
SecureCloud: Secure Big Data Processing in
Untrusted Clouds

Florian Kelbert∗, Franz Gregor†, Rafael Pires‡, Stefan Köpsell†, Marcelo Pasin‡,
Aurélien Havet‡, Valerio Schiavoni‡, Pascal Felber‡, Christof Fetzer†, Peter Pietzuch∗

∗Imperial College London, United Kingdom, {fkelbert, prp}@imperial.ac.uk
†TU Dresden, Germany, {firstname.lastname}@tu-dresden.de

‡University of Neuchâtel, Switzerland, {firstname.lastname}@unine.ch

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Pre-print version. Presented in the Design, Automation & Test in Europe Conference &
Exhibition (DATE ’17), Lausanne - Switzerland, 2017. For the final published paper, refer to the DOI: 10.23919/DATE.2017.7926999

Abstract—We present the SecureCloud EU Horizon 2020
project, whose goal is to enable new big data applications that use
sensitive data in the cloud without compromising data security
and privacy. For this, SecureCloud designs and develops a layered
architecture that allows for (i) the secure creation and deployment
of secure micro-services; (ii) the secure integration of individual
micro-services to full-fledged big data applications; and (iii) the
secure execution of these applications within untrusted cloud
environments. To provide security guarantees, SecureCloud lever-
ages novel security mechanisms present in recent commodity
CPUs, in particular, Intel’s Software Guard Extensions (SGX).
SecureCloud applies this architecture to big data applications
in the context of smart grids. We describe the SecureCloud
approach, initial results, and considered use cases.

I. INTRODUCTION

Despite a steady increase in cloud adoption over the past
few years, some challenges remain. Confidentiality, integrity,
and availability of applications and their data are of immediate
concern to organisations that use cloud computing. This is
particularly true for organisations that must comply with strict
policies, including those which process personal data or that
support society’s most critical infrastructures, such as finance,
health care, and smart grids. The goal of SecureCloud is to
address such concerns by providing solutions that allow for the
secure processing of sensitive data within untrusted clouds.

The primary area of application of the developed solutions
is in the field of critical infrastructures, whose operators have
legitimate concerns about the dependability of applications
hosted in third-party clouds. Despite security guarantees given
by cloud operators, dependability concerns increasingly be-
come a barrier to the broad adoption of cloud computing.
The cloud therefore becomes itself a critical infrastructure for
which we need to provide sufficient guarantees so that we can
justifiably place our trust in their hosted applications.

The overall goal of our work is to develop a platform
that enables the dependable implementation, deployment and
execution of critical applications within untrusted cloud envi-
ronments. Our objectives are:

1) substantially improve the state-of-the-art in cloud de-
pendability by developing innovative and effective mecha-
nisms to enforce security, covering integrity and confidential-
ity, as well as availability and reliability;

2) seamlessly integrate new dependability features into a
standard cloud stack to encourage easy migration of critical
(as well as non-critical) applications to the cloud without
compromising application dependability; and

3) convincingly validate and demonstrate the benefits of our
approach by applying it to realistic and demanding big data
use cases in the domain of critical infrastructures (smart grids).

II. EXISTING APPROACHES TO CLOUD SECURITY

A modern public cloud is home to a hardware and software
stack consisting of many devices, a large codebase and large
frameworks that are often immature, rapidly evolving, and
full of bugs and configuration errors that can be exploited by
attackers. The challenge for operators is to convince potential
clients that it is safe to execute their applications and store
their data in such a dangerous environment.

One approach taken by operators is to define a Trusted
Computing Base (TCB) within their stack [1]. Typically,
the TCB includes most of the basic middleware, operating
system (OS), and networking facilities of the data centre, as
well as its hardware platform. Establishing the credibility of
the TCB amounts to verifying the correctness and security of a
large and complex hardware and software system. High costs
aside and repeating it on a continuous basis as the hardware
and software evolve, the goal of a truly “trustworthy” TCB
has proven elusive [2], [3]. Even if it were possible to remove
all bugs from the TCB, this alone would not ensure their
security—given insufficient physical security or a malicious
system administrator, there could still be unauthorized access
to customer data when it is unencrypted in memory.

An approach focused specifically on securing application
data from access by both external and internal malicious agents
is based on homomorphic encryption—a technique intended to
allow encrypted computations to be carried out on encrypted
data [4], [5]. Since unencrypted computations and data would
never be present in the cloud, they would never be exposed to
attacks. As of now, the realisation of homomorphic encryption
is proving as elusive [6] and impractical for virtually all real-
world applications due to its immense overheads, precluding
its use in timely demanding applications.

A third approach is the use of specialised security co-
processors [7]. Such processors consider the chip area as a

ar
X

iv
:1

80
5.

01
78

3v
1 

 [
cs

.D
C

] 
 4

 M
ay

 2
01

8

https://www.date-conference.com/date17/
https://www.date-conference.com/date17/
https://doi.org/10.23919/DATE.2017.7926999


trust boundary, treating everything outside as subject to attacks
and potentially compromised. The instructions and data are
stored encrypted in the memory. Once read by the processor,
they are decrypted and the instructions carried out on plain-text
data. Since everything outside the chip can be tampered with,
the processor never outputs plaintext data, encrypting it before
writing to the system bus. While secure processors provide
good security guarantees, specialised hardware use is counter
to the general principle of data centre “scale out” notion, which
advocates the use of large numbers of commodity components.

III. SECURECLOUD APPROACH

A. Intel SGX and Small Trusted Computing Base

The innovative approach to cloud dependability pursued
by SecureCloud uses novel cryptographic hardware found in
upcoming commodity CPUs—in particular, Intel SGX [8], [9].
It allows protected execution on encrypted data where the
corresponding plaintext is only known inside the processor.
The enclave is a secure area in which the processing of the
plaintext data happens. Applications are thus isolated not only
from other applications but also from the underlying operating
system and hypervisor. Users run sensitive applications in pub-
lic clouds without unconditionally trusting the cloud provider.

B. Layered Architecture

The SecureCloud approach tackles secure processing in
the cloud using SGX from a full stack perspective. The
architecture builds on several layers and various technologies:
(1) Secure containers for QoS-aware applications. While
many hardware extensions for CPU/IO/memory virtualization
have reduced the overhead of virtual machines, container
frameworks such as Docker1 are still more efficient, although
less secure since their security is directly linked to the un-
derlying host OS. We address this tension by designing and
implementing a solution for secure containers. The developed
components also monitor hardware usage to detect resource
bottlenecks and allow for accounting and billing.
(2) Dependable micro-services for the cloud utilise these
secure containers. For this, we design and implement a frame-
work and related interfaces which allow for the development
of arbitrary, yet secure, micro-services. We further implement
a few common micro-services.
(3) Secure distributed big data applications on the basis
of secure micro-services address big data processing. The
developed big data processing components are leveraged by
the application level demonstrators in the context of smart
grids as described in Section VI. Examples of developed
components are secure structured data stores, map/reduce
based computations, schedulers, as well as components for
efficient transmission of large amounts of data.

IV. SECURECLOUD INFRASTRUCTURE

Figure 1 shows the baseline infrastructure of SecureCloud.
An application consists of a set of micro-services connected

1https://www.docker.com/

Container
Micro-service

Enclave

Micro-service runtime

Application logic

Guest OS (w/ SGX)

Hypervisor + HW (w/ SGX)

Container
Micro-service

Enclave

Micro-service runtime

Application logic

Guest OS (w/ SGX)

Hypervisor + HW (w/ SGX)

Event bus

Figure 1. SecureCloud applications consist of a set of micro-services
connected by an event bus. Our main focus is to enhance the security of
containers. These containers may share the host with virtual machines, i.e.,
the system still contains a hypervisor.

via an event bus. The application logic of each micro-service
lives within an enclave. The micro-service runtime exists
outside of the enclave. These runtime functions only access
encrypted data. Encryption and decryption of this data is
performed automatically and transparently within the enclave.
This approach limits the amount of code added to the TCB.

To deploy the micro-service, we offer secure containers on
top of the untrusted stack of the cloud provider: a secure
container adds confidentiality and integrity to Docker con-
tainers. This enables system administrators to build secure
container images within a trusted environment and to run
them in an untrusted cloud. To facilitate the creation of
secure containers, we designed and developed a Secure Linux
Container Environment (SCONE) [10] that secures existing
applications with SGX.

To the micro-service, SCONE exposes an external system
call based interface, which is shielded from attacks. To protect
itself from user space attacks, SCONE performs sanity checks
and copies all memory-based return values to the inside of
the enclave before passing the arguments to the micro-service.
SCONE further (i) transparently encrypts and authenticates
data that is processed via file descriptors, and (ii) provides
acceptable performance by implementing tailored threading
and an asynchronous system call interface.

SCONE integrates with existing Docker environments, and
ensures that secure containers are compatible with standard
containers. The host OS, however, must include a Linux SGX
driver and, to boost performance, a SCONE kernel module.

With respect to Docker container deployment and schedul-
ing, SecureCloud contributes GenPack [11], a scheduling and
monitoring framework that leverages principles from genera-
tional garbage collection (GC) [12]. The core idea of GenPack
is to partition the servers into several groups, named genera-
tions. It combines runtime monitoring of system containers to
learn their requirements and properties, and a scheduler that
manages different generations of servers.

V. PRELIMINARY RESULTS

SecureCloud already developed prototypes: an unmodified
Docker ecosystem to securely deploy micro-services (Sec-
tion V-A) and SCBR [13], a secure messaging system over



trusted

not trusted

Secure Image Enclave

Repository

SCONE Client
Docker client

Docker
Engine

1: push
image

2: pull
image

3: pull
image

4: execute

5: secure
communication

Figure 2. Using secure containers with Docker

content-based routing that allows to securely hook-up individ-
ual micro-services to full-fledged applications (Section V-B).

A. Secure Docker Containers

Micro-services need a runtime environment. In line with
Section III-B, we chose to deploy micro-services using a
containerized Docker infrastructure, a currently popular and
widely used platform. Each micro-service is executed within a
secure container—a dedicated Docker container that runs their
code protected by SGX enclaves. From the perspective of the
Docker infrastructure, secure containers are indistinguishable
from regular containers.

The integration of secure containers with Docker requires
changes to the image build process. We further provide a
wrapper for the Docker client, called SCONE client, which
provides functionalities for spawning secure containers and for
secure communication with containers. Note that we do not
require modifications to the Docker Engine or its API. SCONE
supports the typical Docker workflow: developers publish a
Docker image featuring their micro-service; end-users can
customize this image by adding additional file system layers.

We assume that Docker images contain micro-services that
are created in a trusted environment (see Figure 2). The image
creator must be familiar with the security-relevant aspects of
the micro-service, e.g., which files must be protected. Next we
explain the secure container image creation process.

First, the image creator builds a protected executable of
the micro-service by statically compiling against its library
dependencies and the SCONE library—a C library that ensures
that the application is only executed inside of an SGX enclave.
SCONE does not support shared libraries by design to ensure
that all enclave code is verified by SGX upon enclave creation.

Second, the image creator uses the SCONE client to protect
the image’s file system (FS). The SCONE client encrypts all
files that must be protected and creates an FS protection file,
which contains the message authentication codes (MACs) for
file chunks as well as the encryption keys. The FS protection
file itself is then encrypted and added to the image.

Lastly, the secure image is published using the standard
Docker registry. As all security-relevant parts of the image
are protected by the FS protection file, we do not need to
trust the Docker registry. To allow for the secure image’s
further customization, the image creator would only sign the
FS protection file, but not encrypt it. This way, the image’s

integrity is ensured. Confidentiality can then only be assured
after finishing the customization process.

Each secure container requires a startup configuration
file (SCF). The SCF contains keys to encrypt standard I/O
streams, the hash and encryption key of the FS protection file,
application arguments, as well as environment variables. Only
an enclave whose identity has been verified can access the
SCF, which is received through a TLS-protected connection
that is established during enclave startup.

B. Secure Content Based Routing

Content-based routing (CBR) is a flexible and powerful
paradigm for scalable communication among distributed pro-
cesses. It decouples data producers from consumers, and
routes messages based on their content. Although extensively
studied [14], the publish/subscribe communication model still
fails to reach wide deployment due to privacy concerns.

To perform efficient routing, a CBR router must see the
content of the messages, as well as subscriptions by data
consumers, a clear threat to privacy. We provide a secure
CBR engine called SCBR [13]. It exploits SGX to perform this
matching step. Hence, the compute-intensive CBR operations
can operate on decrypted data shielded by enclaves and
leverage efficient matching algorithms.

Outside of secure enclaves, both publications and subscrip-
tions are encrypted and signed, thus protecting the system
from unauthorised parties observing or tampering with the
information. SCBR combines a key exchange protocol and
a state-of-the-art routing engine to provide both security
and performance while executing under the protection of an
enclave. Performance is enhanced by storing subscriptions
in data structures that exploit containment relations between
filters. Therefore, a reduced number of comparisons is required
whenever a message must be matched against them.

We evaluate SCRB with several workloads to observe the
sources of performance overheads and trade-offs of SGX.
Our time measurements inside/outside of enclaves highlighted
performance degrades when cache misses rate increase (i.e.
data must be evicted or fetched to/from system memory,
causing SGX to perform encryption, decryption, integrity and
freshness checks). While cache misses imposes some limited
overhead, they are less critical than memory swapping.

Since the enclave page cache (EPC) memory is limited to
128MB, pages must be evicted from the protected area to the
main (untrusted) memory whenever more space is required.
Memory swapping is serviced by the operating system, which
causes higher overheads when compared to cache misses.
Figure 3 shows this effect by showing the combined results
of matching times when executing the same code inside and
outside secure enclaves. Performance degrades to nearly 18×
for a subscription database of 200MB. Even if EPC size was
set to 128MB (marked by the vertical line), the performance
drop is evident before due to the use of protected memory for
SGX internal data structures.

These first results open the way for further research to
minimise memory footprint and build an enclave-efficient



0

2

4

6

8

10

12

14

16

18

20

60 80 100 120 140 160 180 200 220
0

5

10

15

20

25

30

35

40
R

a
tio

R
a
ti
o
 (
× 

10
3
)

Memory occupancy (MB)

Registration time in/out enclave
(left scale)
Page faults in/out enclave
(right scale)

Figure 3. Effect of memory swapping

system. We intend to optimise our data structures to avoid
paging and cache misses. We expect these optimisations to
further decrease the overhead of running inside an enclave.

VI. APPLICATION USE CASES

To demonstrate the need and the feasibility of using se-
cure clouds, the project considers use cases in the area of
smart grids, which offer opportunities to tackle many of
the requirements that sensitive big data applications may
face when executing in the cloud. First, they account for a
growing volume of data, as meters and sensors for monitoring
distribution and transmission grids continuously collect and
transmit data. Second, the energy distributors’ data analyses
require access to consumers’ detailed information about energy
consumption, which represents an enormous privacy risk (their
activities and behaviours can be inferred [15]). Finally, data
analysis can trigger reactions that interfere with the physical
world (load control or consumer notifications). Adversaries
could thus have devastating effects on the power system.

In our first use case, smart meters collect detailed power
consumption data from residential and industrial consumers.
Collecting data at sub-minute granularities enables for sophis-
ticated applications, such as power theft prevention and early
detection of power quality issues. Nowadays, such applications
are deployed on dedicated servers maintained by utilities
and system integrators. Hence, several customers cannot use
them, because it would require a large data storage and
processing infrastructure. Cloud computing offers such an
infrastructure. Nevertheless, once this data is under control of a
cloud provider, an adversary who compromises this provider’s
infrastructure could gain access to them, hence the need to be
stored and processed securely.

The second use case considers applications that affect
energy delivery and fault detection. For these applications, data
sources may be public, but the data needs to be reliable and
the processing tasks that trigger actions in the smart grid must
be executed in a timely fashion. These applications will be
supervised using monitoring services. Orchestration services
detect anomalies within milliseconds, which requires adapta-
tions to the virtual infrastructure that hosts the application.
This fine-granular and highly responsive orchestration system
will enforce quality-of-service guarantees without interfering
with security and privacy requirements, and can even provide

better energy efficiency. Our experiments with GenPack [11]
show that up to 23% energy savings are possible for typical
data-center workloads.

VII. CONCLUSIONS

The EU SecureCloud project designs and develops tech-
nologies to enhance the dependability of future cloud environ-
ments that host critical infrastructures such as the smart grid.
Building upon Intel’s SGX technology, the developed solutions
allow for the secure creation, deployment, and execution of big
data applications in untrusted clouds. The developed solutions
are applied to the area of smart grids, which accounts for an
ever-growing volume of data and demands for reliable, secure,
and timely data processing. Our initial SGX-based prototypes
for secure and efficient data processing and content routing
demonstrate the promise of the SecureCloud approach.

Acknowledgements. The SecureCloud project has received
funding from the European Union’s Horizon 2020 research and
innovation programme and was supported by the Swiss State
Secretariat for Education, Research and Innovation (SERI)
under grant agreement number 690111. Rafael Pires is also
sponsored by CNPq, National Counsel of Technological and
Scientific Development, Brazil.

REFERENCES

[1] Trusted Computing Group, “Trusted Platform Module Main Specifica-
tion, version 1.2, revision 116,” 2011.

[2] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri, “How
low can you go?: Recommendations for hardware-supported minimal tcb
code execution,” SIGARCH Comput. Archit. News, vol. 36, no. 1, 2008.

[3] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy,
“Tcg inside?: A note on tpm specification compliance,” in Proc. First
ACM Workshop on Scalable Trusted Computing, 2006, pp. 47–56.

[4] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st ACM Symposium on Theory of Computing, 2009, pp. 169–178.

[5] M. Tebaa, S. E. Hajji, and A. E. Ghazi, “Homomorphic encryption
method applied to cloud computing,” in Network Security and Systems
(JNS2), 2012 National Days of, April 2012, pp. 86–89.

[6] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic en-
cryption be practical?” in Proc. 3rd ACM workshop on Cloud computing
security workshop. ACM, 2011, pp. 113–124.

[7] M. Lindemann, R. Perez, R. Sailer, L. van Doorn, and S. Smith,
“Building the IBM 4758 Secure Coprocessor,” Computer, vol. 34, no. 10,
2001.

[8] V. Costan and S. Devadas, “Intel SGX Explained,” Tech. Rep.
[9] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology

for cpu based attestation and sealing,” in Proc. 2nd Intl. Workshop on
Hardware and Architectural Support for Security and Privacy, 2013.

[10] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux
Containers with Intel SGX,” in OSDI, 2016.

[11] A. Havet, V. Schiavoni, P. Felber, M. Colmant, R. Rouvoy, and C. Fetzer,
“GenPack: A generational scheduler for cloud data centers,” in IEEE
International Conference on Cloud Engineering 2017 (to appear), 2017.

[12] H. Lieberman and C. Hewitt, “A real-time garbage collector based on
the lifetimes of objects,” Commun. ACM, vol. 26, no. 6, pp. 419–429,
Jun. 1983.

[13] R. Pires, M. Pasin, P. Felber, and C. Fetzer, “Secure content-based
routing using intel software guard extensions,” in ACM/IFIP/USENIX
17th International Middleware Conference, 2016.

[14] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Computing Surveys, 2003.

[15] U. Greveler, P. Glösekötterz, B. Justusy, and D. Loehr, “Multimedia
content identification through smart meter power usage profiles,” in Proc.
Intl. Conf. on Information and Knowledge Engineering, 2012, p. 1.


	I Introduction
	II Existing Approaches to Cloud Security
	III SecureCloud Approach
	III-A Intel SGX and Small Trusted Computing Base
	III-B Layered Architecture

	IV SecureCloud Infrastructure
	V Preliminary Results
	V-A Secure Docker Containers
	V-B Secure Content Based Routing

	VI Application Use Cases
	VII Conclusions
	References

