRC32sub8 table has two non-zero bytes in it (one
for the low 8 bits of result, and one to account for left-shift
propagation of up to 8 bits for byte-by-byte processing).
Intuitively, this makes the computational cost similar to a
normal CRC16 computation, which also has two-byte ta-
bles. Similarly, the CRC32sub16, which has three non-zero
bytes, has performance similar to that of the CRC24 com-
putation. The CRCksubr polynomials are slightly slower
because there is some additional overhead to handling the
larger FCS that cannot be eliminated.

It is important to note that the increased computational
speed of the CRCksubr polynomials is not without some
tradeoffs. The size of the FCS is still k bits and cannot be
reduced. Therefore, increased bandwidth or storage size for
the larger FCS (and correspondingly larger code word) is
an additional cost of this approach. However, at times when
the error detection effectiveness of a 32-bit CRC is desired
at reduced cost, this technique can prove useful.

5 Experiments
In order to implement the various CRC algorithms,

we obtained development tools from Microchip (for the
PIC16F) and Freescale (for the HS08). We implemented
each of the four algorithms (BSA, TLA, VTA, and OVTA)
for each class of CRC polynomials (CRC16, CRC24,
CRC32, CRC32sub8, and CRC32sub16) on both architec-
tures. All code development was done in assembly, and
the resulting programs were simulated using cycle-accurate
software tools provided by the respective manufacturers.
These tools allowed us to measure execution times and
memory requirements for each algorithm exactly.

In our experiment, we measure worst-case execution
time (WCET), average execution time (AET), and best-case
execution time (BCET). WCET is the longest possible path
through the code, and BCET is the shortest path. These
measurements were taken using simulation tools to force

the code into longer or shorter branch paths. AET was de-
termined by measuring the execution time required to com-
pute the CRC over 512 byte samples of random data. Some
algorithms (notably the TLA) have a fixed execution se-
quence, so the WCET, AET, and BCET are equal.

For memory requirements, we measure the total number
of program memory words required to implement the algo-
rithm, including memory for table entries and any memory
required for storage of program code. The algorithms with
the heaviest memory usage are the TLA implementations.
Although program memory words are 14 bits in the PIC16F
and 8 bits in the HS08, a 256 byte table requires 256 pro-
gram memory words in either case. The additional mem-
ory required by the PIC implementation is not “wasted” be-
cause the PIC architecture does not allow program memory
to be read directly. Because we did not set out to compare
the performance of these particular processors (or architec-
tures, for that matter), we do not consider these differences
to be germane, so we simply report results in terms of total
memory words used.

6 Results
We now describe the results of the experiments described

in Section 5. We demonstrate the cost of the CRC al-
gorithms in terms of execution time and memory require-
ments. We also analyze the relative error detection capa-
bilities of the various algorithms. Because we have intro-
duced new classes of CRC polynomials (CRC32sub8 and
CRC32sub16), we also present a list of “good” polynomials
in those classes for various Hamming Distances and code
word lengths.

6.1 Performance

Figures 1 and 2 compare the computational speed of
the four algorithms for CRC16, CRC32sub8, CRC24,
CRC32sub16, and CRC32 on each microcontroller. WCET,
AET, and BCET are represented by the narrowing bars.
Bars that do not narrow represent implementations with
fixed execution paths. Figures 3 and 4 compare the memory
requirements for the same set of algorithms. As expected,
there is clearly a tradeoff between memory usage and execu-
tion speed: faster execution can be obtained at the expense
of increased memory usage.

As expected, the performance of CRC16 and
CRC32sub8 are roughly comparable, as are CRC24
and CRC32sub16.

6.2 Error Detection Capability

When choosing an algorithm and generator polynomial
for performance, it is important not to overlook the error
detection capability of various design choices. To compare
error detection capabilities, we computed the HD bound for
CRC32sub8, CRC24, and CRC32sub16 according to the
methods described in [14] (see Section 6.3 for a short de-

crc16 crc32sub8 crc24 crc32sub16 crc32

C
lo

c
k

C
y
c
le

s

0

200

400

600

800

1000

1200

Bit-shift

Virtual Table

Optimized Virtual Table

Table Lookup

Worst case

Best case

Avg case

Figure 1. Execution Time for PIC16F

crc16 crc32sub8 crc24 crc32sub16 crc32

C
lo

c
k

C
y
c
le

s

0

200

400

600

800

1000

1200

Bit-shift

Virtual Table

Optimized Virtual Table

Table Lookup

Worst
case

Best
case

Avg
case

Figure 2. Execution Time for HS08

scription). The results are shown in Table 4. For each class
of polynomials, the table shows the maximum code word
length for which any polynomial of that class can achieve
the stated HD. For example, there is a CRC16 polynomial
which can provide HD=8 for code words from 36 to 151
bits in length; beyond 151 bits, only HD=5 or less is pos-
sible. The bound for CRC32 is not shown because it is not
known; the computation of this bound is currently consid-
ered intractable. However, 32-bit polynomials are known
that can provide HD=6 out to almost 32K bits [5], so as a
practical matter the tradeoff of using other polynomials is
the maximum length at which HD=6 can be provided.

While CRC16 and CRC32sub8 have roughly equiva-
lent computation and memory cost, CRC32sub8 actually
provides significantly better error detection. For 2048 bit
code words (a reasonable maximum size for embedded net-
work messages), CRC32sub8 provides HD=6, while the
best CRC16 polynomial provides only HD=4, an improve-
ment of two additional bits of HD. Because all CRCs pro-
vide burst error detection up to the length of the FCS re-
gardless of polynomial, the CRC32sub8 polynomials also
provide superior burst error detection.

When comparing CRC24 and CRC32sub16, which also
have similar memory and performance costs, it is clear that
CRC32sub16 has superior error performance. In addition,
CRC32sub8, which is faster to compute than CRC24 also

crc16 crc32sub8 crc24 crc32sub16 crc32

P
ro

g
ra

m
M

e
m

o
ry

W
o
rd

s

0

200

400

600

800

1000

1200

Bit Shift

Virtual Table

Optimized Virtual Table

Table Lookup

Figure 3. Memory Use for PIC16F

crc16 crc32sub8 crc24 crc32sub16 crc32

P
ro

g
ra

m
M

e
m

o
ry

W
o
rd

s

0

200

400

600

800

1000

1200

Bit Shift

Virtual Table

Optimized Virtual Table

Table Lookup

Figure 4. Memory Use for HS08

has better error detection properties for code words longer
than 151 bits. As before, CRC32sub8 and CRC32sub16
both provide burst error detection for all bursts up to 32
bits in width. Because a chosen CRC must provide a
given HD for the entire range of possible messages, the
choice of either CRC32sub8 or CRC32sub16 for appropri-
ately sized code words would be an improvement in error
detection over CRC24 with the same or better computa-
tional speed. Another benefit of adopting CRC32sub8 or
CRC32sub16 algorithms to replace CRC24 is future ex-
tensibility. 2048 bits is the maximum code word length at
which CRC24 can provide HD=6, which is required for
most safety-critical applications, so any future expansion
would require a CRC algorithm with HD=6 coverage be-
yond this length. CRC32sub8 can provide HD=6 for code
words of up to 4145 bits (more than double that of CRC24),
and CRC32sub16 up to 8220 bits (more than 4 times that of
CRC24).

6.3 Good CRCksubr Polynomials

The optimal HD bound and optimum polynomials were
obtained according to the method used in [14], which we
describe briefly here. For each HD, the entire space of poly-
nomials meeting the CRCksubr criteria was evaluated to
the longest data length where a polynomial of the given HD
still exists. If there is only one polynomial which reaches

koopman
Text Box
per byte

koopman
Text Box
per byte

koopman
Text Box

koopman
Text Box

Table 4. Hamming Distance and Maximum
Code Word Length

Hamming Distance (bits)
12 11 10 9 8 7 6

CRC16 – – – – 31 35 151
CRC32sub8 – – – – 197 270 4145

CRC24 47 – 50 63 129 255 2048
CRC32sub16 62 65 106 116 313 516 8046+
This table shows the maximum code word length (data word +
FCS) for which a given HD can be obtained for a given polyno-
mial class.

this length, then it is considered good. If there are multiple
such polynomials, then the one with the lowest Hamming
weight (number of undetected errors at a given HD) is iden-
tified. All polynomials within 10% of this minimum are
then searched to further identify which ones achieve a still
higher HD for shorter message lengths, and the one which
achieves that higher HD for the longest message length is
considered the best. Other criteria are possible for selecting
good polynomials, but this set of criteria provides a rea-
sonable engineering tradeoff for use on typical embedded
applications.

Table 5 shows a breakdown of the good polynomials for
the CRC32sub8 polynomial class. Table 6 lists the good
polynomials for CRC32sub16 polynomial class. Each poly-
nomial is given as a numeric value (binary representation
with implicit x32 term), as well as a polynomial represen-
tation. The third line of each entry contains a list of the
degrees of the polynomial’s factors, using the notation from
[13]. Each good polynomial provides the stated HD (or bet-
ter) for all code words less than or equal to the stated length.
Although the bound for HD=6 is at code words of 4145 bits,
a good polynomial for code words with a maximum length
of 2048 bits is also given, because it has better error detec-
tion at short data lengths.

7 Correctness of the CRC Algorithm
One of the practical issues in implementing CRCs is en-

suring the correct bit order of computation and placement of
bits into the FCS to preserve burst error properties. While
most network protocols do this properly, it is a tricky area
that is not always implemented correctly.

Suppose that an application implements a standard
which requires the data bits to be processed least significant
bit (LSB) first, as in the CRC32 standard. Because the bit-
reversal process is slow in most processors, instead of us-
ing a “left-shift” algorithm, implementers might instead de-
velop an equivalent “right-shift” algorithm, which is shown
in Table 7. This algorithm uses the reversed CRC polyno-
mial with implicit x0 term. The reverse of the CCITT-16
polynomial is x16 +x11 +x4 +1 and should be represented

Table 5. Good CRC32sub8 Polynomials
HD Polynomial Length

0x000001D7
8 x32+x8+x7+x6+x4+x2+x1+x0 197

{1, 1, 5, 25}
0x00000179

7 x32+x8+x6+x5+x4+x3+x0 270
{2, 30}

0x000001ED
6 x32+x8+x7+x6+x5+x3+x2+x0 2048

{1, 10, 21}
0x000000E5

6 x32+x7+x6+x5+x2+x0 4145
{1, 1, 3, 4, 23}

This table shows good polynomials and the maximum code word length
obtained for the stated Hamming Distance. Each entry gives the poly-
nomial in the “left-shift” binary notation and the standard polynomial
notation. The third line of each entry list the orders of the polynomials
prime factorization.

as 0x8408. It is important to note that not only does this
algorithm process data bits LSB first, it also results in a bit-
reversed CRC value (compared to the result if the bits were
fed into a left-shift algorithm MSB first).

The left-shift versus right-shift issue is one source of
confusion in the literature. While [28, 1] describe the left-
shift algorithm, [6] describes the right-shift algorithm as
though it were equivalent and lists incorrect check values
in the paper.

Conventional wisdom suggests that either algorithm can
be used as long as the correct assumptions about data order-
ing are made [6, 28]. This misconception probably stems
from the well-known property of CRCs that a polynomial
and its bit-reversed counterpart have identical error detec-
tion performance.

But the left-versus-right shift issue is not so simple for
real implementations. The problem arises because software
implementations of the CRC algorithm rely on data regis-
ters of limited width and limited lookup table size. Table
8 shows a concrete C implementation of the left-shift al-
gorithm. In essence, the core algorithm processes data one
byte at a time. While the example code could easily be ex-
panded to process 16- or 32-bit words as well, the issue is
that in many cases the FCS size is larger than the chunk size
in which the data is processed. The execution of the outer
loop creates artificial boundaries in the data. Changing the
core algorithm to a right-shift implementation would swap
the order of the bits within the registers without affecting
the overall order that the data words are processed in.

As long as the code that generates the checksum
processes data bits in the same order as the code that ver-
ifies the checksum, the checksum value would be verified
correctly, and bit-ordering would not be an impediment to

Table 6. Good CRC32sub16 Polynomials
HD Polynomial Length

0x0001DA97
12 x32+x16+x15+x14+x12+x11+ 62

x9+x7+x4+x2+x1+x0

{1, 2, 11, 18}
0x00015A67

11 x32+x16+x14+x12+x11+x9+x6+x5+x2+x1+x0 65
{3, 5, 8, 16}

0x00018AD5
10 x32+x16+x15+x11+x9+x7+x6+x4+x2+x0 106

{1, 1, 11, 19}
0x00008D35

9 x32+x15+x11+x10+x8+x5+x4+x2+x0 116
{32}

0x0000B3E1
8 x32+x15+x13+x12+x9+x8+x7+x6+x5+x0 313

{1, 8, 9, 14}
0x00002979

7 x32+x13+x11+x8+x6+x5+x4+x3+x0 516
{5, 9, 9, 9}

0x00003551
6 x32+x13+x12+x10+x8+x6+x4+x0 8220+

{1, 5, 13, 13}
This table is arranged in the same way as Table 5.

superficial testing of system operation. However, for serial
transmission, it is important that the data bits be processed
in the same order that they are sent down the wire. Other-
wise, a k bit (where k is the length of the FCS) burst error
straddling the artificial boundaries created by the software
algorithm can affect bits that are actually further than k bits
apart from the point of view of the CRC algorithm. Figure
5 illustrates this concept.

An example of this problem can be found in the
IEEE1394 specification [10], which uses the CRC32 stan-
dard polynomial to protect both the header and data seg-
ments of the packet. Packet contents are divided into 32-
bit chunks called quadlets. The sample algorithm given
in the specification is a quadlet-at-a-time algorithm which
processes bits MSB first, but the quadlets are transmitted
LSB first.

This bit ordering problem only affects the burst error de-
tection property of the CRC. The data protection for random
independent bit errors is not affected. It may not be feasible
to modify existing standards, especially for a standard like
IEEE1394, which is not generally relied upon for safety-
critical applications. But it is important to understand this
problem so that new standards can take full advantage of the
error-detecting capabilities of the CRC.

Table 7. Bitwise Right-Shift CRC Algorithm

for (i=0; i<sizeof(data); i++) {
if (lsb(data) ˆ lsb(crc)) {

crc = (crc >> 1) ˆ (revpoly);
} else {

crc = (crc >> 1);
}
data >>= 1;

}

Table 8. C Code for 8-bit Left-Shift Algorithm

int datalen;
unsigned char crc = crc_init;
unsigned char data[datalen];
int i, j;
unsigned char gpoly = 0xEA;
for (i=0; i<datalen; i++) {

/* begin core algorithm */
for (j=0; j<8; j++) {

if (lsb(data) ˆ lsb(crc)) {
crc = (crc << 1) ˆ (gpoly_brev);

} else {
crc = (crc << 1);

}
data[i] <<= 1;

}
/* end core algorithm */

}

8 Conclusion
Cyclic redundancy codes are commonly used to provide

error detection for network messages and stored data be-
cause they can provide better minimum Hamming distances
than other checksums. In particular, high HD codes are
increasing in importance in safety critical embedded sys-
tem applications. We have identified several algorithms and
studied their implementation in low-end embedded proces-
sors to identify tradeoffs among error detection, computa-
tion speed, and memory requirements. We have also docu-
mented the concept of the CRCksubr polynomial and illus-
trated how implementations taking advantage of the special
characteristics of these polynomials can achieve better error
detection, more efficient computational speeds, and smaller
memory requirements.

We summarize existing algorithms for computing the
CRC, including the bit-shift algorithm, table lookup algo-
rithm, virtual table algorithm, and optimized virtual table
algorithm. By implementing these algorithms in the several
embedded architectures, we are able to compare the perfor-
mance and memory tradeoffs. Additionally, we have imple-
mented algorithms that are optimized for two novel classes
of polynomials: CRC32sub8 and CRC32sub16. Comput-
ing CRCs with these polynomials offers improved error de-

1 2 3 4

1 2 3 4

Bytes transmitted MSB first

Bytes processed LSB first

Apparent 2k−bit burst error

Actual k−bit burst error

Figure 5. Undetectable burst error caused by
byte inversion

tection with computational performance that is comparable
to the performance of algorithms for smaller polynomial
classes (e.g. CRC16, CRC24). We also present polynomial
selection tables for these new classes of polynomials.

Because the mathematical basis of the CRC is not nec-
essarily intuitive to engineers used to dealing with ordinary
integer arithmetic, it can be difficult to obtain a correct im-
plementation of the software algorithm. We have clarified
some discrepancies in existing literature and identified a
real application in which incorrect specification of bit or-
dering compromises CRC error detection capability.

Overall, we hope that these results provide embedded
application engineers with better tradeoff information for
selecting CRC algorithms and polynomials to attain good
tradeoffs among speed, memory consumption, and error de-
tection effectiveness.

Acknowledgment
The authors would like to thank Bombardier Transporta-

tion and Honeywell for their generous support.

References
[1] M. Barr. Slow and steady never lost the race. Embedded

Systems Programming, pages 37–46, January 2000.
[2] P. E. Boudreau, W. C. Bergman, and D. R. Irvin. Perfor-

mance of a cyclic redundancy check and its interaction with
a data scrambler. IBM Journal of Research Development,
38(6):651–658, 1994.

[3] R. Braden, D. Borman, and C. Partridge. RFC1071: Com-
puting the internet checksum. Online: http://www.faqs.org/-
rfcs/rfc1071.html, 1988.

[4] F. Braun and M. Waldvogel. Fast incremental CRC updates
for IP over ATM networks. In 2001 IEEE Workshop on High
Performance Switching and Routing, pages 48–52, 2001.

[5] G. Castagnoli, S. Bräuer, and M. Herrmann. Optimization
of cyclic redundancy-check codes with 24 and 32 parity bits.
IEEE Trans. Comm., 41(6):883–892, 1993.

[6] J. Crenshaw. Implementing CRCs. Embedded Systems Pro-
gramming, January 1992.

[7] D. C. Feldmeier. Fast software implementation of error de-
tection codes. IEEE/ACM Trans. Netw., 3(6):640–651, De-
cember 1995.

[8] FlexRay-Consortium. FlexRay communications system,
protocol specification, version 2.0. Request online: http://-
www.flexray.com/specification request.php.

[9] Freescale Semiconductor, Inc. HCS08 microcontrollers.
Online: http://www.freescale.com/files/microcontrollers/-
doc/data sheet/MC9S08RG60.pdf, 2003.

[10] IEEE Std 1394-1995. IEEE standard for a high performance
serial bus, Aug 1996. ISBN 0-7381-1203-8.

[11] IEEE Std 1570-2002. IEEE standard for the interface be-
tween the rail subsystem and the highway subsystem at a
highway rail intersection, 2002. ISBN 0-7381-3397-1.

[12] IEEE Std 802.3-2000. Part 3: Carrier sense multiple access
with collisition detection (CSMA/CD) access method and
physical layer specification, 2000. ISBN: 0-7381-2673-X.

[13] P. Koopman. 32-bit cyclic redundancy codes for internet
applications. In International Conference on Dependable
Systems and Networks, pages 459–498, 2002.

[14] P. Koopman. Cyclic redundancy code (CRC) polynomial
selection for embedded networks. In International Confer-
ence on Dependable Systems and Networks, pages 145–154,
2004.

[15] M. E. Kounavis and F. L. Berry. A systematic approach to
building high performance software-based CRC generators.
In Proceedings of the 10th IEEE Symposium on Computers
and Communications, 2005.

[16] G. Krut. Justification for the format of safety telegram. AD-
tranz corporation technical document, 1996.

[17] Lin, Shu, and D. Costello. Error Control Coding. Prentice-
Hall, 1983.

[18] A. J. McAuley. Weighted sum codes for error detection and
their comparison with existing codes. IEEE/ACM Trans.
Netw., 2(1):16–22, 1994.

[19] Microchip Technology, Inc. PIC16F7X data sheet. Online:
http://www.microchip.com/downloads/en/DeviceDoc/-
41206a.pdf, 2002.

[20] F. Monteiro, A. Dandache, A. M’sir, and B. Lepley. A fast
CRC implementation on FPGA using a pipelined architec-
ture for the polynomial division. In the 8th IEEE Interna-
tional Conference on Electronics Circuits and Systems, vol-
ume 3, pages 1231 – 1234, 2001.

[21] T.-B. Pei and C. Zukowski. High-speed parallel CRC cir-
cuits in VLSI. IEEE Transactions on Communications,
40(4):653–657, 1992.

[22] A. Perez. Byte-wise CRC calculations. IEEE Micro,
3(3):40–50, 1983.

[23] W. Peterson and E. Weldon. Error-Correcting Codes. MIT
Press, second edition, 1972.

[24] T. V. Ramabadran and S. S. Gaitonde. A tutorial on CRC
computations. IEEE Micro, 8(4):62–75, 1988.

[25] D. V. Sarwate. Computation of cyclic redundancy checks
via table look-up. Commun. ACM, 31(8):1008–1013, 1988.

[26] TTA-Group. Time-triggered protocol TTP/C, high-level
specification document, protocol version 1.1. Request on-
line: http://www.ttagroup.org/technology/specification.htm,
2003.

[27] J. Turley. Embedded processors, part one. On-
line: http://www.extremetech.com/print article/-
0,3998,a=21014,00.asp, 2002.

[28] R. Williams. A painless guide to CRC error detection. On-
line: http://www.ross.net/crc/download/crc v3.txt, 1993.

