
Integrating Proactive Mode Changes in Mixed
Criticality Systems

1st Flavio R. Massaro Jr. 2nd Edson L. Ursini
3rdPaulo S. Martins
School of Technology

University of Campinas
Limeira, Brazil

frmassaro@gmail.com, ursini@ft.unicamp.br, paulo@ft.unicamp.br

Abstract

In this work, we propose to integrate prediction algorithms to the scheduling of mode changes under the Earliest-
Deadline-First and Fixed-priority scheduling in mixed-criticality real-time systems. The method proactively schedules a
mode change in the system based on state variables such as laxity, to the percentage difference in the temporal distance
between the completion time of the instance of a task and its respective deadline, by the deadline (D) stipulated for the
task, in order to minimize deadline misses. The simulation model was validated against an analytical model prior to the
logical integration of the Kalman-based prediction algorithm. Two study cases were presented, one covering earliest-
deadline first and the other the fixed-priority scheduling approach. The results showed the gains in the adoption of
the prediction approach for both scheduling paradigms by presenting a significant reduction of the number of missed
deadlines for low-criticality tasks.

Index Terms

real-time systems, schedulability analysis of mode-change, mixed-criticality, processor scheduling, prediction.

I. Introduction

Real-time systems are used in critical operations (spaceships, aircraft, vehicles, air traffic control, multi-media
communications, etc), where execution time guarantees are required to a task set running in a single or multiple
processors. These guarantees can be provided by schedulability analysis. The schedulability analysis computes the
worst-case response time (WCRT) for each task. The WCRT is measured by the interval between the release and the
completion of each task. The system is feasible when the WCRT for each task is less than its deadline.

Increasingly, modern systems need to be dynamically adaptable to the operational environment. Thus, changes in the
operational environment may require changes in the behavior of the system. These changes can be provided by using
multiple operation modes. The modes of operation are represented by a set of tasks optimized to operate in a specific
condition. Also, the new generations of real-time systems require a design where tasks with different levels of criticality
must coexist on the same hardware platform. These features are provided by mixed-criticality real-time systems. In
mixed-criticality real-time systems, the tasks are sub-divided in two or more levels of criticality (for example safety
critical, mission critical and low-critical). In this context, tasks with a higher level of criticality require hard real-time
guarantees, while low criticality tasks could miss her deadlines.

In a real-time system, the correctness of the system behavior depends not only on the logical results of the
computations but also on the physical instant at which these results are produced. Real-time systems are classified
from a number of viewpoints i.e. hard and soft real time. A missed deadline in hard real-time systems is catastrophic
and in soft real-time systems, it can lead to a significant loss or degradation in service. Hence, the predictability of
the system behavior is the most important concern in these systems. Predictability is often achieved by either static
or dynamic scheduling analysis of real-time tasks.

In many systems, proactive behavior is necessary. Once an overload condition is detected, it is usually too late to try
and remedy the context, leading to missed deadlines. In particular within the context of soft real-time systems, where
a number of missed deadlines is allowed. Within the mixed criticality systems framework, the abort of low criticality
tasks may lead to resources not being fully released back to the system, leaving it in an inconsistent state. Therefore,
the use of proactive scheduling using prediction algorithms may support a change in criticality that is less amenable to
such undesirable effects (inconsistent states). The assumption is that, by detecting an overload condition ahead of time,
low criticality tasks may be completed and eliminated without compromising the state of the system. The context of
this work is mixed-criticality systems.

In this work, we claim that prediction algorithms may benefit mixed-criticality systems. in particularly allowing the
implementation of a safer elimination of low-criticality tasks. The immediate abortion of such tasks may be problematic.
A potentially more feasible approach would be to eliminate such tasks within a certain window of anticipation, after
they have fully completed their execution. with mixed criticality Therefore, the goal(s) of this work is to introduce: a)

ar
X

iv
:1

80
6.

11
43

1v
1

 [
cs

.O
S]

 2
9

Ju
n

20
18

prediction-based control of tasks to prevent missed deadlines; b) proactive mode-changes and criticality level changes.
Although the issue of inconsistent states has been identified by Burns [1], it has been not addressed in the literature.
This work attempts to mitigate such effects by means of proactive behavior. Thus, it may support the body of work
on mixed criticality systems which heavily depend on the removal of low-criticality tasks.

Specifically, in this work we: 1) address the use of prediction algorithms for both EDF and FPPS scheduling
approaches. 2) validated the simulation model using an analytical model in a first step. 3) use two modes of operation
and analyzed the transition between modes. 4) analyzed the number of missed deadlines with and without prediction
in order to compare the impact of the prediction algorithm.

The research questions addressed in this work are: 1) is it possible to predict the miss of a deadline? 2) which
candidate variables should be predicted? 3) anticipating a mode change can reduce the number of missed deadlines? 4)
the use of fuzzy in conjunction with the predictor will have better results than using fuzzy in isolation? 5) is it feasible
to use prediction to identify the miss of deadlines?

The remainder of this paper is organized as follows: Section II introduces background and literature review. Section
III addresses the computational model and underlying assumptions. Section IV shows the methods used in this work.
Section V presents the implementation details of the approach. Section VI details the prediction-based use cases. In
Section VII we discuss the main results, and finally, Section VIII presents the summary and conclusions.

II. Background and Literature Review

In this section, we will be presented a structured literature review, based on the concepts previously presented, that
shows the state of the art in mode-changes on mixed-criticality real-time systems.

A. General Mode-Changes in Real-Time Systems

Mode-changes in real-time systems were introduced by Tindell et al [2]. In this work, the authors presented the main
concepts that support the mode-change model and it was introduced a simple proposal of scheduling for tasks during a
mode-change. However, to provide the real-time guarantees in design time it was necessary the use of a schedulability
analysis that comprises all the context of a mode-change.

Thus, an initial approach of schedulability analysis to FP (fixed-priority) preemptive uniprocessor real-time operating
systems was presented by Pedro and Burns [3]. Different from analysis of steady-state mode where the calculation of
the WCRT for a determined task evaluate just the interference level of tasks with higher priority belonging to a single
operation mode, this approach considered the level of interference in both modes (old and new) during a mode-change.
However, to assure that tasks meet their deadlines during a mode-change, the new mode tasks are released with an
offset on the first execution.

In Real and Crespo [4] the initial approach proposed by Pedro and Burns [3] was extended allowing the use of
different offsets to the tasks that remain unchanged in both operation modes (old and new).

Real and Crespo [5] proposed an algorithm for automatically assigning offsets. The goal of this algorithm was to
assigned offsets to tasks prioritizing promptness and warranties of non-infringement of the IPCP (Immediate Priority
Ceiling Protocol). The IPCP protocol ensures that lower priority old-mode tasks that share resources do not block
resources used by new-mode, higher-priority tasks [6]. Promptness aims to give priority to schedule the new-mode tasks
with higher priority at first. Another approach to assigning offsets was proposed by Martins et al [7]. This approach
aims minimization of mode-change latency and/or offsets using genetic algorithms. The issue of mode-change latency
minimization is modeled both as a single and as a multi-objective optimization. The use of genetic algorithms brought
flexible ways to use in different situations, enabling the control of a mode-change [8].

The focus of the previously presented work was the use of schedulability analysis on uniprocessor systems. A proposal
for schedulability analysis for fixed-priority in mode-change for multi-core systems is shown in Negrean et al [9]. This
approach considers the dependency between tasks that could be executed in parallel by different processors. Also, it
was explored in this work an approach to measure the latency of mode-change highlighting the importance of their
minimization to implement a feasible mode-change.

An approach that uses mode change for scheduling on multi-core using EDF (Earliest Deadline First) was presented
by Nelis et al [10]. The scheduling using EDF prioritizes the execution of tasks with a close deadline. Even though it
is an efficient scheduling approach that eliminates the complex step of assigning priority to the task set and reduces
the complexity of the system design, it does not override fixed priority when criticality levels are embedded, because
some systems do not support the scheduling using traditional EDF [11].

As the use of traditional EDF scheduling on mixed-criticality context is not feasible, another aspect that must be
emphasized is the priority assignment that is discussed in detail in Davis et al [12]. This work presented the most
relevant methods and/or algorithms for priority assignment and a new approach was proposed. This new algorithm

was compared with the other existing ones through an experiment. The results show that the new proposal had better
results than others.

Based on the previously presented context it is possible to see that the use of mode changes can be a feasible way
to minimize the design complexity for real-time systems and it reduces the use of resources, as can be observed in
Dziurzansk et al [13]. In this work, a system using mode change design was implemented in a real hardware platform
for a vehicle and shows that the use of operation modes may reduce 75% of the power consumption of the processors.

B. Mixed-Criticality on Real-Time Systems

Hard real-time constraints are not always necessary for some systems. For example, in a real application, there are
tasks with different criticality levels where it is acceptable to miss deadlines on tasks with low criticality. This concept
which expected tasks with multiple criticality levels in the same system configuration was introduced by Vestal [14].
This work addressed the use of response time analysis for uniprocessors and showed that neither rate monotonic nor
deadline monotonic priority assignment were optimal for MCS (Mixed-Criticality Systems), suggesting the use of the
algorithm proposed by Audsley [15]. In Baruah and Vestal [11], the work presented by Vestal [14] was extended to
use with sporadic tasks. Also, this approach demonstrated that EDF does not override FP when criticality levels are
embedded in some systems.

To provide the necessary real-time guarantees for use in real applications, a FP preemptive schedulability analysis for
MCS using uniprocessor was proposed in Baruah et al [16]. However, this proposal enables the use of only two criticality
levels. Thus, a new approach which enables the implementation on multiple criticality levels using multi-core systems
was introduced in Pathan [17]. Nonetheless, this approach is limited because it does not enable changes during the
task period between different criticality levels. In contrast with the approach using fixed priority, other works propose
the use of EDF scheduling. However, the employment of a traditional EDF scheduling is not supported in MCS as
noted earlier. Thus, it was proposed in Ekberg and Yi [18] that EDF imitates the FP scheme by assigning two relative
deadlines to each high criticality task. The first deadline represents the ”real” deadline of the task and the second
a ”virtual” deadline. The virtual deadline is used to increase the probability that high criticality tasks are executed
before low criticality tasks. An extension of this work was presented in Ekberg and Yi [19], where it introduced the
use of more than two criticality levels and it enabled changes in the task parameters. Nevertheless, this proposal was
designed to be used in uniprocessor systems. A new approach that enables the use of schedulability analysis using
EDF in mixed-criticality using multi-core was presented in Baruah et al [20]. This work is based on the same concept
of virtual deadlines introduced by Ekberg and Yi [18] and it proposes a scheduling algorithm called EDF-VD (for
Earliest Deadline First with Virtual Deadlines), whose validation of the theoretical analysis was performed through a
simulation. In this proposal, the higher priority tasks have their deadlines reduced (if necessary) during the execution
of the low criticality mode.

C. Mode-Changes on Mixed-Criticality Real-Time Systems

A discussion on general mode changes and their relation to mixed-criticality systems was presented by Burns (2014).
This work listed the main concepts involved and proposed ways to enable the use of mode changes and mixed criticality
in the same system, as was shown through an example of application. Also, it concluded that in criticality mode changes,
the changes from low to high criticality are closest with degradation mode to accommodate the requirements of a system
failure, while the changes from low to high criticality are addressed through functional modes. Another relevant proposal
which addresses general mode changes and mixed criticality coexisting in the same system was presented by Niz and
Phan [21]. In this approach of partitional multi-core scheduling for multi-modal mixed-criticality real-time systems, it
was observed that it is necessary to provide real-time guarantees to tasks with different criticality levels not only in
steady state mode but also during a general mode change. Therefore, to accommodate these requirements it proposed
a package algorithm and a scheduling algorithm for assigning tasks to processors.

D. Prediction

Prediction methods are used to prediction an uncertain future state based on previous experiences or knowledge.
These methods use statistical models that are based on statistical inference principles. In this context, statistical predict
inference is one of the approaches that can be used. In this approach, e.g., the previous knowledge of a sample of a
population can be used to predict another population related in the same or in different times. Another approach, at
where the previous knowledge is provided in a specific or across time is called predicting. The statistical techniques
employed include regression analysis and it their sub-categories such as: linear regression, generalized linear models
(logistic regression, Poisson regression, probit regression) [22].

In processor scheduling is necessary to predict future states across time, thus, the predicting approach using sequential
learning will be the focus of this research. Thus, sequential learning sends to Single Layer Feedforward Network (SLFN)
and to the Kalman filter, that will be presented in detail to follow.

1) KSL Algorithm: KSL is a new software reliability growth model (SRGM) based on the Kalman filter with a
sub filter and the Laplace trend test present by Ursini et al (2014) [23]. The authors applied the model to the Linux
operating system kernel as a case study to predict the absolute and relative (per lines of code) number of faults n-steps
ahead. The Laplace trend test was applied to detect when the series no longer follow a homogeneous Poisson process,
improving the confidence level. An example was provided with a prediction of 13 months ahead on the number of faults
with 8% error. The results (i.e. predictive capability) indicated that the proposed approach outperforms the S-shaped
prediction model, Weibull, and Exponentiated Weibull distributions, as well as typical and OS-ELM Neural networks
when the series has a short number of observations [23].

Despite the advances in the scheduling theory of real-time systems, the issue of using prediction algorithms in these
systems have been not addressed.

III. Computational Model and Assumptions

The simulation model assumes actual execution times, unlike the analytical model, which is based on Worst-Case
Response times. The laxity variable corresponds to the percentage difference in the temporal distance between the
completion time of the instance of a task and its respective deadline, by the deadline (D) stipulated for the task, will
be used as the basis for the object of prediction, i.e. Lax = Di −R/Di, where R is the simulated response time for a
task τi and Di is its deadline.

Fig. 1 represents an analogy between the miss of deadline of a task with the collision of a moving vehicle with another
object. In this analogy, it can be observed that the more the vehicle approaches the object, the greater the probability
of collision. Besides the distance, another factor that influences the moment of the collision is the current vehicle speed.
The correlation between proximity and speed indicates whether the vehicle has a tendency to collide or not. Based
on this analogy, it was stipulated that the less laxity of tasks completed in a given time window will be used as the
object of prediction. However, it should be noted that the window interval is a parameter that can vary according to
the system configuration. Completing the analogy with the vehicle in motion, velocity is another important variable
that must be used in the prediction of the miss of deadline. To calculate the velocity value, the angular coefficient of
the last two observations of the lowest laxity is calculated.

Time

Distance (Laxity)

 Wall

(Deadline)Vehicle (Task)

Worst-Case Laxity

 Mass

(Execution Time)

Velocity Deacceleration

Fig. 1: Model analogy: variable for predicting miss of deadline

Therefore, the lower laxity variables in a given time window and the slope of the last two observations will serve as
the basis for determining if the system is prone to imminent miss of deadline.

Based on the above, this work is expected to predict the imminent miss of a deadline so that preventive measures
can be taken in a timely manner in order to minimize the impact caused by this miss.

The computational model is composed of the following elements: 1) task generator module, 2) CPU scheduling
(EDF,FP) module, 3) analyzer module, 4) system predictor (pro-activity) module, 5) mode-manager module, 6) task
dispatcher module.

Fig. 2 shows all the major components of the simulation model. The simulation model is sub-divided into six blocks:

1) tasks generator : this block generates the tasks according to the periodicity required and stores the owner mode and
the start time for each task released;

Fig. 2: Top-level view: proactive model

2) CPU scheduling : this block puts the released tasks on a processing queue when an arriving task has a priority higher
than that of the task in execution, is performed the preemption of the executing task;

3) analyzer : this block account the variables used for system predictor such as worst case laxity, velocity, etc;
4) system predictor : this block is responsible for predicting the events that trigger a mode change;
5) mode manager : this block is used to manage the mode change process, whose start decision is obtained from the

result of a fuzzy function that uses as input parameters the worst case laxity and the coefficient of the last two
measurements;

6) task dispatcher : computes and sends the list of aborted, completed, unchanged, changed and whole new tasks to
the task generator.

Fig. 3: Expanded View of the Proactive Model

Fig. 3 presents an expanded view of the proactive model. In this figure, each color represents a module previously

described.

A. Mode-Change Tasking Model

In this work was addressed a set of periodic or sporadic tasks τ = {τ1, τ2, . . . τi, . . . τp} per mode. Each task τi is
composed by the record Si = {Ti, Di, Ci, Pi}, where: 1) Ti and Di are respectively the period of task τi (or, if a sporadic
task, the minimum inter-arrival time between successive tasks of the stream i) and the deadline; 2) Ci is the worst-
case execution time (WCET) of the task τi. This value is deemed to contain the overheads due to context switching.
Moreover, the values of Ci, Di and Ti are such that Ci < Di ≤ Ti . Also, it was not considered the restriction thatDi

≤ Ti ; 3) Pi represents the priority of task τi , assigned according to the Deadline Monotonic Scheduling algorithm.

The mode change model is based on the same assumptions of Real and Crespo [24] and Pedro and Burns [3], i.e., 1)
tasks are assigned fixed priorities by the Deadline Monotonic Scheduling algorithm (DMS) for Fixed Priority Policy,
for Earliest Deadline First it is dynamically assigned 2) tasks are executed in a uniprocessor system; 3) tasks are not
permitted to voluntarily suspend themselves during an invocation; 4) there are fixed task sets before and after the
mode change, and 5) tasks are scheduled with time offsets during the mode change only. This time phasing between
tasks may or may not hold after the mode change.

B. Schedulability analysis for Fixed-Priority

In this section we will provide a schedulability analysis that has been used to calculate the worst-case latency of
a task across a mode change that will be used as validation of the simulation model. For more details on the basic
fundamentals of real-time schedulability analysis, the reader is referred to Burns et. al [25].

There are two types of task offsets Oi(N): Y is measured from the start of a mode change (MCR) and Z is measured
from the end of the period of the preceding old-mode task [24]. The window x is the phasing between the MCR and
the activation of task τi.

1) Analysis for Old-mode Tasks: The interference level of old mode tasks is given in accordance with its classification
of the types of tasks: 1) Interference from higher priority old mode completed tasks Ihp(i)O ; 2) Interference from higher
priority aborted tasks Ihp(i)A ; 3) Interference from higher priority new mode tasks Ihp(i)N , and 4) Interference from
unchanged tasks hp(i)U . By combining the analysis of interference of each task type we obtain the analysis model of
the old mode, given by the following recurrence equation:

wn+1
i = Ci +Bi +

∑
∀j∈hp(i)O

⌈
x

Tj

⌉
Cj+

∑
∀j∈hp(i)A

(⌊
x

Tj

⌋
Cj +min

(
x−

⌊
x

Tj

⌋
Tj , Cj

))
+

∑
∀j∈hp(i)N

⌈
wn

i − x− Yj
Tj

⌉
0

Cj+

∑
∀j∈hp(i)U

⌈
x

Tj

⌉
Cj +

⌈
wn

i − dx/TjeTj − Zj

Tj

⌉
0

Cj

(1)

The notation dze0 denotes a modified ceiling function that returns zero if Z < 0. The initial value of wi is set to
zero. It can be shown that wn+1

i > wn
i , and hence the equation is guaranteed either to converge (i.e. wn+1

i = wn
i) or to

exceed some threshold, such as Di. However, the worst case for the response task Ri, which must then be compared
with the respective deadline is given by Ri = wi + Ci.

2) Analysis for New-mode Tasks: Because new mode tasks suffer from interference from other old and new higher
priority tasks, we need to guarantee heir schedulability during the mode change. If, however, a new task τi has an offset
such that its first release occurs after all higher priority old mode tasks have completed, its schedulability is guaranteed
by steady-state analysis and we do not need to apply the following analysis to obtain its WCRT. The interference
suffered from a new mode task is analyzed as follows: 1) Interference from higher priority old mode tasks hp(i)O; 2)

Interference of the tasks belonging only to the new mode Ihp(i)N , and 3) Interference of unchanged tasks hp(i)U . The
worst case response time of a new task i across a mode change is therefore given by:

wn+1
i = Bi +

∑
∀j∈hp(i)O

Cj +
∑

∀j∈hp(i)N

⌈
wn

i − Yj
Tj

⌉
0

Cj+

∑
∀j∈hp(i)U

(
Cj +

⌈
wn

i − Tj − Zj

Tj

⌉
0

Cj

)
(2)

The initial value of wi is set to zero. It can be shown that wn+1
i > wn

i , and hence the equation is guaranteed either
to converge (i.e. wn+1

i = wn
i) or to exceed some threshold, such as Di. However, the worst case for the response task

Ri, which must then be compared with the respective deadline is given by Ri = wi - Yi.

IV. Methods

In this section will be described the methods used in this work. The methods were divided into four steps:

1) Build the simulation model: Initially, the simulation model was built using the assumptions and the computational
model described in the previous section.

2) Validate the simulation model: To validate the simulation, a case study was performed to in single-mode and
multimode. The results obtained, regarding the response times of each of the tasks, were compared with the analytical
model (schedulability analysis equations).

3) Predict mode-changes: After the evaluation of the simulation model, two studies were elaborated, one using
EDF scheduling policy and another using FP. These case studies were used to evaluate the effectiveness of the
proposed approach, ie, prediction of mode-changes in mixed-criticality real-time system. In each case study, single
mode, reactive multimode and multi-mode proactive simulations were performed. In addition, for the purpose of
comparative analysis, simulations were performed using the prediction module, but not executing mode changes.

4) Analyze the results: The results of the simulations carried out in each case study were tabulated and analyzed to
support the discussions and conclusions of this work.

V. Implementation

In this section was implemented the model showed in Figures 2 and 3, through discrete event simulation.

A. Mode-Change Simulation and Validation

The focus of this section is to propose a practical solution for the use of a simulation model for mode changes in
preemptively fixed-priority real-time systems, which involves the modeling of the approach and its validation.

The simulation model used in this section was divided into two parts: 1) steady-state and 2) mode change. In steady-
state is the system was simulated using just a single mode. The mode change model extends the steady-state mode to
allow the simulation of a multi-mode system.

The simulation was performed on a set of six generic tasks (Table I). The goal of this case is twofold 1) to demonstrate
the flexibility of the approach and 2) to compare the simulation results with the results obtained using an analytic
model. Therefore, we used the same task set used by Real and Crespo [24]. Table I presents two modes of operation
M1 and M2; each mode of operation is made up of six tasks, i.e. τ1 through τ6. The CPU utilization rate is 73.1% in
M1 and 66.35% in M2. Note: The column ”TEST” shows that the task is feasible in steady-state mode.

TABLE I: Case study - Task set

Mode M1 Mode M2
TasksPCBT=D O R TEST TasksPCBT=D O R TEST
τ1(O) 1 10 0 100 0 10 OK τ1(U) 1 10 0 100 0 10 OK
τ2(W) not active in this mode τ2(W) 2 20 0 120 195 30 OK
τ3(O) 2 30 0 200 85 40 OK τ3(C) 3 30 0 270 0 60 OK
τ4(O) 3 40 0 280 0 80 OK τ4(U) 4 40 0 280 70 100 OK
τ5(O) 4 50 0 300 0 140 OK τ5(C) 5 50 0 350 0 180 OK
τ6(O) 5 60 0 350 100200 OK τ6(O) not active in this mode

The simulations were performed on steady-state and mode change models. In steady-state, the simulation was
performed during 4 × 102 time units and in mode change during 4 × 106 time units and the interval between mode
changes is given by a random exponential distribution with a value equal to 2× 103 time units.

First, the simulation was built for a steady-state model based on a generic model. By definition, the system is in
steady state when it executes a fixed task set (without mode changes) [8]. Thus, this model uses a single-mode which
simplifies its implementation.

Fig. 4 shows a comparison between analytic and simulation results for the worst-case response time in steady-state
mode. As we can see in both figures below, the simulation results for both modes were the same as for the analytic
model. These results validate the simulation for the steady-state model.

 1 3 4 5 6
0

50

100

150

200

Tasks

W
C

R
T

Analytic
Simulation

(a) Mode M1

 1 2 3 4 5
0

50

100

150

200

Tasks

W
C

R
T

Analytic
Simulation

(b) Mode M2

Fig. 4: WCRT in steady-state mode

 1 3 4 5 6
0

50

100

150

200

250

300

Tasks

W
C

R
T

Analytic
Simulation

(a) Old mode tasks

 1 2 3 4 5
0

100

200

300

400

Tasks

W
C

R
T

Analytic
Simulation

(b) New mode tasks

Fig. 5: WCRT in mode-change from M1 to M2

Fig. 5 shows a comparison between analytic and simulation results of worst-case response times for mode changes
from mode M1 to mode M2 and Fig. 6 from mode M2 to mode M1. As we can see in both figures, the simulation results
for all old-mode tasks were close to the analytic model. However, it is possible to see a large difference in new-mode
task τ4 in both modes. Also, we may emphasize that in new-mode tasks 5 the worst-case response time observed in
the simulation from M1 to M2 was slightly longer than that of the analytic model with a value of 0.57% higher than
their deadline.

Besides the worst-case response time in mode change, another relevant indicator is the mode latency. The worst-case
latency observed in the simulation was 399ms from mode M1 to mode M2 and 389ms from mode M2 to mode M1.
Likewise, the worst-case latency calculated using the analytic method was 420ms from mode M1 to mode M2 and
450ms from mode M2 to mode M1. The results of worst-case latency in mode change were close in a comparison
between simulation and analytic methods with differences in the order of 5% and 13.6%, respectively.

As analytic models are very limited for the general characteristics of real-time systems, in this section, we have
proposed a simulation model to real-time systems in a mode change. It validated the simulation in relation to the
analytic model. We argue that the results seem relatively appropriate for general use in simulation models. Therefore,
the proposed model can be a flexible approach for work with complex models in mode change, e.g. it could be extended
to enable a quick analysis of the behavior of a system configuration in the presence of any faults.

 1 2 3 4 5
0

50

100

150

200

250

300

Tasks

W
C

R
T

Analytic
Simulation

(a) Old mode tasks

 1 3 4 5 6
0

50

100

150

200

250

300

350

Tasks

W
C

R
T

Analytic
Simulation

(b) New mode tasks

Fig. 6: WCRT in mode-change from M2 to M1

VI. Predicting Mode-Changes in Mixed-Criticality Systems

In this section, will be presented mechanisms that make it possible to anticipate mode-changes in a mixed-criticality
real-time system, using prediction. This section is subdivided into two case studies described as follows: 1) predicting
mode-changes in EDF and 2) predicting mode-changes in FP.

A. Case Study 1 - Predicting Mode-Changes in EDF

One of the assumptions of mixed-criticality systems is that when a change in the criticality level occurs, the least
critical tasks that are in the queue or in processing are aborted immediately or that they may have execution within
their compromised commit if necessary, to remain active in the system [1]. This assumption may in certain cases
compromise the execution of the system when there are tasks with low criticality, whose execution is necessary to
release certain resources of the system. Thus, the prediction of a mode-change may be favorable because, with the
detection of the imminent arrival of a criticality level change, it would be possible to block new instances of the low
criticality tasks, allowing existing instances to complete their execution. Thus, when the request for change of the
criticality level occurs, the system will have sufficient resources to respond promptly to this change, reducing even
the mode-change latency. If the prediction is not carried out and the system does not perform the mode-change, it is
necessary to remove the lock of a release of new instances of the tasks with a low level of criticality aand to interrupt
the release of only tasks of the high level of criticality.

1) Assumptions: Using simulation, a test was performed to verify the effectiveness of the deadline prediction process.
In this case study, the following assumptions were adopted: 1) the system used EDF scheduling policy, 2) the predictor
used was KSLX, 3) the variable to be monitored was the worst case laxity, which corresponds to the percentage of the
shortest distance for the deadline of the tasks performed in relation to their respective deadline during a measurement
window, which in this case study corresponds to 20 MDC (T), 4) the prediction was performed every time interval,
determined by the maximum common divisor (MDC) of the periods (T) of the tasks, 5) fuzzy logic was used to
determine the imminent miss of deadline, 6) processor failures were randomly generated. To measure the accuracy level
of the prediction, the root mean square error (RMSE) was used as the basis between the predicted value and the real
value, that is, the square root of the mean square error and 7) a offset was assigned to the tasks, belonging exclusively
to the low criticality level. The assigned offset corresponds to the time difference between the start of the mode-change
and the next multiple of the period (T) of the task.

2) Configuration: Table II displays the set of tasks that were used in the simulation. The columns of the table
correspond to the task number, criticality level (low or high), task priority at low criticality level, task priority at high
criticality level, task criticality low at task level, time of execution of the task in high criticality level, the period/deadline
of the tasks, which in this case will be the same. The CPU utilization rate for high criticality level is 73.10% for criticality
level down 41.67%

To generate the processing failures, an exponential distribution with an average of 10 and a normal distribution with
a mean of 12 and a standard deviation of 7 were used as the arrival rate. As a premise, the generation of failures was
released after the system warm-up period, set to 2000 units of time. As the high criticality level is used for system
recovery, it was adopted that after the transition from the low criticality level to the high level was completed, the
generation of errors was suspended and resumed after the transition from the high criticality level to the low criticality
level.

TABLE II: Task Set

Task Level P P C C T = D
(LO) (HI) (LO) (HI)

τ1 High 1 1 10 10 100
τ2 High 2 2 30 30 200
τ3 Low 3 - 40 - 280
τ4 High 4 3 50 50 300
τ5 Low 5 - 60 - 350

TABLE III: Fuzzy Rules

Acceleration
Prediction

Ultra Short Normal
Fast High High Low

Medium High Low Low
Slow High Low Low

Negative High Low Low

The fuzzy logic adopted to decide if the system should be submitted to the mode-change has 2 input variables: 1)
acceleration: high, medium, low and negative, which corresponds to the angular coefficient of the line obtained from
the last two observations of the variable used as the object of the prediction, 2) distance predicted in percentage: short,
short and norm. The fuzzy rules implemented by the KSLX algorithm determine if the prediction used will be 1, 3 or
5 steps forward.

Figs. 7a, 7b present the functions used to subdivide the input groups to the variables related to the fuzzy logic. For
the acceleration groups shown in Fig. 7 a two trapezoidal functions with respective parameters were used: [-1 -1 -0.6
-0.4] and [-0.1 0.1 1 1] and two triangular functions with the following parameters: [-0.7 -0.4 -0.1] and [-0.4 -0.1 0.2].
Also, as can be seen in Fig. 7 b, for sub-division of the groups corresponding to the predicted distance two trapezoidal
functions were used with the following parameters: [-1 -1 0 0.2] and [0.2 0.4 1 1] and a triangular function with the
following parameters: [0 0.2 0.4].

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Acceleration

D
eg

re
e

of
 m

em
be

rs
hi

p

fast medium slow negative

(a) Acceleration

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Laxity

D
eg

re
e

of
 m

em
be

rs
hi

p

ultrashort short normal

(b) Predict Laxity

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Priority Change

D
eg

re
e

of
 m

em
be

rs
hi

p

low high

(c) Fuzzy Output Variable

Fig. 7: Fuzzy Input and Output Variables

Fig. 7c demonstrates the output functions that determine the risk degree of miss a deadline. The output values were
subdivided into two groups: low and high, represented by trapezoidal functions with the following parameters: [0 0
0.4 0.6] and [0.4 0.6 1 1]. Thus, the result of the defuzzification was used to determine if the system is minded to the
imminent miss of deadline.

Table III presents the 12 fuzzy rules created to determine the degree of miss of deadline for the simulation using the
KSLX predictor. The rules determined here, as well as the parameters of the fuzzy functions, should be analyzed and
adjusted depending on the application and/or system configuration.

TABLE IV: Case Study 1 - Results

Variables
Results

Reactive Fuzzy Fuzzy+KSLX
Mono Multi Mono Multi Mono Multi

CPU utilization rate 99.19% 95.71% 99.19% 93.72% 99.19% 70.96%
CPU Busy 73.10% 70.81% 73.10% 70.01% 73.10% 58.87%

CPU Downtime 26.09% 24.90% 26.09% 23.71% 26.09% 12.09%
Number of Completed Tasks 104, 050102, 007104, 050100, 857104, 050 92.064
Number of misses deadlines 7.030 753 7.030 474 7.030 227

Percentage of misses deadlines 6.75% 0.74% 6.75% 0.47% 6.75% 0.24%
MSE - Prediction 1 step ahead N/A N/A N/A N/A 0.0070 0.0079
MSE - Prediction 3 steps ahead N/A N/A N/A N/A 0.0322 0.0319
MSE - Prediction 5 steps ahead N/A N/A N/A N/A 0.0647 0.0627
RMSE - Prediction 1 step ahead N/A N/A N/A N/A 0.0839 0.0887

RMSE - Prediction 3 steps aheade N/A N/A N/A N/A 0.1794 0.1785
RMSE - Prediction 5 steps ahead N/A N/A N/A N/A 0.2544 0.2505

Average anticipation time of miss deadline N/A N/A 30, 61 N/A 36, 62 N/A
Median anticipation time of miss deadline N/A N/A 9, 44 N/A 22, 60 N/A

In order to allow an analysis of the advantages obtained by using the predictor, the same system was submitted to
another similar simulation process, using only fuzzy logic to identify the need to change the level of criticality.

After the configuration of the FUZZY rules, the simulation processes were executed (with and without the use of the
predictor and with a change of the criticality level in a reactive way), with a duration of execution corresponding to
100 hyper-periods with 10 repetitions . Where each hyper-period, which is determined by the least common multiple
(MMC) of the task set periods previously presented in the Table II, is equivalent to 4200 units of time. Therefore, the
total time of simulation was 4200× 103 units of time.

3) Results: Table IV presents the results chosen from the simulation process. In this table, the lines represent the
measured variables and the columns present the results of each of the simulation process types executed, namely: 1)
reactive mode-change, 2) proactive mode-change, using fuzzy in isolation and 3) change of pro-active critique, combining
fuzzy with the predictor KSLX. For each type of simulation process two simulations were performed, the first without
changing the criticality level and the second with change.

Fig. 9a shows the calculated values for the anticipation time before the miss of deadline, with use and without the
use of prediction. This time measures the interval between the prediction of miss a deadline and its respective misses
within the measurement window.

Figures 8a and 8b present a comparative analysis of the observed values and the predicted values for 1 and 5 steps
ahead. Due to the large number of observations the graphs are limited to 500 observations.

0 100 200 300 400 500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

Prediction 1 step ahead
Observed

(a) 1 Step Ahead

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5

Time

Prediction 5 steps ahead
Observed

(b) 5 Steps Ahead

Fig. 8: Case Study 1 - Predicted Vs. Observed Value

Fig. 9b presents a comparison, between single-mode and multimode (proactive and reactive) simulations of the
number of instances that missed their deadline by task.

0

50

100

150

200

Fuzzy+KSLX Fuzzy

A
nt

ic
ip

at
io

n
 T

im
e

(a) Anticipation

1 2 3 4 5
0

1000

2000

3000

4000

5000

Tasks

N
um

be
r

of
 M

is
se

d
D

ea
dl

in
es

Single Mode
Multimode (Reactive)
Multimode (Proactive)

(b) Comparison

Fig. 9: Case Study 1 - Anticipation Time Before Missing a Deadline and Comparison of Missed Deadlines

B. Case Study 2 - Predicting Mode Changes in FP

This case study addresses the same set of tasks described in Section VI-A. However, in relation to the case study
presented previously, there was a change in the scheduling policy. In the previous case study, the adopted policy was
EDF Preemptive, with Preemptive Fixed Priority being the policy adopted for this case study.

Assumptions: The assumptions adopted in this case study were basically the same as in the previous case study
described in Section VI-A, with the exception of premise 1, whose scheduling policy was FP.

Configuration: As well as the assumptions, also the configurations adopted in this case study are the same as those
of the previous case study described in Section VI-A.

Results: Table V presents the results chosen from the simulation process. In this table, the lines represent the
measured variables and the columns present the results of each of the simulation process types executed, namely: 1)
reactive mode-change, 2) proactive mode-change, using fuzzy in isolation and 3) change of pro-active critique, combining
fuzzy with the predictor KSLX. For each type of simulation process two simulations were performed, the first without
changing the criticality level and the second with change.

TABLE V: Case Study 2 - Results

Variables
Results

Reactive Fuzzy Fuzzy+KSLX
Mono Multi Mono Multi Mono Multi

CPU utilization rate 99.89% 81.72% 99.89% 72.60% 99.89% 71.88%
CPU Busy 69.13% 61.73% 69.13% 58.53% 69.13% 58.42%

CPU Downtime 30.76% 19.99% 30.76% 14.07% 30.76% 13.46%
Number of Completed Tasks 104, 050 94, 169 104, 050 91, 171 104, 050 91, 081
Number of misses deadlines 9, 758 3, 792 9, 758 2, 298 9, 758 1, 914

Percentage of misses deadlines 9.38% $4.03%’ 9.38% 2.52% 9.38% 2.10%
MSE - Prediction 1 step ahead N/A N/A N/A N/A 0, 0438 0.0286
MSE - Prediction 3 steps ahead N/A N/A N/A N/A 5.6209 0.1157
MSE - Prediction 5 steps ahead N/A N/A N/A N/A 9.4147 0.2284
RMSE - Prediction 1 step ahead N/A N/A N/A N/A 0.2093 0.1691

RMSE - Prediction 3 steps aheade N/A N/A N/A N/A 2.3708 0.3402
RMSE - Prediction 5 steps ahead N/A N/A N/A N/A 3.0683 0.4780

Average anticipation time of miss deadline N/A N/A 146.57 N/A 146.55 N/A
Median anticipation time of miss deadline N/A N/A 158.13 N/A 158.12 N/A

Fig. 11a shows the calculated values for the anticipation time before the miss of deadline, with use and without the
use of prediction. This time measures the interval between the prediction of miss of deadline and its respective miss
within the measurement window.

The Figures 10a and 10b, present a comparative analysis of the observed values and the predicted values for 1 and
5 steps ahead. Due to the large number of observations the graphs are limited to 500 observations.

0 100 200 300 400 500
−12

−11

−10

−9

−8

−7

Time

Prediction 1 step ahead
Observed

(a) 1 Step Ahead

0 100 200 300 400 500
−14

−13

−12

−11

−10

−9

−8

−7

Time

Prediction 5 steps ahead
Observed

(b) 5 Steps Ahead

Fig. 10: Case Study 2 - Predicted Vs. Observed Value

0

50

100

150

200

Fuzzy+KSLX Fuzzy

A
nt

ic
ip

at
io

n
 T

im
e

(a) Anticipation

4 5
0

2000

4000

6000

8000

10000

Tasks
N

um
be

r
of

 M
is

se
d

D
ea

dl
in

es

Single Mode
Multimode (Reactive)
Multimode (Proactive)

(b) Comparison

Fig. 11: Case Study 2 - Anticipation Time Before Missing a Deadline and Comparison of Missed Deadlines

Fig. 11b presents a comparison, between single-mode and multimode (proactive and reactive) simulations of the
number of instances that missed their deadline by task.

VII. Discussion

We now may answer, through the case studies, the research questions addressed in this work: 1) is it possible to
predict the miss of a deadline? The case studies presented above showed that it is possible to predict the miss of a
deadline in all scenarios studied: Proactive mode changes resulted in better results compared to reactive changes. 2)
which candidate variables should be predicted? The candidate variables for use in prediction were: laxity of each task,
the worst case laxity of all tasks and the size of the queue size; however, the variable chosen was the worst case laxity of
all tasks, because it was the variable (after an analysis of the generated time series) demonstrated the least mean square
error, as can be seen in figures 8 and 10, 3) anticipating a mode change can reduce the number of missed deadlines? it
is possible to observe in the case studies that a significant reduction in the number of missed deadlines occurred when
the mode changes were anticipated, i.e. the reduction of missed deadlines was 69.9% in case 1 and 49.5% in case 2 in
comparison with reactive mode-changes, 4) the use of fuzzy in conjunction with the predictor does have better results
than using fuzzy in isolation? the use of fuzzy combined with KSLX predictor provide best results when compared to
the use of fuzzy in isolation. This can be asserted due to the reduction of 52.1% in the number of the missed deadlines
in case 1 and 16.7% in case 2, 5) is it feasible to use prediction to identify the miss of deadlines? the use of prediction
to identify the miss of deadlines is feasible because it allows the anticipation for the need of a mode-change.

In summary, we gathered the following guidelines from this work:

1) Pro-actively scheduling mode changes is advantageous over reactive scheduling;
2) Reactive scheduling is advantageous over not changing the mode at all;
3) EDF has shown higher performance over fixed-priority when the system includes prediction-based scheduling;

4) The metric used for performance evaluation (number of missed deadlines) and the metric used for scheduling a
mode change (worst-case laxity) showed to be adequate.

VIII. Conclusion

From this work, it can be concluded that the proposed method, which uses prediction in conjunction with fuzzy, is
a feasible alternative to avoid deadline misses in real-time systems with mixed criticality. Proactive scheduling avoids
the need for abruptly aborting tasks; it may allow a delayed or phased abort that permit the task to run at least to a
safe point. This may be an issue in conventional MCS’s where aborts are immediate and tasks do not release resources
back to the system.

References

[1] A. Burns, “System Mode Changes - General and Criticality-Based,” Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS,
pp. 3–8, 2014.

[2] K. W. Tindell, A. Burns, and A. J. Wellings, “Mode changes in priority preemptively scheduled systems,” in Real-Time Systems
Symposium, 1992, Dec 1992, pp. 100–109.

[3] P. Pedro and A. Burns, “Schedulability analysis for mode changes in flexible real-time systems,” Proceeding. 10th EUROMICRO
Workshop on Real-Time Systems (Cat. No.98EX168), pp. 172–179, june 1998.

[4] J. Real and A. Crespo, “Mode change protocols for real-time systems: A survey and a new proposal,” Real-Time Systems, no. 2, pp.
161–197, march.

[5] J. Real and Crespo, “Offsets for scheduling mode changes,” Real-Time Systems, 13th Euromicro Conference, pp. 3–10, 2001.
[6] J. Real and A. Wellings, “Dynamic ceiling priorities and ada 95,” Ada Letters, XIX(2), pp. 41–48, 1999.
[7] “Chapter 11 - minimizing the mode-change latency in real-time image processing applications,” in Bio-Inspired Computation and

Applications in Image Processing, X.-S. Yang and J. P. Papa, Eds. Academic Press, 2016, pp. 239 – 268.
[8] F. R. Massaro, “Configuring mode changes in fixed-priority preemptively scheduled real-time systems,” Master’s thesis, School of

Technology at the University of Campinas, 2015.
[9] M. Negrean, M. Neukirchner, S. Stein, S. Schliecker, and R. Ernst, “Bounding mode change transition latencies for multi-mode real-time

distributed applications,” in Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference on, Sept 2011, pp. 1–10.
[10] V. Nelis, B. Andersson, J. Marinho, and S. Petters,“Global-edf scheduling of multimode real-time systems considering mode independent

tasks,” in Real-Time Systems (ECRTS), 2011 23rd Euromicro Conference on, July 2011, pp. 205–214.
[11] S. Baruah and S. Vestal,“Schedulability analysis of sporadic tasks with multiple criticality specifications,” in 2008 Euromicro Conference

on Real-Time Systems, July 2008, pp. 147–155.
[12] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, “A review of priority assignment in real-time systems,” Journal of Systems

Architecture, vol. 65, pp. 64 – 82, 2016.
[13] P. Dziurzanski, A. K. Singh, and L. S. Indrusiak, “Energy-aware resource allocation in multi-mode automotive applications with hard

real-time constraints,” in 2016 IEEE 19th International Symposium on Real-Time Distributed Computing (ISORC), May 2016, pp.
100–107.

[14] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International, Dec 2007, pp. 239–243.

[15] N. Audsley, “On priority assignment in fixed priority scheduling,” Information Processing Letters, vol. 79, no. 1, pp. 39 – 44, 2001.
[16] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed criticality systems,” in Real-Time Systems Symposium

(RTSS), 2011 IEEE 32nd, Nov 2011, pp. 34–43.
[17] R. M. Pathan, “Schedulability analysis of mixed-criticality systems on multiprocessors,” in 2012 24th Euromicro Conference on Real-

Time Systems, July 2012, pp. 309–320.
[18] P. Ekberg and W. Yi, “Outstanding paper award: Bounding and shaping the demand of mixed-criticality sporadic tasks,” in 2012 24th

Euromicro Conference on Real-Time Systems, July 2012, pp. 135–144.
[19] P. Ekberg and W.Yi, “Bounding and shaping the demand of generalized mixed-criticality sporadic task systems,” Real-Time Systems,

vol. 50, no. 1, pp. 48–86, 2014.
[20] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality scheduling on multiprocessors,” Real-Time Syst., vol. 50, no. 1,

pp. 142–177, Jan. 2014. [Online]. Available: http://dx.doi.org/10.1007/s11241-013-9184-2
[21] D. de Niz and L. Phan, “Partitioned scheduling of multi-modal mixed-criticality real-time systems on multiprocessor platforms,” in

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th, April 2014, pp. 111–122.
[22] D. R. Cox, Principles of statistical inference. Cambridge New York: Cambridge University Press, 2006.
[23] “n-steps ahead software reliability prediction using the kalman filter,” Applied Mathematics and Computation, vol. 245, pp. 116–134,

2014.
[24] J. Real and Crespo, “Offsets for scheduling mode changes,” Real-Time Systems, 13th Euromicro Conference, pp. 3–10, 2001.
[25] A. Burns and A. Wellings, Real-Time Systems and Programming Languages: Ada, Real-Time Java and C/Real-Time POSIX, 4th ed.

USA: Addison-Wesley Educational Publishers Inc, 2009.

http://dx.doi.org/10.1007/s11241-013-9184-2

	I Introduction
	II Background and Literature Review
	II-A General Mode-Changes in Real-Time Systems
	II-B Mixed-Criticality on Real-Time Systems
	II-C Mode-Changes on Mixed-Criticality Real-Time Systems
	II-D Prediction
	II-D1 KSL Algorithm

	III Computational Model and Assumptions
	III-A Mode-Change Tasking Model
	III-B Schedulability analysis for Fixed-Priority
	III-B1 Analysis for Old-mode Tasks
	III-B2 Analysis for New-mode Tasks

	IV Methods
	V Implementation
	V-A Mode-Change Simulation and Validation

	VI Predicting Mode-Changes in Mixed-Criticality Systems
	VI-A Case Study 1 - Predicting Mode-Changes in EDF
	VI-A1 Assumptions
	VI-A2 Configuration
	VI-A3 Results

	VI-B Case Study 2 - Predicting Mode Changes in FP

	VII Discussion
	VIII Conclusion
	References

