
HAL Id: hal-04685515
https://hal.science/hal-04685515v1

Submitted on 3 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Built-in Software Obfuscation for Protecting
Microprocessors against Hardware Trojan Horses

Alessandro Palumbo, Marco Ottavi, Luca Cassano

To cite this version:
Alessandro Palumbo, Marco Ottavi, Luca Cassano. Built-in Software Obfuscation for Protecting
Microprocessors against Hardware Trojan Horses. 2023 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2023, Juan-Les-Pins, France.
�10.1109/dft59622.2023.10313534�. �hal-04685515�

https://hal.science/hal-04685515v1
https://hal.archives-ouvertes.fr

Built-in Software Obfuscation for Protecting
Microprocessors against Hardware Trojan Horses

Alessandro Palumboa, Marco Ottavib,c, Luca Cassanoa
aPolitecnico di Milano, Italy, bUniversity of Rome Tor Vergata, Italy, cUniversity of Twente, The Netherlands

a{name.surname}@polimi.it.it, b,cm.ottavi@utwente.nl

Abstract—Hardware Trojan Horses (HTHs) are today a
serious issue for both academy and industry because of their
dramatic complexity and dangerousness. Indeed, it has been
shown that HTHs may be effectively inserted in modern
microprocessors allowing the attacker to run malicious software,
to acquire root privileges and to steal secret information. We
aim at reducing the dangerousness of information stealing
HTHs by introducing a hardware security module in the
microprocessor under protection. In particular, the proposed
module is in charge of interacting with the execution flow
in order to introduce software obfuscation during programs
execution at runtime. The goal of such obfuscation is to
minimize the probability of exposing sensitive information to
the HTH by encrypting/decrypting it, by spreading it through
microprocessor’s registers and by submerging it among garbage
data. We implemented a prototype of the proposed hardware
security module and we proved its effectiveness and efficiency
(in terms of area occupation and working frequency reduction)
by integrating it into the RSD 32bit speculative, superscalar
and out-of-order RISC-V microprocessor running a set of
benchmark programs1.

Index Terms—Design for Trust, Hardware Security, Hard-
ware Trojan Horses, Microprocessors, Software Obfuscation

I. INTRODUCTION AND RELATED WORK

The design and fabrication process of modern micropro-
cessors continuously seeks for more complexity and perfor-
mance while keeping low production cost and short time-
to-market. These needs pushed the integrated circuits (ICs)
market towards a globalized supply chain [1]. Indeed, after
system requirements have been specified, the design house
often outsources the design of some of the hardware modules,
or it resorts to third-party intellectual property cores (3PIPs)
and even it outsources the masks definition and the final chip
fabrication [2]. While, on the one hand, such a globalized
supply chain allowed for a dramatic reduction of design cost
and time, on the other hand, it caused a significant loss of
trust in the final delivered ICs [3]. It is indeed very hard
to ensure the trustworthiness of all the parties involved in
the supply chain; therefore, the product is exposed to several
threats. One of the security threats that raised in the last years
is represented by Hardware Trojan Horses (HTHs) [4], [5].

A HTH can be defined as a very-hard-to-detect malicious
modification of a digital circuit. HTHs are generally meant
to stay silent most of the time and to activate in specific and
usually rare working conditions. Once a HTH is activated
it can alter or halt the nominal behavior of the system or

1This work has been partially carried out when Alessandro Palumbo was
a Ph.D. student at the University of Rome Tor Vergata, Italy.

steal secret information [4]. HTHs may be inserted in any
stage of the design process and at any level of abstraction:
untrusted IP vendors may sell IP cores infected both at the
hardware description language-level and at netlist-level [6];
rogue employees and untrusted CAD tools may maliciously
modify the design [7], [8]; finally, untrusted mask providers
and silicon foundries may alter the layout of the system [9].

HTHs have been considered as a purely academic issue
for a long time. Indeed, they generally exposed limited com-
plexity and, as a consequence, reduced dangerousness. On
the other hand, in the very last years, a new menace raised:
the software exploitable HTHs [10]. Complex and highly
dangerous HTHs may be inserted in real-world micropro-
cessors allowing the attackers to execute their own malicious
software, to modify the running software, to acquire unau-
thorized privileges or to steal secret information [11], [12].
Recently, security researchers found a hardware backdoor,
the Rosenbridge backdoor, in a commercial Via Technologies
C3 processor [13]. This hardware backdoor can be activated
and exploited via software to enter the supervisor mode
of the system2. The feasibility of implanting and activating
such extremely dangerous software exploitable HTHs in real-
world microprocessors makes these attacks a severe concern
not only for academy but also for industry.

In the last years a vast literature about HTHs detection
methodologies has been produced [14]. Most of the existing
approaches attempt to identify the presence of HTHs in the
system under analysis before deployment, by exploiting a
plethora of techniques, e.g., logic testing, formal property
verification, side-channel analysis, optical inspection, proof-
carrying hardware. All these techniques suffer from a number
of limitations: first of all the difficulty of triggering the HTHs
at design time but also the need for a golden reference of the
circuit under analysis. Recently, a new paradigm raised: the
so-called Design for Trust (DfT) [15]: the idea is to develop
HTHs tolerance techniques that allow to build trusted systems
from untrusted components or to provide trusted execution
over untrusted systems. Existing DfT approaches are based
on the integration of redundant functionally-equivalent IP
cores belonging to different IP vendors, like in [16], or on
the deployment of ad-hoc checkers working in parallel with
the core under protection, like in [17], [18]. Finally, security-
aware task scheduling for systems composed of redundant IP
cores belonging to different vendors has been proposed [19].

In this paper we present a built-in software obfus-

2After the publication of [13] Via Technologies officially commented that
this behavior was due to an undocumented feature meant for debug.979-8-3503-1500-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
D

ef
ec

t a
nd

 F
au

lt
To

le
ra

nc
e

in
 V

LS
I a

nd
 N

an
ot

ec
hn

ol
og

y
Sy

st
em

s (
D

FT
) |

 9
79

-8
-3

50
3-

15
00

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

FT
59

62
2.

20
23

.1
03

13
53

4

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:58:39 UTC from IEEE Xplore. Restrictions apply.

cation methodology for mitigating the dangerousness of
information-stealing HTHs in microprocessors. The idea is
to introduce a hardware security module between the decode
and the execute units of the pipeline of the microprocessor
under protection. Such security module is in charge of
interacting with the execution flow in order to obfuscate the
executed software at runtime. The goal of such obfuscation
is to minimize the probability of exposing sensitive informa-
tion to the HTH by encrypting/decrypting it, by spreading
it through microprocessor’s registers and by introducing
garbage instructions and data. We implemented a prototype
of the proposed hardware security module and we proved its
efficiency by integrating it into the RSD RISC-V core [20].
The proposed security solution introduces about 10% area
overhead and no working frequency reduction. Moreover, we
measured the effectiveness of the proposed security solution
by running a set of benchmark programs.

The use of software obfuscation for defeating HTHs has
been recently proposed in [21], [22], [23], [24]. The works
in [21] and [23] propose compile-time software obfuscation
methodologies (and its optimization in [22]) to be applied
before deploying the program onto the final system. As
a consequence of being applied at compile-time, all these
techniques cannot afford the obfuscation of loops/jumps and
subprograms. On the other hand, the work in [24] proposes
a built-in software obfuscation to be integrated within the
core under protection thus running during the execution of
the program. For this reason, we believe that the work most
similar to our proposal is indeed [24]. On the other hand, the
authors of [24] achieve software obfuscation by only substi-
tuting program instructions with equivalent ones, while we
consider more complex software manipulations. Moreover,
the proposal in [24] considers sequentially-triggered change-
functionality HTHs while we consider always-on information
stealing HWHs.

The remainder of this paper is organized as follows:
Section II discusses the considered threat model and some
background about design obfuscation; Section III presents the
proposed software obfuscation architecture while Section IV
presents some results and draws some security-related con-
siderations; Finally, Section V concludes the paper.

II. BACKGROUND

A. The Considered Threat Model

Referring to the classical classification of HTHs [4], our
proposal takes into account both triggered and always-on
HTHs that aim at stealing information from the infested
system. From the location point of view, we consider HTHs
infesting microprocessor’s logic, inserted by a malicious
IP provider when selling the microprocessor. On the other
hand, we assume that the design team of the company that
purchases the microprocessor and the employed foundry are
trusted, therefore, we assume that the introduced security
checker cannot be infested by HTHs.

We assume a two-level information stealing attack: in the
first phase, the HTH repeatedly exfiltrates raw data from a
number of registers of the processor and covertly sends it
to the attacker; in the second phase, the attacker collects

such raw data and post-processes it to retrieve sensitive
information. We may reasonably assume that, when injecting
the HTH, the attacker knows all the details of the hardware
platform under attack. Moreover, we assume that the attacker
has a rough idea about which operating system and programs
will be executed but that he/she cannot have all the details
about software versions and implementations.

We also assume that the injected HTH monitors and
exfiltrates raw data from a reduced number of registers of
the processor. We believe that this assumption is reasonable
if we consider that: i) HTHs need to be small enough not
to be detected via optical inspection, ii) HTHs need to
have an extremely reduced impact on power consumption,
electromagnetic emission and timing, and iii) HTHs cannot
occupy the transmission channel for long without being
discovered. Therefore, we assume a HTH model that is able
to monitor the content of a fixed (at design-time) and small
set of registers and exfiltrates data through a (possibly large)
number of clock cycles. On the other hand, because of the
previously mentioned limitation to the HTH complexity, we
assume that the HTH is not able to change the monitored
registers, e.g., in a round-robin fashion. Finally, we assume
that the attacker knows all the details of the deployed built-in
software obfuscation methodology and that this information
does not bring him/her any additional advantage.

On the other hand, we do not take into account change the
functionality and denial-of-service HTHs.

B. Design Obfuscation

Obfuscation is a widely used technique for protecting both
hardware [25] and software [26]. The goal of obfuscation is
generally to protect the intellectual property associated with
a program or a circuit from unauthorized use or reproduction.
Obfuscation of the hardware has been proposed to avoid i)
reverse engineering of the circuit’s functionality by observing
the netlist or of the circuit’s netlist by observing the layout
and ii) overproduction of unauthorized copies of a circuit.
Obfuscation of the hardware is generally achieved through
the use of non-standard cells (camouflaging) or by "locking"
the netlist in order to make the fabricated circuit unusable
before unlocking it through a secret key (logic locking).

Like for hardware obfuscation, also software obfuscation
aims at making intellectual property break unfeasible. For
example, a software may be obfuscated to make hard for
a reader (for example a decompilation tool) to understand
the functionality implemented by the program, the meaning
of a given construct or variable, the value of constants, the
structure of classes and arrays. Software obfuscation may
be achieved by inserting never-executed dummy code, by
reordering or hiding instructions, by unrolling, intersecting
and extending loops, by opacifying logic conditions and by
splitting and merging arrays and data structures.

III. BUILT-IN SOFTWARE OBFUSCATION

A. Guidelines for anti-HTH software obfuscation

Given the previous discussion on design obfuscation, we
argue that so far, obfuscation has always been meant to deal
with a static external attacker that analyses the circuit or
the software to gain knowledge to be then able to reproduce

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:58:39 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The architecture of the secured system including
the built-in software obfuscation module

it. Conversely, we believe that information stealing HTHs
represent a dynamic internal threat. Indeed, the considered
HTHs observe the behavior of the running program from
inside with the goal of discovering the sensitive information
processed by the running program at runtime. Because of
these peculiarities, we believe that novel obfuscation guide-
lines have to be drawn to deal with information stealing
HTHs. Therefore, we defined the following anti-HTH soft-
ware obfuscation guidelines.

Guideline 1: Those variables of the program under protection
that need to be hidden should reside in the largest possible
set of microprocessor registers during program execution. As
a consequence, the probability of exposing sensitive variables
to the attacker through the small set of registers monitored
by the HTH is kept small.

Guideline 2: Those variables of the program under protection
that need to be hidden should also be encrypted in the
processor’s registers for as long as possible; these variables
should be decrypted only when they need to be processed
and then be encrypted again as soon as possible. As a
consequence, again, the probability of exposing sensitive
variables to the attacker is kept small.

Guideline 3: The amount of non sensitive information per
time unit processed by the program under protection should
be kept as large as possible. As a consequence, again the
probability of exposing the sensitive variables to the attacker
is kept small.

The last guideline is not related to security but to efficiency:
it is of extreme importance not to excessively degrade
performance while ensuring security. In other words, it is
mandatory not to excessively increase the execution time of
the program under protection w.r.t. the original unprotected
version of the program.

B. The built-in software obfuscation architecture

Our solution, whose high-level representation is depicted
in Figure 1, relies on the insertion of a dedicated hw module,
called the Software Obfuscator (SOb), in the microprocessor
under protection. In particular, the SOb implements the pro-
posed built-in software obfuscation methodology to reduce
the amount of significant information exposed to HTHs.
From a high-level point of view, the strategy adopted by
the SOb aims at: i) spreading sensitive information through

main :
a d d i sp , sp , −32
sd s0 , 24(sp)
a d d i s0 , sp , 32
l i a5 , 10
sw a5 , −20(s0)
l i a5 , 4
sw a5 , −24(s0)
lw a5 , −20(s0)
addiw a5 , a5 , 1
sw a5 , −20(s0)
lw a4 , −24(s0)
lw a5 , −20(s0)
addw a5 , a4 , a5
sw a5 , −24(s0)
l i a5 , 0
mv a0 , a5
l d s0 , 24(sp)
a d d i sp , sp , 32
j r r a

(a)

s l l i a6 , t5 , 30
s l t u a4 , s3 , s11
mv t4 , a7
mulh t4 , s5 , a1
s l t i u t0 , ra , −1657
s r a s11 , t6 , s5

(b)

Figure 2: Example program (a) and garbage insertion (b)

microprocessor’s registers, ii) keeping sensitive information
encrypted for as long as possible, iii) submerging sensitive
information among garbage data, and iv) periodically scram-
bling data among microprocessor’s registers. In this way,
considering that the adopted HTH model is able to monitor
and send to the attacker the content of a subset of processor’s
registers, the proposed methodology achieves three benefits:
i) minimizing the amount of exposed sensitive information,
ii) maximizing the amount of exposed garbage information,
and iii) minimizing the time for which sensitive information
is kept in the same register.

As it can be observed in Figure 1, the SOb is inserted
between the Decode and the Execute units of the pipeline.
Therefore, the SOb takes in input a decoded instruction and
produces in output one or more instructions to be executed.
The output of the SOb may be the very same instruction as
the one received in input, in case no obfuscation is inserted
in that specific execution instant of time, or one or more
obfuscation instructions. The obfuscation instructions allow
the SOb to implement the three considered obfuscation poli-
cies (whose details are presented in the following), namely
i) garbage code insertion, ii) variable xoring, and iii) reg-
ister scrambling. After every instruction has been fetched
and decoded, the SOb randomly decides whether obfuscation
has to be inserted or not, and in case, which obfuscation
techniques have to be applied. When inserting one or more
obfuscation instructions, the SOb stores the value of the
Program Counter register before the insertion; in this way,
when the execution of the obfuscation instructions terminates,
the execution flow of the nominal program can be correctly
restored (such restoring of the content of the program counter
is obviously not required when no obfuscation instruction is
inserted, since in this condition the SOb does not interfere
with the nominal program).

All the software obfuscation examples in the following
are referred to the intentionally simple program shown in
Figure 2a that creates two variables and calculates their sum.

Garbage code insertion
When garbage code insertion is randomly activated, the

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:58:39 UTC from IEEE Xplore. Restrictions apply.

SOb forces the execution of a random number of randomly
selected instructions before the execution of the instruction
received in input from the decode unit. The garbage instruc-
tions are randomly selected among the move, shift, arith-
metic and logic ones. The operands of the inserted garbage
instructions are also randomly generated. Since also operands
are random, to prevent anomalous working conditions no
division instructions (to avoid possible divisions by zero)
and no jump instructions (to avoid jumping into unauthorized
memory areas) are inserted.

To avoid altering the correct execution of the nominal
program, the registers in which garbage instructions write
their results are chosen among the unused registers. By
applying such garbage code insertion, we maximize the usage
of all the registers as well as we break specific instructions
patterns whose identification during program execution could
be of interest for the attacker. As an example of garbage code
insertion, Figure 2b reports six garbage instructions inserted
between lines 4 and 5 of the program reported in Figure 2a.

Variable xoring
The second random manipulation that the SOb is able to
perform is the variable encryption/decryption by masking it
through xor operations. When this manipulation is activated
on a given value, the SOb will encrypt the value by xoring it
with a randomly chosen key every time the value is written
in a register and it will decrypt the value by xoring again it
with the same key every time the value is read. To correctly
carry out this task the SOb keeps constantly updated a map of
the registers where encrypted data are tracked, and for each
of them, the used key is also stored. We randomly chose
whether to encrypt a variable or not instead of encrypting
all variables, because this increases the amount of confusion
we introduce during the execution of the program. By means
of this variable xoring, we minimize the time during which
sensitive information are exposed to the HTH.

Register scrambling
The last software manipulation implemented by the SOb is
the random scrambling of the information processed by the
executed program among the registers in the microprocessor.
Each time it is activated, this manipulation randomly selects
a target register ri among the registers currently used by
the program as well as a scrambling register rj among
the unused registers. Then, the execution of the scrambling
instruction

mv rj, ri

is forced. Then, every time the instruction fed in input to the
SOb refers to a register that previously went through register
scrambling, i.e., ri in the example, the SOb will force the
execution of the very same instruction but where the target
register is substituted with the corresponding scrambling
register, i.e., rj in the example. In order to properly carry
out such software manipulation, the SOb needs to keep track
of all the previously performed scramblings in terms of a
binding between the target register and the corresponding
scrambling register. Indeed, since no modification of the
code stored in the memory is performed, the instructions
fetched after the register scrambling will still refer to the

Table I: The considered benchmark programs

Program Avg clk Avg clk Avg Overhead(unprotected) (Protected)
RSort 21,238 48,284 127%
QSort 247,620 428,518 73%
Blowfish 1,031,302 1,504,890 46%
Median 13,722 19,256 40%
Coremark 686,700 1,523,565 121%
RC4 51,582 98,153 90%

original target register. This software manipulation allows to
maximize the usage of all the registers in the microprocessor,
thus reducing the probability that a HTH that monitors a
subset of the registers may observe sensitive information.

IV. EXPERIMENTAL ANALYSIS

A. Experimental setup

We implemented the proposed software obfuscation hard-
ware module in VHDL and we integrated it into the RSD
core [20] which is a 32-bit, speculative, out-of-order, super-
scalar, two-fetch front-end and five-issue back-end pipelines
RISC-V core with 16KByte instruction cache developed at
the University of Tokyo. We considered a set of benchmark
programs belonging to the well known MiBench suite [27]
and from the official RISC-V suite. In particular we consid-
ered: RSort, QSort, Blowfish, Median, Coremark
and RC4. For every benchmark program we ran 100 exe-
cutions where the input have been randomly generated and
corresponding number of required clock cycles has been
calculated. The first two columns of Table I report the
program names and the average number of clock cycles
required to complete the unprotected executions.

B. The adopted metrics

Based on the previously discussed design guidelines for
security-aware software obfuscation, we adopted the fol-
lowing effectiveness and efficiency metrics to evaluate the
proposed solution.

First of all, in order to assess the registers usage, we
calculate the percentage of the registers in the microprocessor
that are written at least once during program execution;
we call this metric R. Then, since to reach a satisfactory
obfuscation it is not enough to write all registers at least once,
but also to write all of them for almost the same number
of times, for every register ri we calculate the percentage
number of writings performed in ri over the total number of
writings performed by the program; given register ri, we call
this metric Ri. Then, in order to capture how much uniformly
all registers are written, we measure the standard deviation
of all these Ri values; we call this metric S. Finally, we
measure the percentage of clock cycles in which a variable
of the program is stored encrypted in the processor’s registers
over the total number of clock cycles; for a given variable vi
we call this metric Xi. We then calculate the average of all
the Xi values and we call this metric X .

Moreover, to assess the overhead introduced in the pro-
tected program execution, we also measure the percentage
increase of the number of clock cycles required to complete
program execution.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:58:39 UTC from IEEE Xplore. Restrictions apply.

Table II: Effectiveness metrics values

Program Unprotected Protected
R S X R S X

RSort 75% 0.076 0% 100% 0.016 90%
QSort 59% 0.061 0% 100% 0.009 98%
Blowfish 66% 0.070 0% 100% 0.009 68%
Median 47% 0.055 0% 100% 0.008 98%
Coremark 94% 0.052 0% 100% 0.008 98%
RC4 56% 0.078 0% 100% 0.014 98%
Avg 66% 0.065 0% 100% 0.010 92%

C. Results

As a first validation note, we highlight that the proposed
protection architecture does not alter the nominal func-
tionality of the program. For every considered benchmark,
we ran a set of 100 executions where the same randomly
generated input was fed into the unprotected program and
into the protected one and the result has been that in all
cases the protected programs demonstrated to be functionally
equivalent to the corresponding unprotected ones, i.e., given
the same input the two programs produced the same output.

As for the unprotected executions of the considered pro-
grams, also the protected ones, i.e., when the proposed
protection architecture was enabled, have been ran 100 times,
each one with randomly generated input values. Therefore all
the metrics we report below have to be considered as average
values over the 100 executions.

Table II reports the values of the previously presented
effectiveness metrics for the considered programs in the
unprotected and in the protected scenarios. First of all, by
looking at the R columns, it has to be highlighted that in the
protected executions always 100% of processor’s registers are
written at least once, while when considering the unprotected
executions, on average only 66% of the registers is written.

When looking at the second adopted metric, i.e., the
standard deviation of the register-per-register percentage of
write operations, reported in the S columns, it can be
observed that in the unprotected program executions this
value is most of the time one order magnitude larger than
in the protected executions. This means that the proposed
obfuscation technique is actually able to uniformly write all
registers in the microprocessor. To better highlight this result
in Figure 3 we show the detailed report of the per-register
percentage of write operations for Blowfish (we could
not report the graphs for all the benchmarks for the sake of
space). As expected, the unprotected executions write only
few registers most of the time (the blue spikes) while most
registers are written very rarely or even never written. On
the other hand, the protected executions write all registers
for an almost uniform number of times, i.e., the orange bars
are almost the same for all registers.

The last result reported in Table II (see the X columns) is
that the sensitive information of the program under protection
stay most of the time encrypted in the processor’s registers
(92% of the time on average). On the other hand, in the
unprotected executions, the sensitive information are always
stored uncrypted in the registers.

Finally, if we look at the last two columns of Table I
we can see the average number of clock cycles required to

complete the obfuscated executions and the associated intro-
duced clock cycles overhead. The average overhead is about
82%3, which is of course high, but, we believe, reasonable
if we take into account that i) the proposed solution would
highly alleviate the susceptibility of the system to information
stealing HTHs, ii) the proposed solution does not require any
modification to the adopted microprocessor (thus allowing
to deploy commercial legacy processing platforms), iii) no
similar solutions exist, and iv) no design space exploration
to optimize the obfuscation capability and the corresponding
introduced overhead has been performed.

D. Hardware overhead
We measured the hardware overhead introduced in the

system by the proposed protection architecture. The con-
sidered RSD RISC-V microprocessor has been synthesized
on a Virtex7 xc7z020clg484-1 FPGA device: it worked
at 57MHz and it counted 18,334 LUTs, 10,885 FFs and
4,512 LUT-RAMs. The software obfuscator on which the
proposed solution relies counts 2,640 LUTs, 1,498 FFs and
24 LUT-RAMs, therefore, the introduced area overhead is of
about 9.56% which, we believe, is totally reasonable. On the
other hand, the software obfuscator does not introduce any
reduction of the microprocessor working frequency.

E. Security analysis
The proposed built-in software obfuscation architecture is

actually able to enlarge the set of registers employed during
a program execution as well as to spread the sensitive infor-
mation through several registers and instruction cycles and to
encrypt the sensitive information for most of the execution
time. To effectively carry out an information stealing attack
by exploiting a HTH, the attacker should be able to monitor
a much larger set of registers w.r.t. the original program
and to monitor them for a longer time. This requires to
implant a larger HTH which would transmit much more data.
Moreover, since most information is encrypted, but some
is not, it would be difficult for the attacker to understand
and manipulate the received data. Finally, the identification
of the sensitive information among all the received data
would be much more difficult for the attacker. Given all
these considerations, we believe that the proposed built-in
software obfuscation architecture makes the implantation of
information stealing HTHs and their exploitation harder.

V. CONCLUSIONS AND FUTURE WORK

We presented a built-in software obfuscation architecture
to protect microprocessor-based systems against informa-
tion stealing HTHs. The effectiveness and efficiency of our
proposal have been assessed on the RSD 32bit RISC-V
microprocessor running a set of benchmark programs. The
experiments demonstrated that the proposed architecture is
actually able to protect the execution of the programs while
introducing a limited overhead in terms of program execution
time and resource occupation, and with no overhead in terms
of the working frequency of the protected microprocessor.

3The overhead in terms of clock cycles would bring also an energy
consumption increase. Such additional energy consumption would not be
proportional to the number of additional clock cycles and its measurement
requires an in depth analysis which falls outside the scope of this work.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:58:39 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Per-register percentage of write operations for Blowfish

REFERENCES

[1] DIGITIMES, “Trends in the global ic design service market,”
http://www.digitimes.com/news/a20120313RS400.html?chid=2.

[2] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware
security: Threat models and metrics,” in Proc. Int. Conf. Computer-
Aided Design, 2013, pp. 819–823.

[3] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust. Springer-Verlag New York, 2012.

[4] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, 2010.

[5] L. Cassano, S. D. Mascio, A. Palumbo, A. Menicucci, G. Furano,
G. Bianchi, and M. Ottavi, “Is risc-v ready for space? a security
perspective,” in 2022 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2022,
pp. 1–6.

[6] A. Bhardwaj and S. K. Roy, “Defeating hatch: Building malicious
ip cores,” in International Symposium on VLSI Design and Test.
Springer, 2017, pp. 345–353.

[7] V. Jyothi, P. Krishnamurthy, F. Khorrami, and R. Karri, “Taint: Tool for
automated insertion of trojans,” in 2017 IEEE International Conference
on Computer Design (ICCD), 2017, pp. 545–548.

[8] Alessandro Palumbo, Luca Cassano, Bruno Luzzi, José Alberto
Hernández, Pedro Reviriego, Giuseppe Bianchi, Marco Ottavi, “Is your
fpga bitstream hardware trojan-free? machine learning can provide an
answer,” To appear in Journal of Systems Architecture.

[9] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in International Workshop on Cryp-
tographic Hardware and Embedded Systems. Springer, 2013, pp.
197–214.

[10] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia,
“Software exploitable hardware trojans in embedded processor,” in
2012 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), 2012, pp. 55–58.

[11] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. Int. Conf. Computer Design,
2012, pp. 131–134.

[12] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-
overhead malicious modifications enabling modern microprocessor
privilege escalation,” IEEE Trans. Emerging Topics in Computing,
vol. 2, no. 1, pp. 81–93, 2014.

[13] C. Domas, “Hardware backdoors in x86 cpus,”
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-
Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf, 2018.

[14] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection
techniques,” in Proc. Int. Symp. Circuits and Systems, 2015, pp. 2021–
2024.

[15] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Trans. Design Automation of Electronic Systems, vol. 22, pp. 6:1–6:23,
2016.

[16] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Building trustworthy
systems using untrusted components: A high-level synthesis approach,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 9, pp. 2946–2959, 2016.

[17] A. Bolat, L. Cassano, P. Reviriego, O. Ergin, and M. Ottavi, “A
microprocessor protection architecture against hardware trojans in
memories,” in 2020 15th Design Technology of Integrated Systems in
Nanoscale Era (DTIS), 2020, pp. 1–6.

[18] A. Palumbo, L. Cassano, P. Reviriego, G. Bianchi, and M. Ottavi,
“A lightweight security checking module to protect microprocessors
against hardware trojan horses,” in 2021 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2021, pp. 1–6.

[19] A. Malekpour, R. Ragel, T. Li, H. Javaid, A. Ignjatovic, and
S. Parameswaran, “Hardware trojan mitigation in pipelined mpsocs,”
ACM Trans. Des. Autom. Electron. Syst., vol. 25, no. 1, Jan. 2020.
[Online]. Available: https://doi.org/10.1145/3365578

[20] S. Mitsuno, J. Kadomoto, T. Koizumi, R. Shioya, H. Irie, and
S. Sakai, “A high-performance out-of-order soft processor without
register renaming,” in 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL), 2020, pp. 73–78.

[21] L. Cassano, M. Iamundo, T. A. Lopez, A. Nazzari, and G. Di Natale,
“Deton: Defeating hardware trojan horses in microprocessors through
software obfuscation,” Journal of Systems Architecture, vol. 129, p.
102592, 2022.

[22] L. Cassano, E. Lazzeri, N. Litovchenko, and G. Di Natale, “On
the optimization of software obfuscation against hardware trojans in
microprocessors,” in 2022 25th International Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS), 2022,
pp. 172–177.

[23] A. Marcelli, E. Sanchez, G. Squillerò, M. U. Jamal, A. Imtiaz,
S. Machetti, F. Mangani, P. Monti, D. Pola, A. Salvato, and M. Simili,
“Defeating hardware trojan in microprocessor cores through software
obfuscation,” in Proc. Latin-American Test Symp., 2018, pp. 1–6.

[24] A. Marcelli, E. Sanchez, L. Sasselli, and G. Squillero, “On the
mitigation of hardware trojan attacks in embedded processors by ex-
ploiting a hardware-based obfuscator,” in 2018 IEEE 3rd International
Verification and Security Workshop (IVSW), 2018, pp. 31–37.

[25] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1283–1295, 2014.

[26] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie,
S. Hyrynsalmi, and V. Leppänen, “Diversification and obfuscation
techniques for software security: A systematic literature review,”
Information and Software Technology, vol. 104, pp. 72–93, 2018.

[27] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual
IEEE International Workshop on Workload Characterization. WWC-
4 (Cat. No.01EX538), 2001, pp. 3–14.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on September 03,2024 at 12:58:39 UTC from IEEE Xplore. Restrictions apply.

