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Abstract— We present a long-term intrinsically motivated
structure learning method for modeling transition dynamics
during controlled interactions between a robot and semi-
permanent structures in the world. In particular, we discuss
how partially-observable state is represented using distributions
over a Markovian state and build models of objects that predict
how state distributions change in response to interactions with
such objects. These structures serve as the basis for a number
of possible future tasks defined as Markov Decision Processes
(MDPs). The approach is an example of a structure learning
technique applied to a multimodal affordance representation
that yields a population of forward models for use in planning.
We evaluate the approach using experiments on a bimanual
mobile manipulator (uBot-6) that show the performance of
model acquisition as the number of transition actions increases.

I. INTRODUCTION

Humans accumulate a large repertoire of action-related
knowledge from experiences over a lifetime of problem solv-
ing. As infants, we explore the world and entities in our envi-
ronment, building representations for future use through play.
We do this because we are inherently curious and discovery
is rewarding for its own sake—we are intrinsically motivated
to acquire models of the world [1–3]. Many researchers
have explored intrinsic motivation as a key component for
developing curious, exploratory, and autonomous behavior—
for instance, in the acquisition of visuomotor skills for robots
[4]. Hierarchical approaches have been developed employing
intrinsic motivation to learn new skills autonomously [5, 6].
A number of intrinsic motivators have been proposed [4, 7]
with approaches in contrast with previous work that relied on
hand-built representations tailored to a particular task [8–10].
Our view is that autonomous exploration and intrinsically
motivated discovery should prove more robust and transfer-
able than hand built knowledge representations.

Insight from cognitive psychology has influenced many
researchers to investigate knowledge representations [7, 11–
27]. Among these, the notion of direct perception and affor-
dances proposed originally by Gibson [28] is particularly
relevant to our approach. Gibson’s theory of affordance
advocates for modeling the environment directly in terms of
the actions it affords. These representations are idiosyncratic
and reflect only those actions that can be generated by the
agent. Research has been done to investigate the autonomous
acquisition of such affordance representations with intrinsic
motivators. For instance, an example of multiple intrinsic
reward functions have been proposed to learn the transition
dynamics of a particular task [25]. Others have looked

into domain-independent intrinsic rewards, like novelty or
certainty, for learning adaptive, non-stationary policies based
on data gathered from experience [7, 29]. In particular, model
exploration programs have been presented [7], but methods
reported to date lack multimodal sensor integration and do
not produce knowledge structures that are easily transferrable
to other tasks.

A number of studies have presented methods to learn af-
fordance representations through imitation [13, 14], building
experience-grounded representations called Object–Action
Complexes (OACs) [17]. Affordance models such as OACs
provides a basis for structural bootstrapping, allowing ex-
isting knowledge to generalize to otherwise unexplored and
novel tasks and domains [24]. Such generalizability may be
used to support planners that use learned representations
as forward models f : a, s 7→ s′ which is synonymous
to state transition models in MDPs. However these models
do not necessarily encode the prerogatives of the embodied
system nor can they be easily adapted to other robots [16].
Moreover, they require the guidance of a teacher and are
relatively cumbersome, though methods have been proposed
with intrinsic motivators but assume predefined structure
prior to training [22].

This paper adopts a different form of affordance represen-
tation that is lighter weight, and thus, better serves planners
that need to roll out a number of these forward models during
planning. In fact, this representation encodes only essential
Markovian components concerning information regarding
states, actions, and transition dynamics, s, a 7→ s′, and thus,
can be reused generally for all tasks that can be formu-
lated as MDPs. The main contribution of this paper is the
presentation of an intrinsically motivated structure learning
approach that builds complete action-related representations
of objects using multimodal percepts. The resulted is called
an Aspect Transition Graph (ATG) model. Previous planning
architectures using hand built versions of these models have
been successful, however, this paper contributes a structure
learning approach to acquiring them autonomously.

We present the first autonomously learned ATG represen-
tation with continuously parametrized action edges in the
literature. These representations can be used to serve as
forward models in belief-space planning infrastructure on
real robot systems [30]. A number of studies have integrated
ATG affordance representations into the model base as a
fundamental attribute in the model-referenced belief-space
planning architecture. For instance, Sen showed that the
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Fig. 1: An example of a partially constructed Aspect Transition Graph where
affordances of a die-like object are encoded in aspect nodes connected by
directed edges representing actions. The labels on the edges here correspond
to possible control programs with parameters that result in successful
transitions. The blue arrows at the hand for two of these nodes indicates
tactile information.

object identification task1 can scale up to 10,000 object
models by pruning those with insufficient support [20].
Though models used in studies like those of Sen [18–21]
do not inherently encode transition dynamics learned by the
robot and therefore are not robust to unexpected outcomes
without inherently encoding the system’s uncertainty into the
representations. Work by Ku et al. has shown that the ATG
structure is, however, capable of fine grain error detection, in
which surprising outcomes that are not encoded in the object
model trigger a What’s up? action [21]. Transition properties
in our work are all learned autonomously, encoding unknown
properties of the underlying system, and thus are robust to
errors.

II. TECHNICAL APPROACH

This manuscript presents an algorithm for autonomous
structure learning incorporating multiple sensor modalities
and robot actions to produce lasting artifacts that can be used
in the future (i.e. for reasoning and planning). The algorithm
is presented in the context of a system that builds object
representations for future use, but may span a number of
other domains that require learning inherent structure in a
task independent manner.

A. Affordance Representation

Our approach encodes affordances in a graphical structure
called an Aspect Transition Graph [19]—which is defined as
a directed multi-graph G = (S,A) where S denotes a set
of aspect nodes connected by action edges A. A pictorial
example of a partial ATG is illustrated in Figure 1 describ-
ing several plausible interaction outcomes with a particular
object. Sensory information in multiple modalities (vision
and touch) is integrated into the aspect nodes in the graph.
Each parameterized action a ∈ A uses a learned search dis-
tribution for motor references that reliably transition between
aspects. References are defined to be (multivariate) Gaussian
distributions N (µ,Σ) in Cartesian space describing the areas

1Object identification task—a robot is given a large corpus of models it
has interacted with in the past in memory and a real-world object and is
asked to identify which model the object belongs to. Work of this nature
falls into the active vision field which suggests that vision along can not
solve such tasks, but the embodied system must execute actions to condense
its belief towards the correct object model in memory.

in object frame where the robot has successfully detected
a target perceptual reference from this initial state in the
past. An aspect node is a state representation defined as
a geometric constellation of features derived from multiple
sensor modalities. For example, an aspect node may be
a geometric constellation of visual features present in a
particular “field of view.” In theory, the number of features
for any given object may be arbitrarily populous. As a result,
the size of an ATG representation for the object, may be
very large. However in principle, aspects encode affordances
and are bounded by the number of actions |A| an embodied
system may perform on the object that changes the relative
sensor geometry. Aspect nodes are stored in the model as
pointers to specific features that are indexed and arranged by
type and value ordered chronologically by discovery time.
Each feature is defined by three fields (id, type, value) in
addition to a mean and covariance describing the likely
Cartesian positions µ ∈ R3,Σ ∈ R3×3 in object frame2.

B. Aspect Observation

Performing an observation of the scene creates a feature
list. Observations consist of maximum likelihood Cartesian
features derived from a Kalman filter that summarizes the
history of observations to this point in terms of a mean
observation and an associated spatial covariance. The current
aspect s is obtained by observing the multimodal features in
the scene and applying some mapping F : fi, fj , . . . , fn 7→ s
which defines the aspect as a subset or encoding of relevant
features in the feature list. This paper implements F by
simply returning the string representation of the geometric
(order-specific) collection of all features over all modalities
present, obeying some aspect geometry. Future work hopes
to extend F to incorporate a generalized Hough transform
to vote for the position of the model coordinate frame [30].

C. Control Actions

Each edge in the ATG is a closed-loop controller φ|στ that
combines potential functions (φ ∈ Φ) with sensory (σ ⊆ Σ)
and motor resources (τ ⊆ T ) using the Control Basis
framework [20, 31]. Such controllers achieve their objective
by following gradients in the potential function φ(σ) with
respect to changes in the value of the motor variables uτ ,
described by the error Jacobian J = δφ(σ)/δuτ . References
to low-level motor units are computed as ∆uτ = κJ#∆φ,
where κ > 0 is a small gain, J# is the pseudoinverse
of J, and ∆φ is the difference between the reference and
actual potential. For the method proposed in this paper, it is
assumed that the number of actions |A| and their parameter
spaces are known a priori.

D. Action Selection

Affordances of a given object can be determined by
exploring actions that cause a transition in the aspect space.
The approach presented in this manuscript selects actions

2For instance, the bottom leftmost aspect node in Figure 1 could be
defined as a 0-1 aspect, pointing to feature id: 0 of type: ‘ARtag’ and value:
‘3’ and feature id: 1 of type ‘ARtag’ and value: ‘0’.



to learn affordance representations—actions are selected for
execution to achieve two kinds of reward:

1) Discovering novelty finding new aspect nodes s ∈ S
and revealing new aspect transitions

2) Refining parameters ρ ∼ N (µ,Σ) for actions a ∈
A encoded in search distributions of known transitions
p(s′|s, a(ρ)) between aspect nodes s and s′

To encourage coverage over the space of actions, a Latin
Hypercube Sampled (LHS) space (over the domain of each
action a ∈ A) is introduced for each aspect node s. Action
parameters ρ are randomly sampled during exploration—
first by type, then by parameters defined in the LHS-space.
Parameter refinement at some aspect node s is addressed
by querying and evaluating all outgoing edges ∀a ∈ A :
p(s′|s, a) > 0 and sampling parameters ρ for the highest-
valued action a∗. It is important to note that intrinsic
reward alone is insufficient for producing a complete ATG
representation since it selects actions that exploits learned
structure, however, structure must first be discovered hereby
stressing coverage.

E. Affordance Modeling and Intrinsic Reward

The highest-valued action a∗ is a property of intrinsic
motivation that drives the affordance modeling construction
process. This is performed by storing and updating aspect
node structure and transition information given learning
experiences in the form of 〈s, a, ρ, s′〉, which is achieved
by obtaining the aspect definitions s and s′ (outlined in
Section II-B) respectively before and after the selection
and the execution of the action a with parameters ρ (from
Section II-D). In short, the robot observes the current state,
performs actions, and memorizes the new state produced.
With each experience example, the parameter ρ is added
to a nonparametric distribution along the action edge a
in the ATG corresponding to the transition from s to s′.
This nonparametric data structure stores all the robot’s past
experiences and describes all control parameters ρ that result
in a particular perceptual outcome. Next, a new Gaussian
distribution is generated using the set of all ρ existing in a
and intrinsic reward r(s, a(ρ), s′) is computed.

Q-value iteration [32, 33] is implemented to establish a
value function where at any time, the highest value corre-
sponds to regions of interest in the parameter-space with high
uncertainty. The intrinsic reward function uses the difference
in the variance of experiences achieved from the same state
under the same action as originally proposed in [7]. For use
with the ATG representation, the intrinsic reward takes a
slightly different form,

r(s, a(ρ), s′) = abs(||Σk||2 − ||(Σk−1)||2)

where k indicates the value after the kth experiment, Σk
refers to the sample variance in the Gaussian N (µ,Σ) that
describes the action parameter distribution that consists of
all parameters ρ that accomplishes transition s, a(ρ) 7→
s′. Then, Σk−1 is the Gaussian distribution that does not
include the most recent action a(ρk). In the case that the
edge a (corresponding to s → s′) is novel or the aspect

s′ is novel, a new transition edge or node is created—
reward is then the differential variance between an arbitrarily
wide Gaussian and an arbitrarily thin Gaussian centered
at ρ. In practice, the reward is bounded by some defined
maximum, for instance r(s, a(ρ), s′) = 1.0. The key insight
for using an intrinsic reward function of this form is that
it encourages the consumption of reward through actions. In
other words, it promotes the selection of actions that produce
a high differential variance. As these distributions converge,
intrinsic reward diminishes, hence encouraging other action
parameters contributing to other transitions to be selected.

In addition to this update in the transition properties, all
features that define the new aspect s′ are either added or
updated as appropriate. In summary the overall algorithm is
described simply as,

Algorithm 1 Multimodal Structure Learning

1: f ← NIL
2: do
3: a, ρ←Select params by LHS or arg maxa f(s, a, s′)
4: Do a, ρ and obtain experience 〈s, a, ρ, s′〉
5: r(s, a(ρ), s′)← abs(||Σk||2 − ||(Σk−1)||2)
6: Update value f(s, a, s′) with reward r(s, a(ρ), s′)
7: Update Ns,a→s′ with current action params a(ρ)
8: while f(s, a, s′) > ε : ∀s, a, s′

III. EXPERIMENT METHODOLOGY

A. Robot Platform

Experiments are done on a dynamic simulation of the
uBot-6 platform, a 13 DOF, toddler-sized, dynamically bal-
ancing, mobile manipulator [34] equipped with an Asus
Xtion Pro Live RGB-D camera (shown in Figure 2) and
two ATI Mini45 Force/Torque sensors one in each hand (not
shown in figure). Control actions are executed by the robot
to establish new sensor geometries and reveal new aspects.
Collectively, experimental results compile a total of over 250
hours of robot simulation.

B. Sensor Modalities (Features and Aspects)

The Asus RGB-D camera and ATI Mini45 Force/Torque
sensors provides visual and tactile information to the robot.
Visual features are extracted and ordered such that the feature
list is populated with priority on feature Cartesian location
(left to right, bottom to top of the image). Primitive tactile
features consist of the contact force f̂ ∈ R3, from which the
sum of squared contact forces

∑
i=L,R fTi f i and sum of

squared contact moments
∑
i=L,R(ri × f i)

T ((ri × f i) are
computed at the centroid of the pair of contacts measured,
where L and R signify left and right, respectively. Bimanual
grasp configurations where the squared force and moment
residuals are minimized simultaneously are considered to be
valid grasp hypotheses. This form of tactile information is
added to the visual components of an aspect to obtain a mul-
timodal aspect node which we propose as a representation
of the interaction state.



Fig. 2: The uBot-6 mobile manipulator has multiple degrees of freedom
(DOF) supporting the ability to solve a number of tasks in many different
ways. Control programs engage subsets of these DOF illustrated in the
kinematic chain when executing actions in an attempt to search for intrinsic
reward. Visual and tactile sensors allow for the robot to perform perceptual
actions. (Best viewed in color)

C. Control Programs (Actions)

The set of actions A in these experiments consists of
two control programs: ORBIT and GRASP. These actions are
responsible for changing the relative sensor geometries of the
robot relative to the object and, as a result, cause probabilistic
transitions to new aspect nodes.

ORBIT is a locomotive control program that changes the
viewpoint geometry of the Asus Xtion Pro Live RGB-D
camera. As shown in Figure 2, a number of motor resources
(or degrees of freedom) may be used to achieve this. Our
approach implements the translational and rotational axis of
the base subject to the constraint that the final heading is
toward the object. The action is parametrized by an angle θ
about the world ẑ axis with some fixed orbit radius r defined
a priori. In the experiment presented in this paper, r = 1.0
(m).

GRASP is a control program that changes the sensor
geometry of the ATI Mini45 Force/Torque sensors in each
hand to some new location in the scene. The grasp action
engages the mobility resources, if necessary, to put the object
within reach and then engages the arms to place the hands
at Cartesian goals relative to the object where compressive
forces are applied. This experiment is used to update the
search distributions for mobility goals and hand placement
based on the percept

∑
f i =

∑
mi = 0. A model is

acquired that can be used to transform a partial observation
of an aspect node, perhaps composed exclusively of visual
features, into new aspect nodes that assert that the grasp force
and moment objectives are also met (i.e. that an adequate
grasp configuration exists). Each GRASP action is paired with
a RELEASE counterpart in which the robot releases the held
object and retreats to the previous pre-grasp base Cartesian
position.

D. Target Objects

Since the approach presented in this paper makes no as-
sumption regarding the underlying object and only concerns
the aspects that are afforded, it can theoretically be applied
to any object. However, in our validation experiments we
use a simple object geometry as a proof of concept whose
ATG can be evaluated. In all experiments, the uBot-6 is
presented with an ARcube object in Gazebo with a random
configuration. ARcubes are rigid 29 cm cubes with a single
ARtag mounted on each of the six faces3. Visual observations
of these features establish the location of the center of each
tagged face.

The ARcubes in this experiment provides a form of
validation since the number of aspects and transitions of
ARcubes are enumerable by hand. Further, the transition
parameters for ORBIT on this specific object tends to be
at about an interval of π/4—this intuition can be used to
verify the correctness of models produced by our approach
by establishing a ground truth representation.

E. Experiment Layout

The first experiment is a necessary validation step in which
the proposed approach presented in this paper is compared
against a base-line approach. Methods like [13, 14, 19]
adopt either imitation or memorization paradigms for the
construction of affordance models, with [19] being the only
work specifically for ATGs. Work to learn ATGs have been
mainly accomplished by learning through demonstrations,
thus are not truly autonomous. Here, we present a base-
line method in which the robot randomly explores control
parameters, observes the scene, and memorizes its effects
in terms of aspect transitions. Such a method is guaranteed
to converge to a complete affordance model given sufficient
time and serves as a valid contender for comparisons. Both
the proposed and base-line methods are compared against
a ground truth model with only the ORBIT action for
validation.

The second experiment aims to inspect the result in which
additional sensor modalities and actions are introduced. In
the first experiment, the action space A consisted solely
of parametrized ORBIT actions and only the Asus camera
existed in the set of sensor modalities. The uBot-6 has access
to both ORBIT and GRASP actions and visual and tactile
features from the Asus RGB-D camera and ATI force/torque
sensors.

IV. RESULTS

The results presented in the first experiment contains over
150 hours of simulation, consisting of five trials for each
approach. The affordance model corresponding to ground
truth has eight visual aspect nodes and 64 interconnected
transition edges in the ATG. Error (in radians) is computed
by the absolute difference between the learned model and
the ground truth for the means of the distribution along

3An open-source ARToolKit is available (http://artoolkit.org)
for detecting and localizing the tags.



|A| P-VALUE PROPOSED RAND+MEMORIZE
50 0.0034 1.4934± 0.0732 1.7551± 0.2097
100 0.0063 0.7598± 0.1477 1.0919± 0.2929
150 0.0068 0.4242± 0.1062 0.7666± 0.2876
200 0.0125 0.2701± 0.0630 0.5797± 0.3345
250 0.0071 0.2180± 0.0648 0.5474± 0.3435
300 0.0153 0.1574± 0.0409 0.4626± 0.3511
350 0.0217 0.1447± 0.0258 0.4388± 0.3511
400 0.0254 0.1251± 0.0187 0.4197± 0.3608
450 0.0251 0.1219± 0.0177 0.4071± 0.3511
500 0.0323 0.1112± 0.0060 0.3865± 0.3469

TABLE I: Model error comparison between the proposed structure learning
approach and a base-line approach where transition probability from s

a→ s′

is approximated by randomly exploring action a from every initial state s
and recording an estimated p(s′|s, a) for all s with only the ORBIT control
program in the action set. Evaluations are performed against an empirical
model taken as ground truth and errors correspond to the average error (in
radians) over all transitions in the model.

50 100 150 200 250

300 350 400 450 500

Fig. 3: Value functions of the same randomly selected run after a specific
number of actions, indicating the current Q-values along state transition
edges. Each row corresponds to a particular aspect node s and each column
corresponds to the action a(ρ) that results in a particular s′. Only ORBIT
is considered in this image. The illustrated heatmap range is from (blue)
0.01 to (red) 1.0 (Best viewed in color).

all transition edges. The error related to each edge is then
averaged for an overall model error. If an edge is not
discovered by the learning method the error for that edge
is set to the maximum, π. Table I lists the error for both
the proposed and the random memorization approaches after
a specific number of actions. In all cases, the proposed
method achieves lower errors and in many of these cases,
the difference is statistically significant (p < 0.05). It is also
evident that the proposed approach is capable of acquiring
more accurate affordance representations faster and more
reliably (with significantly lower standard deviation).

As hinted in Section II-E, affordance structure learning
does not converge to an optimal policy described by the
resulting value function through value iteration. Instead,
Figure 3 illustrates how the structure learning task consumes
value and depletes the intrinsic rewards as the number of
executed actions increase. These value functions illustrated
the Q-values along transition edges corresponding to states
s and actions a(ρ). High values are attained initially when
action parameters from aspect nodes have been inadequately
unexplored. Immediate reward is consumed over time when
actions are performed, condensing variance in transition
distributions—such a phenomenon is illustrated in Figure 4
in which the log immediate reward depletes as learning
progresses.

The introduction of additional sensor modalities and ac-
tions results in slightly slower convergence, yet continues

Fig. 4: Mean and one standard deviation over five trials for log immediate
reward after the execution and update of each ORBIT action taken in the
first experiment for the proposed approach.

A ={ORBIT}
A ={ORBIT, GRASP}

Fig. 5: Increasing sensor modalities and action space. Mean and one
standard deviation over five trials illustrating the average Q value and the
number of transitions discovered in the model using the proposed approach.
The dotted lines correspond to average model value and solid lines describe
the number of transitions in the affordance model (Best viewed in color).

to discover all the transitions in the learned ATG. The
result of over 100 hours of simulation is illustrated in
Figure 5. As the the number of transitions discovered in
the model increases, the likelihood of novelty diminishes—
this is captured in the decreasing values in the model.
The affordance model with an extended sensor modalities
and actions A = {ORBIT,GRASP} contains twelve aspect
nodes and 80 aspect transitions. Like in the first experiment,
structure learning with the extended action set requires 300–
400 actions to produce a complete model. Other methods
presented to learn affordances like OACs required a similar
number of actions [22].

V. DISCUSSION, CONCLUSION, AND FUTURE WORK

This manuscript presents an intrinsically motivated struc-
ture learning approach to learn semi-permanent Markovian
state representations of structures that are reusable in fu-
ture (potentially partially-observable) tasks. The affordance
representations learned here serves as a key component in
belief-space object identification architectures [30]. These
representations can be leveraged as forward models to predict
how state distributions change in response to interaction.
Despite success in the past using hand-crafted models of
this type, the methods presented in this paper allows us to
acquire them autonomously and encodes robot uncertainties
and parameters that would otherwise be difficult to precisely
hand define. Structure learning allows robots to build mod-
els themselves without supervision and promotes informed
action selection, exploiting known structure and promoting
a sense of discovery. Results demonstrate the acquisition



of models that are significantly better than approaches that
solely select random actions to learn from. With the proposed
learning method, the transitions encode uncertainties in the
form of distributions derived from the properties of the
embodied system and its interaction with the affordances of
the world—as such, methods like this allow for a possibility
for not only even finer-grained error detection, but also,
support error correction in many cases, producing a more
general and robust representation for planners and belief-
space architectures. Future work looks into extending the
action space and modalities further and investigating methods
to take a learned affordance representation and decompose
known aspect nodes to incorporate new sensory information
while preserving learned transition dynamics. We believe that
autonomously learning affordance representations as forward
models with more complex actions and modalities allows for
a richer set of future solvable tasks. Furthermore, despite
the growing complexity of the affordance representation as
more actions are introduced, we believe that enriched models
reduce the complexity in model-referenced planning, thus
reducing planning time and the number of rollouts necessary
to solve future tasks.
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[10] W. Grimson and T. Lozano-Pérez, “Localizing overlapping parts by
searching the interpretation tree,” PAMI, vol. 9, no. 4, pp. 469–482,
July 1987.

[11] L. Natale, G. Metta, and G. Sandini, “Learning haptic representation
of objects,” in International Conference on Intelligent Manipulation
and Grasping, 2004.

[12] A. Stoytchev, “Toward learning the binding affordances of objects: A
behavior-grounded approach,” in Proceedings of AAAI symposium on
developmental robotics, 2005, pp. 17–22.

[13] M. Lopes, F. S. Melo, and L. Montesano, “Affordance-based imitation
learning in robots,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Oct 2007, pp. 1015–1021.

[14] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory–motor coordination to imita-
tion,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26, Feb
2008.

[15] L. Montesano and M. Lopes, “Learning grasping affordances from
local visual descriptors,” in International Conference on Development
and Learning, 2009, pp. 1–6.

[16] R. Detry, D. Kraft, A. G. Buch, N. Kruger, and J. Piater, “Refining
grasp affordance models by experience,” in EEE International Con-
ference on Robotics and Automation, May 2010, pp. 2287–2293.

[17] N. Kruger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Worgotter,
A. Ude, T. Asfour, D. Kraft, D. Omrcen, A. Agostini, and R. Dillmann,
“Objectaction complexes: Grounded abstractions of sensorymotor pro-
cesses,” Robotics and Autonomous Systems, vol. 59, no. 10, pp. 740
– 757, 2011.

[18] L. Y. Ku, S. Sen, E. Learned-Miller, and R. Grupen, “Action-based
models for belief-space planning,” in Workshop on Information-Based
Grasp and Manipulation Planning, at Robotics: Science and Systems,
Berkeley, California, July 2014.

[19] ——, “The aspect transition graph: An affordance-based model,” in
Second Workshop on Affordances: Visual Perception of Affordances
and Functional Visual Primitives for Scene Analysis, at the European
Conference on Computer Vision, Zurich, Switzerland, Sept 2014.

[20] S. Sen and R. Grupen, “Integrating task level planning with stochastic
control,” University of Massachusetts Amherst, Tech. Rep. UM-CS-
2014-005, 2014.

[21] L. Y. Ku, D. Ruiken, E. G. Learned-Miller, and R. A. Grupen, “Error
detection and surprise in stochastic robot actions,” in 15th IEEE-
RAS International Conference on Humanoid Robots, Humanoids 2015,
Seoul, South Korea, November 3-5, 2015, 2015, pp. 1096–1101.

[22] E. Ugur and J. Piater, “Emergent structuring of interdependent af-
fordance learning tasks,” in Joint IEEE International Conferences on
Development and Learning and Epigenetic Robotics, Oct 2014.

[23] H. O. Song, M. Fritz, D. Goehring, and T. Darrell, “Learning to detect
visual grasp affordance,” IEEE Transactions on Automation Science
and Engineering, vol. PP, no. 99, pp. 1–12, 2015.

[24] F. Worgotter, C. Geib, M. Tamosiunaite, E. E. Aksoy, J. Piater,
H. Xiong, A. Ude, B. Nemec, D. Kraft, N. Kruger, M. Wchter, and
T. Asfour, “Structural bootstrapping - a novel, generative mechanism
for faster and more efficient acquisition of action-knowledge,” IEEE
Transactions on Autonomous Mental Development, vol. 7, no. 2, pp.
140–154, June 2015.

[25] T. Hester and P. Stone, “Intrinsically motivated model learning for
developing curious robots,” Artificial Intelligence, pp. –, 2015.

[26] E. Ugur and J. Piater, “Refining discovered symbols with multi-step
interaction experience,” in IEEE-RAS International Conference on
Humanoid Robots, Nov 2015.

[27] P. Kaiser, M. Grotz, E. E. Aksoy, M. Do, N. Vahrenkamp, and
T. Asfour, “Validation of whole-body loco-manipulation affordances
for pushability and liftability,” in IEEE/RAS International Conference
on Humanoid Robots, 2015, pp. 920–927.

[28] J. J. Gibson, “The theory of affordances,” Hilldale, USA, 1977.
[29] P. Sequeira, F. S. Melo, and A. Paiva, “Learning by appraising:

an emotion-based approach to intrinsic reward design,” Adaptive
Behavior, Sep. 2014.

[30] R. A. Grupen, M. Hebert, M. W. Lanighan, T. Liu, D. Ruiken,
T. Takahashi, and J. M. Wong, “Affordance-based active belief recog-
nition using visual and manual actions,” in IEEE/RSJ the International
Conference on Intelligent Robots and Systems (IROS), Oct 2016.

[31] M. Huber, W. S. MacDonald, and R. A. Grupen, “A control basis for
multilegged walking,” in IEEE International Conference on Robotics
and Automation, Apr 1996.

[32] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[33] R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998, vol. 116.

[34] D. Ruiken, M. W. Lanighan, and R. A. Grupen, “Postural modes and
control for dexterous mobile manipulation: the umass ubot concept,” in
IEEE-RAS International Conference on Humanoid Robots, Oct 2013.


	I Introduction
	II Technical Approach
	II-A Affordance Representation
	II-B Aspect Observation
	II-C Control Actions
	II-D Action Selection
	II-E Affordance Modeling and Intrinsic Reward

	III Experiment Methodology
	III-A Robot Platform
	III-B Sensor Modalities (Features and Aspects)
	III-C Control Programs (Actions)
	III-D Target Objects
	III-E Experiment Layout

	IV Results
	V Discussion, Conclusion, and Future Work

