
Using Scene Features to Improve Wide-Area Video Surveillance

Ziyan Wu
Rensselaer Polytechnic Institute

Troy, NY
wuz5@rpi.edu

Richard J. Radke
Rensselaer Polytechnic Institute

Troy, NY
rjradke@ecse.rpi.edu

Abstract

We introduce two novel methods to improve the perfor-
mance of wide area video surveillance applications by us-
ing scene features. First, we evaluate the drift in intrin-
sic and extrinsic parameters for typical pan-tilt-zoom (PTZ)
cameras, which stems from accumulated mechanical and
random errors after many hours of operation. When the
PTZ camera is out of calibration, we show how the pose
and internal parameters can be dynamically corrected by
matching the scene features in the current image with a pre-
computed feature library. Experimental results show that
the proposed method can keep a PTZ camera calibrated,
even over long surveillance sequences. Second, we intro-
duce a classifier to identify scene feature points, which can
be used to improve robustness in tracking foreground ob-
jects and detect jitter in surveillance videos sequences. We
show that the classifier produces improved performance on
the problem of detecting counterflow in real surveillance
video.

1. Introduction

Scene features — that is, features on stationary back-
ground surfaces — are widely used in landmark recogni-
tion, image mosaicking, and image understanding. How-
ever, in surveillance and object tracking applications, scene
features are usually considered to be a distraction from the
main goal of detecting changing foreground objects in video
sequences. In this paper, we show that scene features can
in fact provide useful information in important surveillance
scenarios, and focus on two main problems: pan-tilt-zoom
(PTZ) camera calibration and counterflow detection.1

1This material is based upon work supported by the U.S. Department
of Homeland Security under Award Number 2008-ST-061-ED0001. The
views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official poli-
cies, either expressed or implied of the U.S. Department of Homeland Se-
curity. Thanks to Edward Hertelendy and Michael Young for supplying the
data in Section 4.

(a) (b) (c)

Figure 1. A PTZ camera acquires two images at the same abso-
lute (pan, tilt, zoom) coordinates both before and after 36 hours
of continuous random operation. (a) The red rectangles indicate
the initial images and the blue rectangles indicate the final images.
(b) Close-ups of the acquired initial images. (c) Close-ups of the
acquired final images.

Most modern wide-area camera surveillance networks
make extensive use of PTZ cameras. However, since such
cameras are in constant motion, accumulated errors from
imprecise mechanisms, random noise, and power cycling
render any calibration in absolute world coordinates use-
less after many hours of continuous operation. For exam-
ple, Figure 1 illustrates an example in which a PTZ camera
is directed to the same absolute (pan, tilt, zoom) coordi-
nates both before and after 36 hours of continuous opera-
tion. We can see that the images are quite different, which
means that these absolute coordinates are virtually mean-
ingless in a real-world scenario. However, in practice it is
unrealistic to re-calibrate a camera in a busy environment
after its mounting. In the first part of this paper, we propose
a method based on the automatic detection and matching of
scene features to maintain the calibration of a PTZ camera
after its initial calibration, so that when a user directs the
camera to given (pan, tilt, zoom) coordinates, the same field
of view is always attained. Consequently, the absolute PTZ
coordinates for a given camera can be trusted to be accu-
rate, leading to improved performance on important tasks
like the 3D triangulation of a tracked target.

1



The second problem we discuss is counterflow detection,
a critical problem in security-related surveillance. For ex-
ample, a person moving the wrong way through the exit
corridor of an airport can prompt an entire terminal to be
“dumped”, resulting in hundreds of delayed flights and in-
convenienced passengers. By tracking low-level feature
points, the typical flow direction can be easily determined.
However, most of the cameras deployed in security surveil-
lance networks have poor resolution and quality compared
to a consumer digital camera, which can negatively affect
tracking algorithms. In the second part of this paper, we
introduce a classifier to identify scene features from the im-
age, which are then used to mitigate cases in which fore-
ground and background features are mixed in the same point
trajectory, as well as to identify jitter frames that should not
play a role in tracking. We demonstrate that our counter-
flow detection algorithm is significantly improved by using
the scene-feature-based classifier.

2. Related Work
PTZ cameras are traditionally calibrated in controlled

environments, using precisely manufactured calibration pat-
terns or active lighting targets. Since PTZ cameras are usu-
ally used for video surveillance, self-calibration technolo-
gies are often adopted, such as the method with pure rota-
tion proposed by de Agapito et al. [4]. However, a criti-
cal issue of PTZ-camera-based video surveillance systems
is that even if the camera is initially well-calibrated, after
many hours of continuous motion and zooming, accumu-
lated mechanical errors will corrupt both the internal and
external parameter estimates (Figure 1). Song and Tai [11]
proposed a dynamic calibration method for a PTZ camera
based on estimating a vanishing point from a set of par-
allel lanes with known width. Schoepflin and Dailey [9]
proposed a dynamic calibration method with a simplified
camera model based on extracting the vanishing point of a
roadway. However, these methods are limited to environ-
ments featuring reliable straight lines that can be extracted
with high precision. In contrast, the method we propose
here makes no assumptions about the content of the scene.

The problem of detecting dominant motions in crowded
video and classifying outlying motions has been widely
studied. For example, Cheriyadat and Radke [3] proposed
an automatic dominant motion detection method by clus-
tering trajectories based on longest common subsequences.
Since individual people are difficult to segment, the inputs
to the algorithm are tracked low-level features obtained us-
ing optical flow. Our algorithm takes a similar approach.
However, these types of algorithms might not yield good
results in situations involving low-resolution cameras and
poor image quality. Marcenaro and Vernazza [7] proposed
an image stabilization algorithm based on feature tracking
in which scene features are used as references to compen-

sate the motion of the camera. In this paper, we propose
a classifier to identify scene features in the context of de-
tecting counterflow motion. We show that using informa-
tion from the scene features, the performance and accuracy
of foreground object point tracking can be improved under
low-quality, complex-background conditions.

3. Dynamic Correction for PTZ Cameras
In this section, we propose a dynamic correction method

to maintain the calibration of a PTZ camera, based on de-
tecting and matching scene features.

3.1. Sources of Error

First, we have to characterize and measure the sources of
error in real PTZ cameras. These sources include mechani-
cal offsets in the cameras’ stepper motors, random errors in
the reported (pan, tilt, zoom) coordinates, accumulated er-
rors in these coordinates that increase with extended contin-
uous operation, and unpredictable jumps in error that occur
when the power to the camera is cycled. These types of er-
ror combine to make open-loop calibration of PTZ cameras
inherently inaccurate, especially at high zoom levels.

We conducted an experiment to observe the calibration
error in a PTZ camera over a long time span (200 hours),
shown in Figure 2(a). Printed chessboard targets were
placed in four monitored positions in the scene. A PTZ
camera (Axis 213) was programmed to randomly move to a
new position and zoom level every 30 seconds. After every
hour, the camera points to one of the monitored positions
and acquires an image, from which the locations of the “x”
corners on the target are automatically extracted and com-
pared to the reference image. From the results we can see
that the higher the zoom level, the larger the error. A max-
imum of 38 pixels of error was recorded at position A, the
maximum zoom level.

From the results of Figure 2(a), we can see that in ad-
dition to random errors, there is a raising trend of accumu-
lated error over time. We were surprised to find out that
serious error is induced every time we restart the PTZ cam-
era, as illustrated in Figure 2(b). In positions A and B, the
targets have nearly disappeared from the field of view after
restarting the camera and pointing it to the same (pan, tilt,
zoom) coordinates. This could be a major issue when the
PTZ camera is used to monitor an important location like
the keypad on a secure door.

3.2. Camera Model

We assume the standard model for the matrix K col-
lecting the internal parameters of a camera at a fixed zoom
scale, namely

K =

fx 0 cx
0 fy cy
0 0 1

 (1)



(a) Continuous operation error evaluation

(a) Pos.A (1,0,8000) (b) Pos.B (16,-2,7000) (c) Pos.C (60,-10,1000) (d) Pos.D (-70,-7,0)
(b) Images from the same positions after restarting the camera.

Figure 2. Repeatability experiment.

where fx, fy represent the focal length in units of x and y
pixels, and (cx, cy) is the principal point. We assume the
pixel skew is 0 in this paper. The relationship between a 3D
point X and its image projection x is given by

x ∼ K[R|t]X (2)

in which R and t are the rotation matrix and translation
vector respectively.

In order to obtain an accurate image formation model for
the wide-angle lenses typically used for PTZ cameras, we
must also consider lens distortion. We model the radial dis-
tortion using a single-parameter division model (DM) [5],
that is,uv

1

 ∼
 u′

v′

1 + κ(ũ′
2

+ ṽ′
2
)

 =

u′v′
1

+ κ

 0
0

ũ′
2

+ ṽ′
2


(3)

xu =
xd

1 + κzd
(4)

in which xu = (u, v) is the undistorted image coordinate,
xd = (u′, v′) is the corresponding distorted image coordi-

nate, ũ′ = u′ − cx, ṽ′ = v′ − cy and zd = ũ′
2

+ ṽ′
2
. κ is

the distortion coefficient.

3.3. Feature Library for the Scene

The PTZ camera is initially calibrated off-line. Before
the PTZ camera begins its regular operation, we construct a

feature library in spherical coordinates, as illustrated in Fig-
ure 3. To build the library, we have to fix the zoom level at
which the camera is calibrated. We then control the camera
to sweep through different angles of pan po and tilt to. For
each position, we acquire an image and extract all the SURF
features [1] except at the image borders. We store the SURF
descriptors and position of each feature in absolute spheri-
cal coordinates (px, tx, f), in which f is the calibrated focal
length, and px, tx can be obtained by,

px = po + arctan
u− cx
fx

tx = to + arctan
v − cy
fy

(5)

in which (u, v) are the image coordinates of the feature. We
merge features that highly overlap in both descriptor and
position with those already in the feature library.

Sinha and Pollefeys [10] hypothesized that one could
use a calibrated panorama for closed-loop control of a PTZ
camera, in which an on-line image taken by the camera
is matched to the panorama. This approach may be diffi-
cult, since to obtain reasonable accuracy, a large number of
high-resolution images would need to be stored and com-
pensated for varying internal parameters. Since our library
stores all features in a compact form immediately suitable
for descriptor comparison and PTZ parameter estimation,
we avoid this problem.



Figure 3. The spherical feature library for a PTZ camera.

3.4. Online Correction

We can safely assume that the principal point of the PTZ
camera is fixed over all (pan, tilt, zoom) settings. The pa-
rameters we need to correct are the intrinsic parameters, in-
cluding fx, fy , and κ, and the extrinsic parameters, includ-
ing the pan angle p and tilt angle t. Since the aspect ratio
α = fx/fy is constant, we only have to correct

f = fx = αfy (6)

When the camera is restarted, or dynamic correction is
needed, we assume that the camera is in an unknown setting
(po, to, fo) that must be accurately estimated. We take a
hierarchical approach to estimating these parameters, based
on matching the set of SURF features extracted from the
current image with the recorded feature library. We match
using the usual k-nearest-neighbor approach, and remove
outlier matches with 2-parameter RANSAC based on the
pan and tilt angles estimated as described below. The basis
for estimation is therefore a set of image feature locations
{(ui, vi), i = 1, . . . , N} and corresponding pose parameter
matches from the feature library {(pli, tli), i = 1, . . . , N}.

We first obtain a rough initial estimate of (po, to) from
any two matched features i and j. Based on (5) and (6), for
match i we have

ui − cx
tan(pli − po)

= α

(
vi − cy

tan(tli − to)

)
(7)

Similarly, for matches i and j, we have

ui − cx
tan(pli − po)

=
uj − cy

tan(plj − po)
vi − cy

tan(tli − to)
=

vj − cy
tan(tlj − to)

(8)

We can expand (8) to obtain independent quadratic equa-
tions (9) in tan po and tan to, which produce our initial es-
timate. We denote ũi = ui − cx and ṽi = vi − cy , and

(7) can be used to eliminated the false roots. However, this
estimate doesn’t use all of the feature matches, and more
importantly doesn’t take into account lens distortion, which
is non-negligible for typical PTZ cameras.

(ũj tan plj − ũi tan pli) tan2 po

+
[
(ũi − ũj)(tan pli tan plj − 1)

]
tan po

+ tan plj ũi − tan pliũj = 0

(ṽj tan tlj − ṽi tan tli) tan2 to

+
[
(ṽi − ṽj)(tan tli tan tlj − 1)

]
tan to

+ tan tlj ṽi − tan tliṽj = 0

(9)

To take lens distortion into account, we combine (4) and
(7). We denote zi = ũ2

i + ṽ2
i , and define

si =
ũi(1 + κzi)
αṽi(1 + κzi)

=
ũi
αṽi

(10)

This suggests the objective function in (11), which oper-
ates correctly on the distorted image coordinates but elim-
inates the unknown coefficient κ. Note that (11) is a
nonlinear function in (po, to), which we minimize using
Levenberg-Marquardt optimization.

Now that the pan and tilt angles are determined, we esti-
mate the focal length f (or equivalently the zoom scale) via
the distortion coefficient κ. Substituting (4) into (8), we see
that every pair of features i and j produces two estimates of
κ via

ũi(1 + κzj)
tan(pli − po)

=
ũj(1 + κzi)
tan(plj − po)

ṽi(1 + κzj)
tan(tli − to)

=
ṽj(1 + κzi)
tan(tlj − to)

(12)

We can therefore obtain an estimate of κ by averaging
the estimates produced by every pair of features. If there
are M = 1

2N(N − 1) such pairs, this corresponds to

κ =
1

2M

∑
i,j

[
tan(pli − po)ũj − tan(plj − po)ũi

tan(plj − po)ũizj − tan(pli − po)ũjzi

+
tan(tli − to)ṽj − tan(tlj − to)ṽi

tan(tlj − to)ṽizj − tan(tli − to)ṽjzi

]
(13)

The focal length fo can then be recovered by

fo =
1

2N

N∑
i=1

[
ũi tan(tli − to) + αṽi tan(pl

i − po)

(1 + κzi) tan(pl
i − po) tan(tli − to)

]
(14)

Finally, in order to reduce the influence of noise, we
perform a nonlinear optimization over all the parameters at



F1(po, to) =

∥∥∥∥∥∥∥∥

s1 tan pl

1 tan tl1 + 1 s1 − tan pl
1 tan tl1 tan tl1 − s1 tan pl

1

s2 tan pl
2 tan tl2 + 1 s2 − tan pl

2 tan tl2 tan tl2 − s2 tan pl
2

... ... ...

sn tan pl
n tan tln + 1 sn − tan pl

n tan tln tan tln − sn tan pl
n


 tan po

tan to
tan po tan to

−


tan pl
1 − s1 tan tl1

tan pl
2 − s2 tan tl2
...

tan pl
n − sn tan tln


∥∥∥∥∥∥∥∥ (11)

once. That is, starting from the estimates of (po, to, κ, fo)
obtained above, we minimize the sum of squared differ-
ences between the observed feature locations and their posi-
tions predicted by the model, namely the objective function

F2(po, to, fo, κ) =
N∑
i=1

∥∥∥∥∥∥
fo tan(pli − po)− ũi 1

1+κzi

fo tan(tli − to) 1
α − ṽi

1
1+κzi

∥∥∥∥∥∥
2

(15)
Thus, we can automatically compensate the inaccurate

(pan, tilt, zoom) parameters reported by the camera to the
parameters (po, to, fo) obtained by minimizing (15), which
are consistent with the original calibration of the camera.

3.5. Experiments

Figure 4 shows an example of the feature library and
feature matching process in a real PTZ camera installation.
From Figure 4(b) we can see that there are a number of ini-
tial mismatches (e.g., similar corners on checkerboard tar-
gets), which are correctly removed by RANSAC in Figure
4(c). Figure 4(d) shows the algorithm works well in correct-
ing the substantial error induced after restarting the camera
and directing it to the “same” position.

(a) (b)

(c) (d)

Figure 4. Building the feature library and feature matching. (a)
Features found in two images acquired at roughly the same posi-
tion. (b) Matching with KNN. (c) Matching result after RANSAC.
(d) Matching result after restarting the camera.

We conducted the same experiment as in Figure 1 af-

ter incorporating the dynamic correction method, as illus-
trated in Figure 5. We can see that the targets of interest
are successfully located, which suggests that the corrected
pose model can substantially improve the usefulness of PTZ
cameras in video surveillance.

(a) (b)

(a) (b)

Figure 5. The red rectangle indicates the desired image border of
the zoomed camera while the blue rectangle indicates the actual
image border of the zoomed camera. (a) Image at original position.
(b) Zoomed image.

In order to evaluate the effects of dynamic correction on
accumulated error, we conducted the same experiment as in
Figure 2 after incorporating the dynamic correction method,
as illustrated in Figure 6. We can see that the error is re-
duced for all monitored positions. Furthermore, there is no
increasing trend of error over time. Even after restarting the
camera, all four monitored positions can be well-recovered
using dynamic correction.

4. Scene Features in Counterflow Detection

Counterflow detection is an important problem in se-
curity surveillance applications, such as one-way passages
from secure areas to non-secure areas in airports. Figure
7 illustrates several such passages acquired by the camera
network in Terminals A and B of the Cleveland airport. In
this part of the paper, we describe a solution to detecting
counterflow in a fixed camera that leverages the detection
of scene features to improve performance.



(a)Continuous operation error evaluation

(a) Pos.A (1,0,8000) (b) Pos.B (16,-2,7000) (c) Pos.C (60,-10,1000) (d) Pos.D (-70,-7,0)
(b)Images from the same positions after restarting the camera.

Figure 6. Repeatability experiment using dynamic correction.

Figure 7. Sample images from the camera network at CLE.

4.1. Feature Tracking

Videos from surveillance camera networks are fre-
quently low-resolution (e.g., 352×240). Since we want the
system to process video streams from tens of cameras in
real time, and the dominant (or allowable) direction of mo-
tion is all we need to know, we use low-level features to
track the flow. We first identify low-level features in the ini-
tial frame using the FAST corner detector [8]. The features
are then tracked over time using the Kanade-Lucas-Tomasi
(KLT) optical flow algorithm [6], adapting the pyramid rep-
resentation in [2], which can track large pixel motions while
keeping the size of the integration window relatively small.

The results of feature tracking are shown in Figure 8, in
which red circles indicate all the features detected in the
current frame (up to a maximum number, e.g., 300) and
blue circles indicate reliably-trackable features. New fea-
tures are added to the tracker in every 5-10 frames, discard-

ing those too close to current tracks. These feature tracks
form a large trajectory set.

4.2. Improving Robustness with Scene Features

This low-level feature point tracking is often inaccu-
rate, due to both the low resolution and quality of the in-
put videos and periodic jitter. Consequently, it is common
for features on foreground objects (corresponding to the al-
lowable/counter flow) to mix or merge with stationary scene
features, as illustrated in Figure 9.

Our solution to this problem is to build a three-way clas-
sifier to classify normal flow, counterflow, and scene fea-
tures. The point tracks are classified at a specified interval
(e.g., every 300 frames). The recognized scene features can
also be used to compensate for location drift caused by jit-
ter.

Let Lj = {(xj(1), yj(1)), . . . , (xj(nj), yj(nj))} be the
data of the jth point track. We define two features (dj1, d

j
2)

for each trajectory Lj as

dj1 =
1
n2
j

b
nj
3 c∑
i=1

yj(nj − i)− yj(i)

dj2 =
1
nj

√√√√ nj∑
i=2

(xj(i)− xj(0))2 + (yj(i)− yj(0))2

That is, dj1 represents the difference in sum on y between the
first third and last third of the trajectory, and dj2 represents
the variance of the points on the trajectory from their initial
position.

As Figure 10 illustrates, the three-way classifier sepa-
rates trajectories corresponding to normal flow, counterflow,
and scene features based on the rule



(a) (b)

Figure 8. Results of feature tracking. (a) Features detected in the
image. (b) Point tracks extracted from a video sequence.

Figure 9. Foreground points mixing with scene points.

Lj =


normal flow dj1 > a, dj2 > b

counterflow dj1 ≤ a, d
j
2 > b

scene feature dj2 ≤ b
(16)

The value of b in the classifier to separate scene points is
relatively easy to set (we use 10 in our experiments). The
value of a is trained on a short sequence based on user edit-
ing of missed detections and false alarms. That is, a is set to
an initial value (e.g., 5) and is adjusted based on user edits
to the smallest number such that the classifier has no missed
detections (which are operationally extremely costly).

After the scene features are classified, they can be used
to deal with two issues. First, point tracks that were clas-
sified as scene points in the previous decision are matched
and tracked only after all of the other (flow) features are
matched and tracked for each frame. This step significantly
reduces the probability that scene features mix with mov-
ing features and confuse the tracker/classifier, as we show
in the next section. Second, the statistics of scene features
provide an easy way to detect frames with jitter, as shown
in Figure 11. We can easily learn a threshold on the change
in x values along the trajectories for scene points that de-
tects jitter frames. These frames are then ignored for the
purposes of tracking and classification, which substantially
improves robustness.

(a)

(b)

Figure 10. Result of the three-way classifier. (a) Feature tracks.
(b) Classifier result corresponding to (a).

(a) (b)

Figure 11. Statistics of (a) moving points and (b) scene feature
points. Jitter frames are clearly visible as spikes in (b).

4.3. Experiments

We tested the counterflow detection algorithm on six
video sequences from the camera network at the Cleveland
Airport. Several examples are shown in Figure 12. Nor-
mal flows are displayed in green while counterflows are dis-
played in red. A bounding box corresponding to each sus-
picious target is also created. The classifier is first trained
with a small portion of the video and tested with the rest.
As a baseline, we compare the results against a classifier
that only discriminates between normal flow and counter-
flow using the d1 feature (i.e., not taking into account scene



(a) (b)

Figure 12. Sample flow classification results. (a) Normal flow. (b)
Counterflow is detected and the target is located.

features). The results for the six sequences are collected in
Table 1.

Length TT GT 2-Class 3-Class
Video (min) (min) TP FA TP FA

Ter.A Eg.In 40 3 1 1 2 1 0
Ter.A Eg.Out 32 3 2 2 6 2 1
Ter.B Eg.In 40 3 10 8 4 10 1

Ter.B Eg.Out 32 3 10 6 12 10 6
Ter.C Eg.In 5 1 0 1 3 0 0

Ter.C Eg.Out 5 1 2 0 5 2 3
Total 154 14 25 18 32 25 11

Table 1. Results of the counterflow experiment. GT denotes the
number of ground truth counterflows, TT the training time, TP
the number of true positives and FA the number of false alarms.

As desired, the algorithms successfully detected all the
counterflow occurrences in all the sequences without error.
Most of the false alarms are due to noise, jitter or mixing
point tracks. Since false alarms are easy to correct and
clear, this number seems acceptable in practical applications
given the lengths of the videos involved. The last video
is particularly challenging due to mixing feature tracks, a
complex background, and passengers coming from an exit
far from the camera. Both the false alarm rate and true pos-
itive rate are improved by the proposed scene-feature-based
algorithms.

5. Conclusion
We proposed two algorithms relevant to wide-area

surveillance with camera networks. First, we presented a
dynamic correction method for keeping a PTZ camera cal-
ibrated. The lightweight, unsupervised method compares
scene features in the current image against a feature library
created at the time of mounting to ensure that the user al-
ways gets the same field of view when directing the camera

to given (pan, tilt, zoom) coordinates. We also introduced a
classifier that simultaneously identifies scene feature trajec-
tories and detects counterflow motion. Explicitly including
scene features in the flow classifier improves robustness, re-
duces the mixing of foreground and background in point
tracks, and allows the detection of jitter frames.

Future work includes a complete self-calibration method
for PTZ cameras based on scene features; dynamic, optimal
selection of good features to track in both the background
scene and foreground objects; and more robust algorithms
to improve tracking and classification results using scene
features.

References
[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up

robust features (SURF). Computer Vision and Image Under-
standing, 110(3):346–359, 2008.

[2] J.-Y. Bouguet. Pyramidal Implementation of the Lucas
Kanade Feature Tracker Description of the algorithm. Tech-
nical report, Microprocessor Research Labs, Intel Corpora-
tion, 2002.

[3] A. Cheriyadat and R. Radke. Detecting Dominant Motions
in Dense Crowds. IEEE Journal of Selected Topics in Signal
Processing, 2(4):568–581, Aug. 2008.

[4] L. de Agapito, E. Hayman, and I. Reid. Self-Calibration of
Rotating and Zooming Cameras. International Journal of
Computer Vision, 45(2):107–127, Nov. 2001.

[5] A. Fitzgibbon. Simultaneous linear estimation of multiple
view geometry and lens distortion. In CVPR, 2001.

[6] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. Proceedings of the
7th International Joint Conference on Artificial Intelligence,
pages 674–679, 1981.

[7] L. Marcenaro and G. Vernazza. Image stabilization algo-
rithms for video-surveillance applications. In ICIP, 2001.

[8] E. Rosten, R. Porter, and T. Drummond. Faster and bet-
ter: a machine learning approach to corner detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
32(1):105–19, Jan. 2010.

[9] T. Schoepflin and D. Dailey. Dynamic camera calibration of
roadside traffic management cameras for vehicle speed es-
timation. IEEE Transactions on Intelligent Transportation
Systems, 4(2):90–98, June 2003.

[10] S. N. Sinha and M. Pollefeys. Pan-tilt-zoom camera calibra-
tion and high-resolution mosaic generation. Computer Vision
and Image Understanding, 103(3):170–183, Sept. 2006.

[11] K.-T. Song and J.-C. Tai. Dynamic calibration of Pan-Tilt-
Zoom cameras for traffic monitoring. IEEE Transactions
on Systems, Man, and Cybernetics. Part B, Cybernetics,
36(5):1091–103, Oct. 2006.


