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Abstract—Driven by the explosive interest in applying deep
reinforcement learning (DRL) agents to numerous real-time con-
trol and decision-making applications, there has been a growing
demand to deploy DRL agents to empower daily-life intelligent
devices, while the prohibitive complexity of DRL stands at odds
with limited on-device resources. In this work, we propose an
Automated Agent Accelerator Co-Search (A3C-S) framework,
which to our best knowledge is the first to automatically co-
search the optimally matched DRL agents and accelerators that
maximize both test scores and hardware efficiency. Extensive
experiments consistently validate the superiority of our A3C-S
over state-of-the-art techniques.

Index Terms—Network Accelerator Co-design, Deep Rein-
forcement Learning, AutoML

I. INTRODUCTION

Recent successes in deep reinforcement learning (DRL) [1],
which integrates reinforcement learning (RL) and deep neu-
ral networks (DNNs), have triggered tremendous enthusi-
asm in developing and deploying DRL-powered intelligence
into numerous inference and control applications, including
robotics and autonomous vehicles. Many of them, such as
autonomous vehicles, require real-time control and decision-
making policies for which the DRL agents have to derive
real-time policies using real-time data for dynamic systems.
However, real-time control and decision-making for DRL can
be prohibitively challenging in many real-world applications
due to DRL’s integrated complex DNNs and edge devices’
constrained resources, calling for DRL-powered intelligent
solutions that favor both test scores and hardware efficiency.

To address the large gap between the growing need for
on-device DRL and DRL’s prohibitive complexity, emerging
network and accelerator co-exploration (NACoS) methods [2]–
[4] are promising as they can boost DNN acceleration effi-
ciency. However, directly applying NACoS methods to design
DRL agents can easily fail due to the commonly observed
vulnerability and instability of DRL training, which occur
with a high variance [5]. Furthermore, such instability will
be further exacerbated when considering differentiable NAS
(DNAS) based NACoS methods, which requires competitively
low search cost and thus can enable efficient navigation over
the large DRL agent and accelerator joint space, because the
success of DNAS requires unbiased gradient estimation with
low variance. To this end, we aim to develop a novel NACoS
framework dedicated to DRL agent acceleration to promote

fast development and highly efficient DRL-powered solutions.
Specifically, we make the following contributions:
• We propose an Automated Agent Accelerator Co-Search

(A3C-S) framework, which to our best knowledge is the
first to automatically co-search the optimally matched
DRL agents and accelerators that maximize both test
scores and hardware efficiency.

• A3C-S integrates and demonstrates the first DNAS search
dedicated to DRL that features a novel distillation mech-
anism to effectively stabilize agent search, despite the
instability of DRL training.

• A3C-S incorporates a parameterized micro-architecture
with over 1027 searchable choices of accelerators and
dataflows to enable a differentiable search for DRL agent
accelerators. A3C-S is generic and can be applied on top
of different accelerator templates.

• Through FPGA measurements, extensive experiments and
ablation studies validate A3C-S’s effectiveness in gener-
ating efficient DRL agents/accelerators that consistently
outperform state-of-the-art (SOTA) agents/accelerators.

II. RELATED WORKS

Deep reinforcement learning. DRL integrates traditional
RL algorithms with DNNs to handle higher-dimensional and
more complex problems, e.g., DQN [1] introduces DNNs to
Q-Learning and [6] utilizes DNNs to model both the actor and
critic in AC-based DRL. More DRL works can be found in
[7]. Despite DRL’s promising success, automating the design
of DRL agents has not yet been explored, while there is a
growing need for fast development of DRL-powered solutions.

Hardware-aware neural architecture search. NAS has
been widely adopted to automate the design of efficient DNNs.
To tackle the prohibitive search cost of previous RL-based
NAS methods, DNAS [8], [9] has gained more attention thanks
to its excellent search efficiency. However, the possibility of
applying NAS or DNAS to DRL hasn’t been explored.

DNN accelerator design. SOTA DNN accelerators [10],
[11] tackle the prohibitive complexity of DNNs through novel
micro-architectures/dataflows to maximize data reuses, and
thus improve acceleration efficiency. Early works require ex-
perts’ manual design, and thus were time-consuming. Later,
various design flow and automation tools [12], [13] were
developed. However, they mostly explored DNN acceleration,
leaving automated DRL accelerator design unexplored.978-1-6654-3274-0/21/$31.00 ©2021 IEEE
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Network and accelerator co-search. Jointly exploring
DNNs and their accelerators is very promising towards ef-
ficient DNN solutions, as shown in pioneering works [2], [3],
where the former suffers from large search time and the latter
considers a limited search space. These works motivate us to
explore the joint search for DRL agents and their accelerators
to maximize the test scores and hardware efficiency.

III. PRELIMINARIES OF DRL

Here we describe the preliminaries of DRL. RL can be
viewed as a Markov Decision Process (MDP) determined by
a tuple (S,A, T,R, γ), where S is the state space, A is the
action space, T (s′|s, a) is the transition probability of ending
up in state s′ when executing the action a in the state s, R
is the reward function, and γ is a discount factor. A policy
π(st, at) = p(at|st) defines the probability that an agent in
the MDP executes the action a in the state s. In particular,
the agent performs the action at ∈ A sampled from the policy
π(st, at) at each time step t and the state st ∈ S, leading to
the next state st+1 ∈ S and acquiring a reward rt.

In DRL, a policy is parameterized by θπ , i.e., the weights
of a DNN, and the agent’s goal is learning an optimal policy
to maximize the expected cumulative reward:

θ∗π = argmax
θπ

J(π(·|θπ)) = argmax
θπ

Eπ

[
H∑
t=0

γtrt

]
(1)

where H is the time horizon, and γ is a discount factor.
To solve the optimization problem in Eq. 1, stochas-

tic policy gradient methods [14] are widely adopted where
∇θπJ(π(·|θπ)):

∇θπJ(π(·|θπ)) = Eπ

[
H∑
t=0

δt∇θπ log(π(at, st|θπ))

]
(2)

In this work, we adopt the temporal difference error (td-error)
δt = rt + γVπ(st+1) − Vπ(st) to reduce the variance in
policy gradients, where Vπ(s) = Eπ

[∑H
t=0 γ

trt|s0 = s
]

is
the value function which estimates the expected cumulative
reward of the policy π starting from the state s. Since the value
function Vπ is hard to estimate, AC-based DRL methods [15]
parameterize the value function (i.e., the critic) with the
learnable parameter θv , i.e. the weights of a DNN in DRL.
The objective of θv is to minimize the td-error of the estimated
value between consecutive states:

θ∗v = argmin
θv

Eπ

[
H∑
t=0

1

2
(rt + γVπ(st+1|θv)− Vπ(s|θv))2

]
(3)

Therefore, in the AC framework, the actor and critic parame-
terized by θπ and θv , respectively can be iteratively updated
to lead the agent towards an optimal policy.

IV. THE PROPOSED A3C-S FRAMEWORK

There exist three main challenges in designing A3C-S:
(1) the huge joint search space, (2) the non-differentiable
accelerator parameters and the gap between DNAS’s required
layer-wise hardware-cost penalty and the optimal accelerators’

dependency on all the layers, and (3) the training instability
with a high variance of DRL which may lead to the failure of
applying NAS to search DRL agents. In this section, we first
introduce the component techniques of A3C-S in Sec. IV-A
that tackles the first two challenges with a novel differentiable
search strategy and a differentiable accelerator search engine,
and then A3C-S’s AC-distillation mechanism in Sec. IV-B to
tackle the third challenge.

A. A3C-S: the co-search pipeline

A3C-S formulation. We formulate A3C-S as below:

min
θπ,θv,α

Ltask(θπ, θv, net(α)) + λLcost(hw(φ
∗), net(α)) (4)

s.t. φ∗ = argmin
φ

Lcost(hw(φ), net(α)) (5)

where α and φ are the variables maintaining the probability of
choosing different (1) network operators and (2) accelerator
parameters, with θπ and θv being the supernet weights of
the actor and critic in a AC-based DRL, respectively, Ltask
and Lcost are the task loss (see Sec. IV-B for details) and
the hardware-cost loss, respectively, and net(α) and hw(φ)
denote the network and accelerator parameterized by α and φ,
respectively.

A3C-S’s co-search pipeline. During co-search, A3C-S
starts by updating the accelerator parameters φ given the
current network structure net(α), and then updates θπ , θv ,
and α in the same iteration based on the accelerator hw(φ∗)
resulting from the previous step. Our A3C-S adopts one-
level optimization [16] instead of bi-level optimization [17],
considering that the one-step SGD approximation of bi-level
optimization will lead to biased gradient estimation [18] which
can largely suffer from the high variance of DRL training
evaluated in Sec. V-D. The updates of α and φ follow:

Forward : Al+1 =

N∑
i=1

GShard(α
l
i)Oi(A

l) = Olfw(A
l) (6)

Backward :
∂Ltask
∂αli

=

K∑
k=1

∂Ltask
∂GS(αlk)

∂GS(αlk)

∂αli

=
∂Ltask
∂Al+1

K∑
k=1

Olk(A
l)
∂GS(αlk)

∂αli

(7)

∂Lcost
∂αli

= 1(GShard(α
l
i) = 1)L

αli
cost(hw(φ

∗), net(αli)) (8)

where Al and Al+1 are the feature maps of the l-th and (l+1)-
th layer, respectively, GShard is the hard Gumbel Softmax
operator generating a one-hot output, i.e., only one operator
Olfw will be activated during forward, N is the total number
of operator choices, and Oli is the i-th operator in the l-th layer
parameterized by αli. Meanwhile, GS is a Gumbel Softmax
function and K is the number of activated paths with the top
K probability, and similar to [19], K ∈ (1, N) in A3C-S to
control the computational cost. In Eq. 8, 1 is an indicator
denoting whether αli (i.e., the i-th operator in the l-th layer)
is activated during forward.



A3C-S’s co-search strategy. A3C-S integrates a novel
search strategy to solve Eq. 4 for effective yet efficient search
to avoid memory explosion due to the large joint search spaces:

Single-path forward: (see Eq. 6) A3C-S adopts hard Gumbel
Softmax sampling [20], i.e., only the choice with the highest
probability will be activated to narrow the gap between the
supernet and the finally derived network thanks to the single-
path property of hard Gumbel Softmax sampling.

Multi-path backward: (see Eq. 7) A3C-S activates multiple
paths to approximate the gradients of α via Gumbel Soft-
max relaxation to balance the search efficiency (prefer fewer
activated paths) and stability (prefer more activated paths),
inspired by [19] which targets DNAS for DNNs.

Hardware-cost penalty: The network search in Eq. 4 re-
quires layer-wise hardware-cost penalties assuming the layer-
wise operators running on the final optimal accelerator
hw(φ∗), which is not yet available at each co-search epoch
as the optimal network is still unknown, i.e., the chicken-and-
egg problem. To handle this, we approximate the layer-wise
hardware-cost by assuming that the single-path network de-
rived during each forward is close to the final derived network,
since the network operators that have higher probabilities are
also more likely to appear in the final optimal network.

A3C-S’s Differentiable accelerator search (DAS).
EDD [3] made a pioneering effort to differentiably co-search
the network and accelerator, yet their accelerator search space
is limited to the parallel factor of their template, which can be
analytically fused into their computational cost, whereas this
is not always applicable to other naturally non-differentiable
accelerator design knobs such as PE numbers and buffer allo-
cation strategies. A more general search engine is desirable.

A3C-S’s accelerator search algorithm: We propose a gen-
eral DAS engine to efficiently search for the optimal acceler-
ator, including the micro-architectures and dataflows, given a
DNN based on the single-path sampling in Eq. 6, i.e.:

φ∗ = argmin
φ

M∑
m=1

GShard(φ
m) L̂

where L̂ = Lcost(hw({GShard(φm)}), net(α))

(9)

where M is the number of accelerator parameters. Given the
network net(α) which is the most likely network sampled
during the single-path forward, the search engine utilizes hard
Gumbel Softmax GShard sampling on each design parameter
φm to build an accelerator hw({GShard(φm)}) and penalize
each sampled accelerator parameter with the overall hardware-
cost Lcost through relaxation in a differentiable manner.

A3C-S’s accelerator template: We adopt a parameterized
accelerator template built upon a SOTA chunk-based pipeline
micro-architecture [21]. The accelerator template comprises
multiple sub-accelerators (i.e., chunks) and executes DNNs
in a pipeline fashion. In particular, each chunk is assigned
with multiple but not necessarily consecutive layers which are
executed sequentially within the chunk. Similar to Eyeriss,
each chunk consists of levels of buffers/memories (e.g., on-
chip buffer and local register files) and processing elements

(PEs) to facilitate data reuses and parallelism with searchable
accelerator parameters, including PE interconnections (i.e.,
Network-on-chip), buffer sizes, and MAC operations’ schedul-
ing and tiling (i.e., dataflows) (see more details in Sec. V-A).

B. A3C-S: the AC-distillation mechanism
Motivation. Policy distillation [22] shows that the distilla-

tion from a teacher agent can effectively reduce the variance
of gradient estimates and stabilize the training process of
the student agent, motivating us to introduce a distillation
mechanism to stabilize the DNAS process for DRL. However,
vanilla policy distillation merely distills the policy without
considering the value function which can play a critical role in
both assisting the policy updates and reducing the variance of
vanilla policy gradients. We conjecture that further distilling
the value function from the teacher agent can better improve
the training stability and the convergence.

A3C-S’s AC-distillation. In A3C-S, we propose an AC-
distillation mechanism to distill knowledge from both the actor
and critic of a pretrained teacher agent to the student agent,
where the two distillation losses for the actor and critic are:

Ldistillactor = Eπ

[
H∑
t=0

π(at, st|θteaπ ) log
π(at, st|θteaπ )

π(at, st|θstuπ )

]
(10)

Ldistillcritic = Eπ

[
H∑
t=0

1

2

(
Vπ(st|θstuv )− Vπ(st|θteav )

)2]
(11)

where π(at, st|θteaπ ) and π(at, st|θstuπ ) are the teacher and
student actor, respectively, and Vπ(st|θteav ) and Vπ(st|θstuv )
are the teacher and student critic, respectively. We adopt KL
divergence to distill the knowledge from the teacher actor
following [22] and the MSE loss as a soft constraint to enforce
the student critic to mimic the estimated value of the teacher
critic. The final objective during both search and training is:

Ltask = Lpolicy + Lvalue + β1Lentropy

+ β2L
distill
actor + β3L

distill
critic

(12)

where β1, β2, and β3 are the weighted coefficients. Here
Lpolicy is the policy gradient loss as in [14], Lvalue is the
value loss based on the td-error, and Lentropy is the entropy
loss on top of the policy to encourage exploration, i.e.:

Lpolicy = Eπ

[
−

H∑
t=0

δt log(π(at, st|θstuπ ))

]
(13)

Lvalue = Eπ

[
H∑
t=0

1

2

(
rt + γVπ(st+1|θstuv )− Vπ(st|θstuv )

)2]
(14)

Lentropy = Eπ

[
H∑
t=0

π(at, st|θstuπ ) log(π(at, st|θstuπ ))

]
(15)

The search algorithm of A3C-S is summarized in Alg. 1.

V. EXPERIMENT RESULTS

In this section, we first introduce our experiment setting, and
then present ablation studies to evaluate A3C-S’s component
techniques and our A3C-S framework.



Algorithm 1 Automated Agent Accelerator Co-Search (A3C-
S)

Initialize the step counter t← 1
repeat

tstart = t
Get state st
repeat

Perform at ∼ π(at, st|θstuπ ) based on Eq. 6
Receive reward rt and new state st+1

t← t+ 1
until terminal st or t− tstart == rollout length L
Update φ in Eq. 9 to acquire φ∗

for i ∈ {tstart, . . . , t− 1} do
δt = rt + γVπ(st+1|θstuv )− Vπ(st|θstuv )
Calculate Ltask in Eq. 12 based on δt, π(at, st|θteaπ ), and

Vπ(st|θteav )
Calculate Lcost in Eq. 4 based on φ∗

Update θstuπ : θstuπ ← θstuπ − η1∇θstuπ Ltask
Update θstuv : θstuv ← θstuv − η1∇θstuv Ltask
Update α: α← α− η2∇α(Ltask + λLcost)

end for
until t > Tmax
Derive the final agent and accelerator with the highest α and φ
respectively
return the final agent and accelerator

A. Experiment setup

Models and tasks. We evaluate the performance of the AC-
based DRL when its feature extractor backbone adopts the
searched networks from A3C-S or five SOTA networks with
different model sizes, including the original small network in
DQN [1] (termed as Vanilla) and ResNet-14/-20/-38/-74, on
Atari 2600 games based on the Arcade Learning Environment.
For all the ResNets, we modify the stride of the first convolu-
tion to be 2 and the output dimension of the final FC layer to
be 256 to adapt them to the 84×84 resolution of Atari games.

Training settings. We use the same training and test hyper-
parameters settings for all the models on all the tasks in this
paper. Specifically, we train a DRL agent on each task for 3e7
steps with a discount factor (γ in Eq. 1) of 0.99 and a rollout
length of 5; We use the RMSProp optimizer [1] with an initial
learning of 1e-3 which keeps constant in the first 1e7 steps
and then linearly decays to 1e-4; and the reported test score
is averaged on 30 episodes with null-op starts following [1].

Distillation Settings. For the proposed AC-distillation, we
train a ResNet-20 model as the teacher agent and β1, β2, and
β3 in Eq. 12 are set to be 1e-2, 1e-1, and 1e-3, respectively,
in all the experiments.

Search settings. The supernet structure follows the network

TABLE I
THE TEST SCORES OF DIFFERENT MODELS ON A SUBSET OF ATARI GAMES.

Atari Games Vanilla ResNet-14 ResNet-20 ResNet-38 ResNet-74
Breakout 523.7 776.5 811 818.5 2.2

Alien 1724 9007 9323 8829 4456
Asterix 4850 708500 856800 756120 539060
Atlantis 3064320 3127390 3156130 3181090 3046490

TimePilot 4780 9070 9680 9500 9040
SpaceInvaders 1171 9848 46870 17962 15111
WizardOfWor 1320 2690 3580 3160 1850

Tennis -23.7 13.8 11.5 19.6 19.3
Asteroids 2095 5690 5744 1947 4792
Assault 10164 14470 17314 12406.5 9849

BattleZone 7600 5800 13100 13300 4100
BeamRider 5530 23984 25961 29498 30048

Bowling 28.1 53 59.2 33.2 50.8
Boxing 4.2 100 100 99.3 87.1

Centipede 5025 6690 6410 6384.6 6899
ChopperCommand 1320 11170 14910 4370 8240

design (i.e., #groups and stride) of the ResNet series with
12 sequential searchable cells. The candidate operators are
standard convolutions with a kernel size 3/5, inverted residual
blocks with a kernel size 3/5, a channel expansion of 1/3/5, and
skip connections, leading to a search space of 912 choices. We
update the architecture parameters using an Adam optimizer
with a momentum of 0.9 and a fixed learning rate of 1e-3.
The initial temperature [9] in Gumbel Softmax is set to 5 and
decayed by 0.98 every 1e5 steps.

Accelerator settings. To evaluate A3C-S’s generated ac-
celerators, we adopt a standard FPGA design flow, i.e., the
Vivado HLS flow [24], and performance metric, i.e., frame per
second (FPS). When searching for the accelerator parameter,
A3C-S makes use of a SOTA accelerator performance pre-
dictor [13], [25] to obtain fast and reliable estimation during
search. The accelerator parameters we optimize upon include
1) parallel processing elements (PE) settings: the number and
inter-connections of PEs, 2) buffer management: allocation of
lower level memories between inputs, weights and outputs,
3) tiling and scheduling of MAC (Multiply and Accumulate)
computations, and 4) layer allocation: ways to assign each
layer to the corresponding pipeline stage (sub-accelerator).

B. Ablation study: DRL with different model sizes

Observations and Analysis. Fig. 1 visualizes the test core
evolution during the training process on various Atari games,
when adopting different networks for the DRL agents, where
the highest achieved test scores is listed in Tab. I. Two observa-
tions can be made. First, networks with a larger size in general
favor the achieved test scores especially on more difficult tasks
(e.g., BeamRider of Tab. I), since larger networks can provide
higher test scores with the same training time steps in most
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Fig. 1. Test scores averaged over 30 episodes during the training of five models on four Atari games.
.
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Fig. 2. Test score evolution during the search processes of three different search schemes on four Atari games [23], where Direct-NAS denotes directly
applying NAS w/o distillation, and A3C-S:One-level and A3C-S:Bi-level search with the distillation loss using one- and bi-level optimization, respectively.

of the games over the smaller vanilla-network and ResNet-14;
Second, there always exists a task-specific optimal network
size (i.e., a further increase won’t improve or even degrade the
test score), which is likely due to the increased difficulty of
training larger DRL agents. For instance, the vanilla network
performs well in the Atlantis game (see Fig. 1), whereas
ResNet-38 merely offers a marginally improved score at a
cost of 13.7× higher FLOPs (floating-point operations); and
ResNet-74 is inferior to ResNet-20/38 in most of these experi-
ments, since it is more difficult to be trained within the limited
training steps. Note that even though more training steps or
better-tuned hyper-parameters may improve the convergence
of DRL with ResNet-74, the associated inefficiency makes it
impractical to be widely adopted.

Extracted Insights. The observations above imply that (1)
DNNs’ architecture plays a critical role in DRL, which is
still under-explored in existing works, and (2) designing task-
specific agents is highly desired in optimally balancing the test
score and processing efficiency for different tasks. Given that
the manual design of dedicated agents for different tasks is not
practical in handling the growing need for the fast development
of DRL-powered solutions for numerous applications, we are
motivated to use NAS to design DRL agents.

C. Ablation study: evaluating the proposed AC-distillation

Observations and Analysis. We compare our AC-
distillation mechanism with the three baselines by applying
them to the vanilla network and ResNet-14 evaluated on Atari
games (see Tab. II). Three observations can be made. First,
compared to designs without distillation, distillation strategies
in general favor the test scores, which is consistent with [22];
Second, our AC-distillation mechanism consistently performs

best in achieving the highest test scores on most tasks, among
the three distillation strategies.

D. Ablation study: one-level vs. bi-level optimization
In this set of experiments, we visualize the test score

evolution in Fig. 2 during the search process of (1) directly
applying NAS without distillation, (2) using AC-distillation
with bi-level optimization, and (3) using AC-distillation with
one-level optimization. We can see that the test scores remain
low when searching with the bi-level optimization, validating
our mentioned hypothesis that the supernet cannot serve as
an accurate proxy to indicate the performance of the sam-
pled subnetworks. In contrast, searching with the one-level
optimization leads to a consistent improvement in the test
scores during search, demonstrating the first framework that
successfully makes NAS possible in DRL.

E. Evaluating the proposed A3C-S framework
A3C-S vs. SOTA networks on searched accelerators.

Here we evaluate A3C-S’s searched agents by comparing their
hardware performance (i.e., FPS) with the most competitive
SOTA DRL agents, i.e., ResNet-14 with the best trade-off
between test scores and hardware efficiency among all our
experiments (see Tab. II). For a fair comparison, we use our
proposed DAS engine to search for the optimal accelerators
under the same search settings and to train both networks with
our AC-distillation mechanism. From Fig. 3, we can see that
the resulting hardware efficiency of A3C-S’s searched agents
is consistently higher than that of the most competitive SOTA
DRL agents, under a comparable or better test score. This set
of experiments again motivates the necessity of applying NAS
to search for task-specific optimal agents that balance both the
test scores and model complexity.

TABLE II
DRL WITH THE VANILLA NETWORK AND RESNET-14 UNDER: (1) NO DISTILLATION, (2) ONLY POLICY DISTILLATION, AND (3) OUR AC-DISTILLATION.

Vanilla ResNet-14
Atari Games No distillation Policy disitllation only AC-distillation No distillation Policy disitllation only AC-distillation

Alien 1724 3096 3419 9007 14682 15723
SpaceInvaders 1171 26821 30124 9848 76246 111189

Asterix 4850 59020 64510 708500 749870 849400
Asteroids 2095 4131 4647 5690 15371 15947
Assault 10164 8088.4 9628.5 14470 11697 14052

BattleZone 7600 14200 14400 5800 16300 17500
BeamRider 5530 14417 21519 23984 38311 39604

Boxing 4.2 2.8 100 100 100 100
Centipede 5025 5800 6575.5 6690 7744.3 8056.9

ChopperCommand 1320 15900 19120 11170 26320 31190
CrazyClimber 118300 138610 145700 128710 135290 138470
DemonAttack 318349 463823 483490 481818 517801 521051



Fig. 3. Benchmark the proposed A3C-S with (1) ResNet-14 on our DAS’s searched accelerators and (2) A3C-S searched agents on A3C-S searched accelerators
vs. SOTA accelerators DNNBuilder [26], in terms of test scores and FPS trade-off on four Atari games.

A3C-S searched agents on A3C-S searched accelerators
vs. SOTA accelerators. Here we evaluate A3C-S’s DAS
engine by comparing the hardware efficiency (i.e., FPS) of
A3C-S’s searched agents, when being accelerated by both our
DAS’s generated accelerators and a SOTA DNN accelerator,
DNNBuilder [26]. For a fair comparison, both accelerators
adopt the optimal DRL agents searched by our A3C-S. As
shown in Fig. 3, the FPS achieved by DAS’s generated
accelerators consistently outperforms that of the SOTA DNN
accelerator, under the same DSP limit (900; which is the
largest resource in our ZC706 [27]. This set of experiments
validates the need for dedicated accelerators for DRL agents,
of which our A3C-S is the first demonstration.

A3C-S vs. SOTA DRL solutions. To evaluate the com-
bined benefits of our A3C-S, we evaluate A3C-S’s resulting
accelerators (i.e., using A3C-S’s DAS to generate optimal
accelerators for A3C-S’s searched agents) over a SOTA DRL
system FA3C [28], where the performance of the latter is
directly obtained from the reported data of the baseline pa-
per. From Tab. III, we can see that our A3C-S’s resulting
DRL accelerators achieve 2.1× ∼ 6.1× better FPS, while
offering consistently higher test scores, as compared to the
SOTA DRL system [28]. As expected, jointly searching for
both the DRL agents and their accelerators leads to optimal
DRL solutions, achieving both higher test scores and better
hardware efficiency. Furthermore, our A3C-S’s differentiable
search strategy makes it more accessible to researchers without
paramount computing resources and facilitates fast develop-
ment of DRL-powered solutions.

TABLE III
TEST SCORES / FPS OF OUR A3C-S COMPARED WITH FA3C ON SIX

ATARI GAMES REPORTED BY FA3C [28].
Atari Games FA3C A3C-S
BeamRider 3100 / 260 36745 / 617.7
Breakout 340 / 260 670 / 1596.3

Pong 0 / 260 20.9 / 787.4
Qbert 6100 / 260 15194 / 1222.9

Seaquest 170 / 260 478940 / 778.1
SpaceInvaders 830 / 260 109417 / 535.6

VI. CONCLUSION

We propose, design, and validate a DRL agent accelerator
co-search framework dubbed A3C-S, which to our best knowl-
edge is the first to (1) automatically co-search for the optimally
matched DRL agents and accelerators that maximize both test
scores and hardware efficiency, and (2) demonstrate the first
successful DNAS for DRL, for which a vanilla DNAS fails
due to DRL’s training instability.
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