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Abstract

We present a new approach to ensure the secure execu-
tion of itinerary-driven mobile agents, in which the spec-
ification of the navigational behavior of an agent is sep-
arated from the specification of its computational behav-
ior. We empower each host with an access control policy
so that the host will deny the access from an agent whose
itinerary does not conform to the host’s access control pol-
icy. A host uses model checking algorithms to check if the
itinerary of the agent conforms to its access control policy
written in p-calculus, and if so, grant access permission.
In order to address the state explosion problem for model
checking itineraries, we propose an approach called Model
Generation Code. In this approach, instead of verifying the
itinerary itself, a host actually checks the conservative mod-
els of a mobile agent. If a conservative model does not sat-
isfy the host’s access control policy, the mobile agent will
provide refined models for further verification. Our pre-
liminary results show that this is a practical and promising
approach to ensure the secure execution of mobile agents.

1 Introduction

Computing is increasingly characterized by the global
scale of applications. Two main features of the global ubig-
uitous computing paradigm are mobility, where code is dis-
patched from site to site to increase flexibility and express-
ibility, and openness, which reflects the nature of global net-
works. Ubiquitous computing provides numerous advan-
tages over the conventional distributed computing paradigm
and starts to have applications in distributed computing, net-
work management, and E-commerce. However, mobility
control and security arise as two issues from massive code
and resource migrations and openness, respectively.
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Although most mobile agent systems [18, 9, 16] provide
the primitive for specifying mobility, they prescribe the nav-
igational and computational behavior of a mobile agent in
one mixed specification. To address the concern of mobility
control, we propose an itinerary-driven system in which the
specification of the navigational behavior of an agent is sep-
arated from the specification of the computational behavior.
The benefit of this separation is immediate: not only we can
reason about the correctness and security properties about
itineraries even before the computation is defined, but also
we can reuse itineraries and computations across different
agents.

In this paper, we aim to provide a runtime verifica-
tion mechanism to ensure the secure execution of itinerary-
driven mobile agents. In particular, we empower each host
with a control capability; the host will deny access to an
agent whose itinerary does not conform to the host’s access
control policy (ACP). The conformance check is performed
by model checking, a formal verification technique.

In order to address the state explosion problem for model
checking itineraries, we propose an approach called model
generation code (MGC), in which a host verifies conser-
vative models instead of mobile agent. The mobile agent
is safe if one of its model satisfies the ACP. In the case
that a model violates the ACP, a mobile agent is allowed
to refine its model. In this proof-of-concept paper, we de-
velop model checking algorithms to verify the models of
itineraries. However, The procedures to generate models
from an itinerary (model generation) and refine a model
after an ACP violation (model refinement) are being per-
formed manually.

Related Work. To address the security concerns in mo-
bile agent systems, several approaches have been devel-
oped. The two approaches that are the closest to ours are
the proof-carrying code (PCC) [11] and the model-carrying
code (MCC) [14].

PCC [11] enables the safe execution of mobile agents
from unknown sources by requiring the mobile agent to
carry a proof regarding its safety. A host can mechanically
check the correctness of this proof and execute the code



only if the proof is correct. However, it is very difficult to
develop machine checkable proofs. Although it is possible
to generate proofs automatically for simple properties such
as memory safety [12], automatic proof generation for more
complex properties is a daunting problem. In addition, the
mobile agent has to know all the ACPs at different hosts in
order to generate proofs. This is an unrealistic assumption
since security needs vary across different hosts.

MCC [14] offers an alternative solution by requiring a
mobile agent to carry a model of its code. The model will
be checked against the ACPs at the host side by using logic
programs. However, the MCC approach still suffers from
the following problems. First, the model is generated with-
out the knowledge of the ACPs used by the host that the
agent is going to visit. Since security needs vary across dif-
ferent hosts, the model can be too coarse for one host and
too fine for another. Second, MCC places burden on hosts
to refine ACPs manually if the security check fails. Such an
approach is not practical because a user at the host may not
know how to modify the ACPs or does not have privileges
to do so.

Structure of the paper. Section 2 presents our novel
mobile system architecture. The syntax and semantics of
the itinerary language used in this paper are defined in Sec-
tion 3. Section 4 describes the complete run-time verifica-
tion system that includes model generation, model check-
ing, model refinement, and specification language for ac-
cess control policies. The experimental data is shown in
Section 5. Finally we conclude the paper with Section 6.

2 Overall Mobile System Architecture

Figure 1 shows the overall system architecture for mo-
bile agent systems in which the specification of the navi-
gational behavior of a mobile agent is separated from the
specification of its computational behavior.
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Figure 1. A novel architecture for an itinerary-
driven mobile agent system

A mobile agent X consists of the following three com-
ponents: (1) System specification. The system specification

is a pair (4, ¢), where 4 is an itinerary and c is the computa-
tion of the agent that is specified with a traditional program-
ming language such as Java. An agent is deployed from a
home host, and after a host-dependent computation is com-
pleted, the agent will migrate to the next host based on an
execution of the specified itinerary. (2)Model generation.
In order to reduce the computational cost of runtime verifi-
cation, model generators will produce sound abstractions of
the system specification based on mobile agent and the ac-
cess control policy at a host. (3)Environment. Environment
consists of a set of environment variables which are used in
the condition of a conditional itinerary.

Each host is equipped with a mobile agent virtual ma-
chine to support the secure execution of mobile agents. The
virtual machine consists of the following two components:
(1) Runtime Verification System (RVS). The runtime verifi-
cation system of a host contains itinerary ACPs and com-
putation ACPs to control the host visit and resource access
privileges of mobile agents. When a host B receives a visit
request from a mobile agent X, host B’s itinerary RVS will
verify at runtime if the itinerary model provided by agent
X satisfies host B’s itinerary ACP. If it does, then agent
X will be permitted to access host B; otherwise, the ac-
cess request fails. After agent X migrates to host B, B’s
computation RVS will verify at runtime if the computa-
tion model provided by agent X satisfies host B’s compu-
tation ACP. If it does, then agent X can execute its com-
putation specification; otherwise, none of agent X’s com-
putation specification will be executed. (2)Runtime Exe-
cution System (RES). The runtime execution system of a
host consists of two subsystems: itinerary Runtime Com-
pile System (RCS) and Computation RES. Itinerary RCS
compiles and executes an itinerary at runtime, calculates
its residue itinerary which corresponds to the unexecuted
component of the original itinerary, and then changes the
original itinerary to the residue itinerary. In addition, for a
conditional itinerary, the itinerary RCS will query the en-
vironment component of the agent about the values of the
environment variables that appear in the condition, and de-
cides which branch of the itinerary should be executed. On
the other hand, the computation RES executes the computa-
tion specification of a mobile agent. To prevent a malicious
mobile agent from accessing resources of the host, the com-
putation RES also monitors the execution with respect to the
models so that the ACPs will never be violated.

3 Itinerary Language and Itinerary Access
Control Policy

In this section we present the syntax and semantics of
an itinerary language, and itinerary access control policy
expressed using p-calculus.



3.1 Itinerary Language

The itinerary language prototype considered in this paper
is adopted from the MAIL language proposed in [10]. The
following BNF notation shows the syntax.

t == end|s|s?x|sle]|ir;iz | i ] é2 | comp

if ¢ then 4y else iy | while cdo ¢

Basically, end models an empty itinerary; s represents
a single host visit; s?x represents that the agent receives
a value from site s and s!x represents that the agent sends
a value to site s; 41; 42 and i1 ||io represent sequential and
parallel visit patterns, respectively; comp denotes the syn-
tax of computation such as i« = i + 1, which is skipped
here; if ¢ then i; else i5 represents a conditional visit and
while ¢ do 4 a visit loop. Although simple, the prototype
is structured and compositional so that an itinerary can be
constructed recursively from primitive constructs.

Migration Rule: Tisit(s)
e

end
Input Rule:

1
2 PRI
s?x——end
3. Output Rule: T a—
sle—=end

_ o
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end;i—1’
e
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11302 — 1] ji2

. a g
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7. Condition Rule 2:

if ¢ then i1 else 40— i},
e
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2
9.  Parallel Rule 2; —
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e
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11. Parallel Rule 4: it
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12. LoopRule1:
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while ¢ do i——4;while ¢ do i
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13. LoopRule1:

while ¢ do i——end

Figure 2. Operational semantics

The structural operational semantics is shown in Fig-
ure 2. The semantics describes the operational behavior of
an agent with respect to a given itinerary. Each rule in the
semantics is of the form % The premise is a con-
dition or is specified in terms of a labeled transition system
(8,%,—), where S is a set of states (i.e. itinerary expres-
sions), X is a set of labels (actions), and -C S x ¥ x S
is a set of transitions. The conclusion is specified in terms

of a labeled transition system. We define two actions: ¢

which represents an empty action, and visit(s) which repre-
sents that the agent visits site s. Rule 1 is an axiom (empty
premise). It says that, given a primitive itinerary s, the agent
performs action visit(s) and migrates to site s. Rules 2 and 3
say that the agent performs an input action s7z and an out-
put action s!x, respectively. Rule 4 says that the itinerary
end;d is equivalent to ¢ where end signifies the end of an
itinerary (or a sub-itinerary) in the transition. Rule 5 de-
scribes the semantics of executing a sequential composition
of two itineraries ¢; and io. The rule says that if an agent
can perform an « transition according to the itinerary 7; and
the updated itinerary is i}, then, given an itinerary i, ; i, the
agent can perform an « transition and the itinerary is up-
dated to 4{; 2. Rules 6 and 7 say that the agent will use i,
as the itinerary if the condition ¢ holds, and use i, other-
wise. Rules 8 and 9 enable an agent to visit different sites
concurrently by making clones of the agent; the order of the
visits does not matter. Rules 10 and 11 deal with the merg-
ing of cloned agents after they complete the tasks. Rules
12 and 13 state that the loop will continue if ¢ holds and
terminate otherwise.

3.2 Itinerary Access Control Policy

Access control policies are specified using alternation-
free fragment [6] of the modal p-calculus [8], which is
an expressive temporal logic. A p-calculus formula is
alternation-free if no mutual recursion exists between great-
est and least fixed-point operations. Let F denote the set of
formula expressions; A the set of actions; C the set of con-
ditions; and £ the set of fixed-point equations. The syntax
of the u-calculus is as follows:

A = visit(s) | €

F ou= | F|C|FVF| ~F | FAF |
AF [ AF | X

E = pXF | vX.F

tt and ff stand for propositional constants true and false,
respectively. The operators A, V and — are boolean con-
nectives. ( ) and [ ] are dual operators, which represent di-
amond (existential) and box (universal) modalities, respec-
tively. For instance, («)y means that, possibly after an «
transition, the formula ¢ holds. [«]¢ means that, necessar-
ily after an o transition, the formula ¢ holds. X isa formula
variable.

uX.F and v X.F represent the least and greatest fixed
point formulas, respectively. The greatest and least fixed
points can be used to specify safety (something bad never
happens) and liveness (something good eventually happens)
properties, respectively. For instance, the greatest fixed
point formula v X.o A [a]X specifies the property “p is
true along every a-path”. The least fixed point formula



e = {1 e

2 [erve]V = [er]VU [e2]V

3 [erne]V = [er]VNe]V

4 [la)e]y = {P|3P.P -2 P A P €[¢]V}
5 llale]ly = {P|VP'.P - P = P c[¢]V}
6: [-elv = S—1¢l

7 [(wXe]V = {SCSISClelyix.—g}

7 [wXely = U{SCSIS2lelyix.—s)

Figure 3. Semantics of the u-Logic

uX.pV {a)X specifies the property “there exists an «-path
such that ¢ eventually holds”. The technical details and
more examples on fixed points are provided in [3].

Example 1 Some examples of ACPs in p-calculus are as
follows:

o Policy pX.[visit(e)|tt V [visit(f)]tt grants access
permission to an agent iff the agent will visit either e
or f next.

o Policy v X.([visit(e)]ff A[—]X) grants access permis-
sion to an agent iff the agent will never visit e in the
future.

The semantics of the modal p-calculus is given in Fig-
ure 3. The semantics function [¢]V C S returns the set
of itineraries that satisfy ¢ and is given by induction on the
structure of the formula ¢. Function V is an environment
that maps formula variables to subsets of states S.

Satisfaction relation |= between a set of itineraries P and
an ACP ¢ is defined as P = ¢. P = ¢ if and only if
P € o]V forall V.

4 Runtime Security Verification

In this section, we introduce our runtime security ver-
ification mechanism. Although the architecture presented
in Section 2 considers access control for both itinerary and
computation code, in this paper we focus on the run-time
verification system for itineraries and itinerary ACPs.

4.1 Runtime Verification Flow

Figure 4 shows a flow of our runtime security verifica-
tion with dynamic model generation, which is described as
follows.

1. When visiting a host, the mobile agent first requests
for the ACP P of the host.

Host
l.ask for| 2.ACP 3.model| 4.access | 5.refined| 6.acccess
ACP denied | model granted
Y Y Y

Mobile Agent

Figure 4. Runtime security verification flow

2. After receiving P, the agent creates a model M, based
on the ACP and its own itinerary I. Let B(M;) de-
note the set of behaviors of M, and B(I) the set of
behaviors of I, it is guaranteed that B(I) C B(Mp).

3. My is submitted to the host for verification.

4. The access request is rejected because M, [~ P.
Along with the decision, host provides a behavior bg
of My that violates P as the reason for the rejection.

5. Since M, is an abstraction of I, it is possible that
My £ Pand I = P. If itdiscovers that by € My
and by ¢ I, the mobile agent refines M, to get M;
such that by ¢ M;. That is, the agent will not be re-
jected again for the same reason. On the other hand,
if by € I, the rejection is final. In this example, the
refined model M is submitted to the host for verifica-
tion.

6. The model checking engine at the host proves M; =
P. Since M; is a conservative model (B(I) C
B(My)), My E P = I | P. The access request
is granted.

Two things may happen if the mobile agent is malicious.
Firstly, a model provided by the agent is not a sound ab-
straction of the actual code. This cannot happen by using
our model generation and refinement algorithms. However,
a malicious agent may choose to deliberately modify the
model. To deal with this problem, the Runtime Execution
system shown in Figure 1 is equipped with a runtime moni-
toring mechanism which intercepts model-relevant itinerary
events and matches them against models. The idea was pro-
posed in [15, 2] and experiments showed less than a 5%
overhead to the execution time of most programs. Although
their runtime monitoring system operates on system calls,
we can adapt it to work on itinerary in our system. With
the runtime monitoring mechanism, we can detect the dis-
crepancy if the actual behavior of the agent does not follow
the provided model and therefore terminate the execution.
Secondly, a malicious agent might keep submitting models
to cause denial-of-service at the host. To prevent this attack,
we limit the number of times [V that an agent is allowed to



refine its model. If IV is greater than a predefined threshold,
the agent will not be allowed to refine the model further.

There are three possible outcomes when a mobile agent
tries to access a host. Firstly, the model generated by the
agent satisfies the ACP. In this case, the mobile agent is
safe and can be accepted. Secondly, the model violates the
ACP and the mobile agent cannot provide a refined model.
In this case the mobile agent violates the ACP and the agent
has to be rejected by the host. Finally, the verification en-
gine at the host cannot give a conclusive result. This is due
to either one verification instance requires too much com-
putational resource that the host cannot afford for, or there
are too many verification requests from a mobile agent. In
this case, the mobile agent will be rejected.

4.2 Dynamic Model Generation

We illustrate the idea of dynamic model generation and
refinement by a running example. Algorithm 1 shows the
itinerary of a buyer agent X who wants to buy products
at either host S, or Ss at a low price. X’s strategy is to
negotiate price with both S; and its competitor .Sy, and use
their offers to negotiate further with each other. Since the
quality at Sy is a little better than that at S2, X slightly
prefers S;.

Algorithm 1 NEGOTIATE_ITINERARY ()

1. wvisity = visity = visitg = 0;

2. Si ? pricey, quanty;

3! wvisity + +;

4. Sy ? prices, quants;

5. wvisity + +;

6. B! pricei, quanty, prices, quantsa;
7: visitp + +;

8. while price; > prices AND visit; == visity do
9 S1 ? prices;

10: visity + +;

11: B; ! pricer;

12: visitp + +;

13: if price; < pricea then
14: Sa ? prices;

15: visita + +;

16: B ! prices;

17: visitp + +;

18: end if

19: end while

20: B;

21: viysitB + +;

The variables wvisity, visito and visit g, initially set to
0(line 1), are used to keep track of how many times the hosts
51,52 and B have been visited, respectively. Then X gets
the price and quantity information at both hosts .51, Sz, and
increase the values of visit , visits accordingly (lines 2-5).
Next the information is reported back to its home host B
(lines 6-7). After obtaining the initial information, X con-
tinuously uses Ss2’s low price to negotiate for even lower
price from Sy (lines 8-19). Each time X obtains a new price
from .Sy, it reports the new information to B (lines 9-12);

and if the new price from S; becomes lower than the previ-
ous offer from S5, it will use the information to negotiate a
better deal from Sy (lines 13-18). After X cannot get better
deal, it returns home (lines 20-21).

In this example, S; allows a mobile agent to visit
its competitor. However, it does not allow an agent to
visit itself twice in a row without visiting any other hosts
in between. The reason is obvious: S; does not want
to beat its own price. The ACP at S; can be repre-
sented as the negation of the following p-calculus formula:
uX.(visit(s))(visit(s))tt vV (=)X. Here, (=) is a wild-
card action.

4.2.1 Itinerary Slicing

The first step in model generation is itinerary slicing, in
which the itinerary code that is irrelevant to a policy is re-
moved. Similar to program slicing, we consider control and
data dependency in an itinerary.

A statement m is control dependent on a conditional
statementn (e.g. i f norwhi | e n)inan itinerary if there
exist two paths from n such that one visits m and the other
dose not. A statement m is data dependent on a statement
n in an itinerary if the value of any variable used in m is
updated in n and there exist a path from n to m.

Our itinerary slicing algorithm first marks only those
hosts that appear in an ACP, then recursively marks all the
statements that are in the control or data dependency clo-
sure. Any statements that are not marked when the algo-
rithm terminates will be removed. Range analysis tech-
niques [19] can also be applied in itinerary slicing to reduce
the range of variables.

Algorithm 2 NEGOTIATE_ITINERARY ()

1. wvisit; = visity = 0;
1 S1 7 prices;
. wisity + +;
1 S22 7 prices;

2
3
4
5. wisita + +;
6
7
8
9

. while price; > pricea AND visit; == visite do
S1 7 priceq;
visity + +;
: if price; < prices then
10: Sa 7 prices;
11: visity + +;
12: end if
13: end while

In our example, the values of quant, quants, and the
visit to home host B in Algorithm 1 will not be marked. Al-
gorithm 2 shows the sliced itinerary with respect to property
P. Note that the sliced itinerary is equivalent to the original
itinerary with respect to the ACP.

4.2.2 Abstraction

Although itinerary slicing has resulted in a cone of influence
of P that is smaller than the original code, in many cases a



model checking on the cone is still costly in a run-time en-
vironment. In the case there are infinite type variables, such
as wisit; and price; in Algorithm 2, our model checking
algorithm cannot be applied directly.

Predicate abstraction [7, 5, 1], a special form of abstrac-
tion interpretation [4], is a technique that is used to prove
properties of infinite state systems. In our itinerary lan-
guage, the infiniteness comes from the environment vari-
ables. Since only hosts appear in ACPs, the effect of envi-
ronment variables on policies is through the conditions of
the branch statements. If we consider both the possibilities
at a branch statement, we are actually checking a superset of
actual itinerary behaviors. Therefore, a conservative finite
state abstraction is generated if we replace the conditions
that involve infinite variables with non-determinism.

Algorithm 3 NEGOTIATE_ITINERARY ()

S1;

Sa;
while* do
S1;

if * then
Sa;
end if
end while

ONoTRWNE

Algorithm 3 shows the abstraction M, of the sliced
itinerary. Here * denotes a non-deterministic value ¢t or
ff- Note the state space of the abstraction is finite (* is
Boolean), while the state space of the sliced itinerary is still
infinite (price; and prices have infinite domain integer).
Our model checking algorithms proves that M, [~ P be-
cause thetrace 1 -2 -3 — 4 — 5 — 3 — 4 violates the
ACP.

4.2.3 Refinement

The models obtained after abstraction serve as sound ab-
stractions of the actual itinerary, which means that a secu-
rity violation reported by a model checker might be spuri-
ous. Let B(I),B(My) and B(P) denote the set of all be-
haviors of the itinerary I, abstract model M, and property
P respectively. Our abstraction algorithm guarantees that
B(I) C B(My). Therefore, if the model checking proce-
dure shows B(My) C B(P), the itinerary is safe and can
be accepted by the host. However, if B(M,) € B(P),
the result is inconclusive since we can conclude neither
B(I) C B(P) nor B(I)  B(P).

In this case, we refine the abstraction M,. The refine-
ment procedure first determine whether the counterexample
exists in 1. If it does, I violates P and therefore has to be
rejected. Otherwise, the procedure eliminates the spurious
bug and refine the abstract model.

An example of the refinement procedure is shown in
Figures 5. The rectangle marked by ACP shows the set
of behaviors allowed by an ACP. The small circle marked

fmodel behavior

ACP ACP
Refine Model mode! behavi
actual actual
behavior, behavior

Figure 5. Model refinement

by act ual behavi or shows the set of behaviors of an
itinerary. Since the behaviors of the itinerary is a subset of
the ACP, there is no violation. However, because the ac-
tual itinerary cannot be checked directly, an abstraction is
created (big circle marked by nodel behavior). As
indicated on the left in Figure 5, the abstract model violates
the ACP because the model behavior is not fully contained
in the allowed behavior. However, the behavior that violates
the policy is spurious since it is introduced in the abstrac-
tion procedure. The goal of the refinement procedure is to
eliminate spurious behaviors from the model while preserv-
ing simplicity. The right figure illustrates an ideal algorithm
that removes all the offensive behaviors from the initial ab-
stract model and results in a refined model whose behavior
is a subset of the ACP. Since the refined model is safe and it
is a superset of the itinerary, the actual itinerary is safe with
respect of the ACP.

Algorithm 4 NEGOTIATE_ITINERARY ()

1. equal-visit = tt;
2. Sy,
3. equalwisit = ff;
4: So;
5. equal_visit = tt;
6: while* AND equal_visit do
7 S1;
8: equal_visit = fF;
9 if * then
10: Sa;
11: equal visit = tt;
12: end if
13: end while

Algorithm 4 shows the refined model M with a pred-
icate equal_visit introduced. The value of equal_visit is
t¢ iff hosts S; and Sy have been visited the same number
of times, i.e. equal_visit = {visity == visita}. After
the refinement, the offensive behavior found in the previous
section is no longer a valid trace. Our model checker proves
B(M,) ¢ B(P). Since B(I) C B(M,) C B(Mo) C B(P),
1 is safe with respect to P.

There are two advantages to generate abstract models dy-
namically: (1) compared to model checking, model gener-
ation/abstraction is a low cost operation; and (2) the qual-
ity of generated models will directly affect the efficiency of
model checking. Therefore, a careful study on how to ex-
ploit the knowledge of both the itinerary and ACP will be
essential on the quality of models and eventually the effi-



ciency of the model checker.
4.3 Model Checking

A number of model checkers have been developed for
model checking alternation-free modal p-calculus. In this
work, we used XMC, a logic-programming based model
checker. XMC directly encodes the semantics in Figure 3
using XSB tabled logic programming system [17]. XSB ex-
tends SLD resolution in Prolog with tabled resolution which
enables XSB to terminate more often than the standard Pro-
log and to avoid redundant sub-computations.

We have also implemented the structural operational se-
mantics in Figure 2 using XSB. The transitions are speci-
fied using a ternary predicate t r ans (.S, A, T') where S is
the source state, A is the action, and 7' is the target state.

Below, we present the encoding of transition rules:
Mgrate Rule trans(pitin(S), visit(S), end).
Input Rule trans(in(S, X), in(S X), end).
Qutput Rule trans(out (S, X), out(S,X), end).
Sequential Rule 1
trans(pref(end,S), A T) :-
Sequential Rule 2
trans(pref(S1,S2), A pref(T1,S2)) :-
6. Condition Rule 1
trans(cond(C, S1,S2), A T) :-
7. Condition Rule 2
trans(cond(C, S1,S2), A T) :-
8. Parallel Rule 1
trans(par(end, S), A
9. Parallel Rule 2
trans(par(S,end), A T) :- trans(S,AT).
10. Parallel Rule 3
A
A

pPONPE

trans(S,AT).

o

trans(S1, A T1).
C, trans(S1,AT).
not(C), trans(S2,AT).

, T) :- trans(S,AT).

trans(par(S1,S2), A par(T,S2)) :- trans(S1,AT).
11. Parallel Rule 4
trans(par(S1,S2), A par(S1,T)) :- trans(S2,AT).

12. Loop Rule 1
trans(while(C 1),

13. Loop Rule 2
trans(while(C 1),

epsilon, pref(l,while(Cl))) :- C

epsilon, end) :- not(Q.

Identifiers beginning with uppercase letters are Prolog
variables. Function symbols are denoted by identifiers be-
ginning with lowercase letter. A term denoted by ¢ is
constructed from function symbols and variables. In the
above, term pi ti n(S) represents the primitive itinerary
S.in(S, X) and out (S, X) represent s?x and slz, re-
spectively. Function symbols pref, cond, par, and
whi | e represent the sequential composition, condition,
parallel composition, and loop operators, respectively. A
logic program is a set of Horn clauses, in which each clause

—

is of the form p(¢) : —G. Here p(?) is the head of the
clause with a list of terms as parameters and G is a con-
junction of atoms (terms with predicate at and only at the

root). p(?) : —G means that if G is true, then p(?) is true.

—

p(t) : —trueisa fact, and can also be writtenas p( ¢ ). For
instance, the encoding of the Migrate rule is a fact which
means that given a primitive itinerary pi t i n( S) , the agent
can perform avi si t ( S) action. The encoding of the Se-
quential Rule 1 is a Horn clause, which means that if an

Table 1. Data for Algorithms 1,2

#iter #oates; #tran, time, #otates, #trano times
1060 1843 32K 39.1 1131 29K 28.2
10060 5371 72K 82.8 3483 69K 70.2
10100 3203 95K 186 1971 89K 135
100100 14951 333K 587 9803 323K 526

agent can perform an A action according to itinerary .S then
it can perform an Aaction according to itinerary end; S.

The k= relation is encoded as Prolog predicate
nodel s(P, F) which checks if an itinerary expres-
sion P satisfies a p-calculus formula F.  Here we
present the encoding of some of the rules in Figure 3.
The details of the model checker are presented in [13].
Rule 2 is encoded as nodel s(P, fO(F1, F2)) :-
nodel s(P, Fl1); nodel s(P, F2), which means
that if a process P satisfies the formulas F; or Fs,
then P satisfies f Or(F1, F2). The Diamond rule
(Rule 4) is encoded as: nodel s(P, fDi am{A/ F)) :-
trans(P, A P1), nodel s(P1, F)., which means
that if P can perform an A transition and then behaves
as P1, and P1 models F', then P satisfies f Di an( A, F) .
Since the semantics of logic programs are based on mini-
mal models, XSB directly computes least fixed points. To
compute the greatest fixed point formula, XMC makes use
of the duality v X.¢ = —u. X~ and reduces the problem of
checking whether a state satisfies a greatest fixed point for-
mula to the problem of checking whether the state satisfies
the negation of the corresponding least fixed point formula.

Our model checking engine produces a counter-example
that shows M, [~ P. The trace of the counterexample is
1—-2—-3—-4—-5— 3 — 4. By studying the
counterexample and Algorithm 3 we can see S is visited
twice at line 4 without a visit to S5 in between.

5 Experimental Results

In this section, we provide the experimental results for
model checking Algorithms 1-4 shown in Section 4. For al-
gorithms 1 and 2, we cannot apply model checking directly
without knowing the bounds of the variables. In order to
do the comparison, we limit the ranges of pricey, prices to
[1..60] or [1..100], and quant, quants to [1..2]. Although
Algorithms 1-4 allow infinite loops, in practice the devel-
oper of the mobile agent will always want the mobile agent
stop the negotiation after sufficient attempts. In this experi-
ment we limit the number of iterations up to 100. The ACP
under verification is that no agent visits site s; more than
once before visiting some other sites. All reported perfor-
mance data were obtained on a 1.4GHz Pentium M machine
with 512MB of memory running Red Hat Linux 9.0.

Table 1 shows the results for model checking the
itinerary Algorithms 1 and 2, where the subscripts at each



Table 2. Data for Algorithms 3,4

#iter | #tatess #trang times #otates, #trany timey
10 203 301 0.01 203 202 0.01
100 - - - 2003 2002 0.07

row (60 or 100) indicating the ranges of price; and prices.
Table 2 shows the results for Algorithms 3 and 4. In both ta-
bles, #i ter, #states, #tran, time specifies the
number of maximal iterations, the number of states, the
number of transitions and CPU time in seconds, respec-
tively. The columns with subscript i contain experimental
data for Algorithms 4.

As shown in Table 1, the itinerary slice used in Al-
gorithm 2 improve the performance (CPU time) by about
10%-28% over Algorithm 1. The gain is due to reduced
number of states and transitions after removing irrelevant
information before model checking. It can also be observed
that incrementing in the range of variables (from 60 to 100)
will increase the time usage substantially. Even with an as-
sumption of a small range for the variables, the table indi-
cates that it is not practical to use formal verification in an
environment where quick decisions are expected. On the
other hand, as shown in Table 2, it takes merely 0.01 sec-
ond for Algorithm 3 to report an ACP violation. Note the
violation is detected at before the 10th iteration, so no data
for 100th iteration is listed in the table. However, the rea-
son provided by the model checker turns out to be a spuri-
ous counter-example. After refinement, the model checkers
uses only 0.07 seconds up to 100 iterations, which is orders
of magnitude improvement over Algorithms 1/2.

6 Conclusions and Future Work

We presented a new approach to address the secu-
rity of mobile agents with the following salient features:
(1)an itinerary-driven mobile system architecture, where
the specification of the navigational behavior of a mobile
agent is separated from the specification of the computa-
tional behavior; (2)a run-time verification system, where
model checking techniques are used to formally verify
whether an itinerary satisfies an ACP; (3)model generation
code, where abstract models, instead of itineraries, are ver-
ified to gain performance.

Currently model generation and model refinement are
being performed manually. One future work is to develop
algorithms to automate these two procedures. A second fu-
ture work is to perform a similar run-time security verifi-
cation on computational code in addition to itineraries. Fi-
nally, we will apply this framework to scientific workflows
where data-intensive computation requires the technique of
mobile agent.
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