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Abstract

In this paper we address the problem of removing cor-
respondence outliers in a sequence of images. The input
to the system is a set of putative matches which are based
upon image-feature similarity. Classical methods for out-
lier removal, such as RANSAC-based approaches, assume
consistency and rigidity in the scene motion between two
or three frames in the sequence. Here we propose a novel
method for removing correspondence outliers that does not
depend on such assumptions. Our method is based on the
observation that correspondence is an equivalence relation,
and, hence, transitivity must hold between corresponding
features in different frames. We impose consistency on the
transitivity by representing the matching information as a
weighted graph with positive and negative edge-weights.
Consistency is then enforced by partitioning the nodes in
the graph so as to remove edges corresponding to false-
positive correspondences. The clustering algorithm is of
spectral nature and can handle graphs whose edge-weights
are non-positive. Our method is a general one that can be
used for purposes of outlier removal from correspondences
between any entities whose putative matches imply equiv-
alence relations. We illustrate the utility of the method for
purposes of outlier removal on a real-world image sequence
and compare our results with those yield using an alterna-
tive.

1.. Introduction
This paper proposes a new method of removing outliers

for purposes of motion analysis and tracking. The task of
matching point patterns between two or more images is of
central importance for a number of problems in image anal-
ysis and pattern recognition. A matching algorithm should
function well in the presence of image noise, geometric dis-
tortion and structural corruption. A large percentage of false
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positive matches results in unreliable data for computations
such as shape analysis [5], motion analysis [18], motion
segmentation, and stereo reconstruction [15].

As a result, a substantial effort in the literature has fo-
cused on removing outliers from a set of matching features.
Furthermore, computational theories on the perception of
motion [20, 1] have been proposed so as to capture global
feature coherence on local measurements. In this paper,
we present an outlier removal method for motion analysis
that imposes consistency constraints in the temporal domain
without assuming any motion or scene model. This con-
trasts with other methods elsewhere in the literature for re-
moving matching errors, which are based on assumptions
on the scene motion or shape e.g., rigid motion or a pre-
determined model [8, 9]. In these approaches, correspond-
ing pairs of features are evaluated and outliers are removed
based on the consistency of corresponding features across
the image with the predefined model of the motion or the
scene. Often these assumptions do not hold, and therefore
the quality of the matching results is hindered.

To develop our outlier removal method, we depart from
the work in [6] and [2] by viewing the set of putative
matches between features in a pair of frames as an equiv-
alence relation. Consistency is imposed on the transitiv-
ity for the feature correspondences between a number of
consecutive frames on image sequence, i.e. a time-window
over the frame-set under study. Following this treatment,
the correspondence outlier removal problem can be viewed
as a grouping of features in different frames so as to enforce
consistency in the transitivity information. We cast the out-
lier removal problem in a graph-theoretic setting. Further,
our algorithm removes outliers from relatively noisy cor-
respondence data without making any simplifying assump-
tions regarding image motion or the geometry of the scene.
In addition, it is not limited to a given number of views, i.e.
2 or 3, which allows us to impose consistency on the inliers
making use of more correspondence information than com-
peting approaches. Thus, the method presented here can be
used for complex motion analysis and tracking.

It is worth noting that our method is quite general and
can be used for purposes of outlier removal from correspon-
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dences between any entities whose putative matches imply
equivalence relations. Examples of higher level entities in-
clude correspondence between objects (identify the same
objects in different frames), and correspondence between
events (matching events in different sequences based on a
basic event matching).

1.1.. Previous work

As mentioned earlier, the correspondence problem has
attracted wide attention in the computer vision and pattern
recognition communities. Hence, the literature on robust
correspondence matching is vast. Statistics have been used
by several authors to overcome measurement noise and con-
tamination [18, 16]. Rangarajanet al.[13] have used soft-
assign and Procrustes alignment to perform matching. Chui
and Rangarajan [4] use a thin plate model and softassing
to perform non-rigid point matching. Adopting a two stage
process, Wills and Belongie [19] have used a planar model
and a spline fit to achieve results robust under large levels
of disparity between feature points.

The studies concerning the removal of outliers closest to
our approach are given in [6] and [2]. These methods use
transitivity as a relatively simple local heuristic mannerfor
correcting errors in a Wide Baseline, multiple view corre-
spondence. [2] also gave a theoretical analysis on the de-
tectability of matching errors, both false positive and false
negative, based solely on transitivity. The current work gen-
eralises, from a theoretical viewpoint, the developments in
[6] and [2] by using a weighted graph rather than a binary
one, and using the complete information from the matching
graph rather than local binary relations.

Here, we enforce consistency making use of a graph
cut which aims at removing those inconsistencies detected
through the transitive closure without introducing false pos-
itives. Once the conflicting matches are detected making
use of transitivity rules, we cut the graph based upon con-
fidence values governed by the matches at hand. Thus, we
model the problem of enforcing consistency as a pairwise
clustering one.

Indeed, many problems in computer vision can be posed
as ones of pairwise clustering. One of the most elegant
solutions to the pairwise clustering problem comes from
spectral graph theory, i.e. the characterisation of the eigen-
pairs of the graph Laplacian and the adjacency matrix
[17, 12, 14]. We use a graph-spectral method to enforce
consistency over the matches. Our clustering algorithm is
such that it employs an eigenvalue problem to maximise
a cost function defined in terms of the correspondence in-
formation between image features. What distinguishes it
from other approaches in the literature is the fact that we
use positive and negative edge weights to model the cor-
respondences between features and, hence, our method is
capable of partitioning weighted graphs whose weights are

not necessarily non-negative.

2.. The method
The goal of our method is to remove outliers from the

set of feature correspondences between images in a video
sequence. The input is the result of a matching algorithm
between image features in a set ofN successive frames. We
assume that a similarity measure can be assigned to each
pair of image features by the matching algorithm. The pro-
posed method detects and removes outliers based only on
the consistency of correspondence information among the
set ofN frames under study. A consistency constraint fol-
lows from the observation that correspondence is an equiv-
alence relation, and is therefore transitive. We present the
matching information in the form of a weighted graph with
positive and negative weights. Following this treatment,
the consistency constraint can be enforced making use of
a score function, maximised by an algorithm for clustering
nodes in the graph.

2.1.. Graph-theoretic Setting

We represent the correspondence information computed
by the matching algorithm between theN frames under
study as an undirected graphG = (V,E). The set of nodes
V stands for the set of detected image features in theN

frames. The set of edges is defined by the putative matches.
Formally, let theith frame of the image sequence beIi. For
each frameIi, we denote the set ofni image feature vec-
tors asΩi = {ωi(1), ωi(2), . . . , ωi(ni)}, whereωi(k) is the
kth image feature in the frameIi. An edge connects the ver-
ticesωi(ℓ) andωj(k) if a putative match was found between
the feature pointsωi(ℓ) andωj(k) when imagesIi andIj
were compared. In this case,(ωi(ℓ), ωj(k)) ∈ E. Also
let f : V × V → [0, 1] be the similarity function between
image features.

Consider the connected componentR of a given im-
age featureωi(k), corresponding to the nodev ∈ V in
G. Clearly,R = (VR, ER) is a subgraph ofG. The graph
R consists of all feature points that are detected either di-
rectly or transitively as corresponding tov. Ideally, the fact
that correspondence is an equivalence relation should im-
ply that each connected component ofG is a clique. In-
deed, this is the case so long as the matching process does
not produce false-positive and false-negative errors. False-
negative errors result in missing clique edges inR . False-
positive errors may connect subgraphs ofG that represent
different features. The graphR can therefore contain non-
corresponding features that are mistakenly considered to be
corresponding due to a false positive error. In this case,
missing edges among nodes ofR may be correct and rep-
resent the fact that the two points do not correspond, de-
spite being transitively matched. In general, whenR is not
a clique it is not always possible to determine whether this is



due to false-positive or false-negative errors of the matching
process. However, unequivocal evidence for the existence
of a false-positive error can be obtained if the graph con-
tains a path between two vertices that represents two points
in the same image. We name this case alocal conflict.

A local conflict indicates an inconsistency in the putative
matches that cannot be tolerated and must be resolved. To
see this more clearly, consider the case illustrated in Fig-
ure1a, where we show four frames inI. The edges ofR ,
i.e. the putative correspondences between image features,
are denoted by the solid lines between frames. The dash-
dotted lines correspond to the complement ofR , that is, the
matches recovered via the transitive closure. Note that, in
Figure1b, through the transitive closure, we can conclude
that the two featuresA andE in frameIi are transitively
matched to one another. This cannot be true since an image
feature cannot match to any other feature in the same frame.
Thus, we can locate conflicting matching results making use
of the transitive closure. Once these conflicts have been lo-
cated, they can be removed by enforcing consistency mak-
ing use of graph-cuts.

An edge between a pair of vertices inR supports the
existence of correspondence between these two vertices,
while a missing edge between the two vertices can be re-
garded as a negative indication for correspondence between
them. Furthermore, a weight can be assigned to the negative
and positive support of correspondence between two fea-
ture points based on the similarity between them (obtained
via the similarity functionf mentioned above and defined
in Equation8). We represent the positive and negative sup-
port for the correspondence between the nodes ofR by a
weighted graphG = (VG, EG,WG) which is the transitive
closure ofR . Positive weights are assigned to the original
edges ofR , whereas negative weights are assigned to the
edges inR ’s complement. The edge weights indicate the
confidence that the two features points correspond. A pos-
itive weight supports correspondence. A negative weight
suggests that the points do not correspond. Formally, the
weight of an edge is defined based onR and the similarity
functionf as follows:

w(k, ℓ) =

(

f(k, ℓ) if (k, ℓ) ∈ ER

−1 + f(k, ℓ) otherwise
(1)

2.2.. Detecting and correcting failures

The formulation above implies that, if the set of negative
weights inG is nonempty, then the graph represents incon-
sistent correspondences which must be corrected. Our goal
is to modify the initial putative set of matches so as to obtain
a consistent set of pairwise correspondences. Adding edges
to R corresponds to correcting false negative matches. Re-
moving edges fromR corresponds to removing false pos-
itive edges. Adding and removing edges fromR corre-

(a) (b)

Figure 1. Matching graphs. (a): when only a false negative error
occurs between featuresB andD. (b): with false positive between
featuresA andB. A local conflict occurs in frameIi. The solid
lines are the putative matches. The matches yield by the transitive
closure have been drawn using dash-dotted lines.

sponds to changing positive to negative, and negative to pos-
itive weights ofG-edges, respectively.

There are many possibilities to add or remove positive-
weight matches in order to impose consistency. One pos-
sibility is to remove positive-weighted edges so that each
connected component does not contain negative edges. This
solution clearly gives a strong bias towards edges with neg-
ative weights. Another example is where edges with nega-
tive weights are removed by replacing them with positive-
weight edges until no negative edges remain. This clearly
gives a strong bias to negative-weighted edges. Further-
more, it cannot be applied when local conflict occurs.

When a local conflict occurs inG, the graph must be
partitioned into at least two disjoint subgraphs such that
the local conflict is resolved. Formally, letωi(k) and
ωi(ℓ) be two vertices ofG which correspond to two image-
features in the same image. Then,G is partitioned into
G1 = (V1, E1,W |E1

) andG2 = (V2, E2,W |E2
) such that

if ωi(k), ωi(ℓ) ∈ VG then the partition must satisfy that
ωi(k) ∈ V1 andωi(ℓ) ∈ V2.

To choose the partition, we consider the global informa-
tion about positive and negative weights in the graph. We
next define a score function for partitioning the graphG into
two subgraphsG1, andG2. The score function should re-
flect the consistency of each of these graphs and the cost
of separating the vertices inG1 from those inG2. That is,
within each cluster we would like to have as many positive
weighted edges as possible and the least number of negative
weighted edges. Similarly, between clusters we would like
to have as few positive weighted edges as possible and as
many negative weighted edges as possible. This is equiva-
lent to maximising the positive and negative edge weights
within each cluster, and minimising negative and positive
edge-weight mass between clusters. Different scores may
correlate with different assumptions on the type of errors
expected.

Let Ψ = {ψ1, ψ2} be a partition ofVG. Given a cost
function, we can compute the clustering that maximises
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Figure 2. (a): Example of a connected component with negative
edge-weights; (b): Example with non-negative edge-weights.

the score and obtain the set of correspondences that are
both, free of conflicts and optimise over the conditions
stated above. Let the sum of positive edge weights be-
tween the two clustersψ1 andψ2 in the original graphG be
sP (ψ1, ψ2). We denote the sum of negative edge weights
between the clusterssN (ψ1, ψ2). Similarly, the sum of
inter-cluster positive and negative edge weights for thehth

cluster, i.e.h = {1, 2}, is given bysP (ψh) andsN (ψh),
respectively. With these ingredients, the cost function we
aim to maximise becomes

s(Ψ) =
∑

h={1,2}

(sP (ψh) + sN (ψh))

−(sP (ψ1, ψ2) + sN (ψ1, ψ2))

=
∑

h={1,2}

∑
vi,vj∈ψh

w(vi, vj)

−
∑

vi∈ψ1,vj∈ψ2

w(vi, vj)

(2)

Before we describe the clustering algorithm that max-
imises the cost functions(Ψ), let us first illustrate the role
of the negative edge-weights. Consider two connecetd com-
ponent graphs which result from the same putative matches.
The graph in Figure2a contains negative edge weights and
that of Figure2b does not. The only difference between
the two graphs is in the edge-weights of the edges connect-
ing unmatched points: on the right-hand graph such edge-
weights are set to zero while on the the left-hand graph it is
set to−1.

Consider two different partitions that seperate the two
vertices that correspond to features in the same image,A

andD. The first consists of two vertices each,φ1 = {A,B}
andφ2 = {C,D}; The second consists of a single ver-
tex in one cluster and three vertices in the other, e.g.,
φ1 = {A} andφ2 = {B,C,D}; Note that, for the case
in which the negative weights are present, the score func-
tion s(Ψ) clearly favours the partition of the clique such
thatφ1 = {A,B} andφ2 = {C,D} (the score is 4 com-
pared to 1). When no negative weights are present, the score
function yields the same value, 1, for the two partitions. It
is, hence, clear that the inclusion of negative edge-weights
favours those partitions whose end result is to “cut” through
the edges whose weights are negative.

2.3.. Clustering

In this section, we describe an algorithm for partitioning
the graph so as to maximise the cost functions(Ψ) in Eq.2.
If |VG| is small, an exhaustive search method can be used to
recover the optimal partition.

In practice, we would like to use a large number of image
frames to impose consistency constraints upon the corre-
spondences recovered by the relational matching algorithm.
We solve this problem by adopting a graph-spectral parti-
tioning approach. To do so, the cost functions(Ψ) is first
expressed in a matrix form. LetR be the binary putative
matching matrix, that is the adjacency matrix of the graph
R , let F be a similarity matrix that consists of the simi-
larity measure defined by the functionf between all ver-
tices ofG, and letW be the weight matrix which con-
sists of the weight, defined in Equation1 between a pair
of nodes inG. Consider the cluster membership variables
x = [x(1), x(2), . . . , x(|V |)]T such thatx(i) ∈ {−1, 1}.
The nodes ofG are assigned to eitherψ1 or ψ2 based upon
the sign of the cluster membership variables so as to satisfy
ψ1 = {v(k) | x(k) = 1} andψ2 = {v(k) | x(k) = −1}.

We commence by rewriting the cost functions(Ψ) in
matrix form making use of the fact thatx(k)x(ℓ) = 1 if the
two corresponding nodes are within the same cluster and
x(k)x(ℓ) = −1 when they are at different clusters. More-
over, relaxing the constrains on the elements ofx so as to be
in the range[−1, 1] results in the weighted version ofs(Ψ),
which is given by

ŝ(Ψ) = xTWx (3)

SinceW contains negative values, methods elsewhere in
the literature, such as that in [17], cannot be employed to
solve the grouping problem at hand. As a result, we must
take our analysis further. We note that the relaxation of the
values for the componentsx(k) ∈ x turns the optimisation
problem under study into an under-constrained one. Hence,
we subject the maximisation problem to the constraint

|V |∑

k=1

x(k) = 0 (4)

on the components of the vectorx.
Note that from the definition of the weight of the matrix

G in Eq.1, it follows thatW = F+R +1−I where1 is all
ones matrix. Therefore, Eq.3 can be rewritten, as follows

ŝ(Ψ) = xT (R + F + I)x− xT1x (5)

The algebraic manipulation of the score functionŝ(Ψ)
above is important due to the fact that it opens up the pos-
sibility of casting the maximisation of the score function
ŝ(Ψ) as an eigenvalue problem. To do this, we note that,



as a consequence of Constraint4, we have thatxT1x = 0.
Thus, Equation5 becomes

ŝ(Ψ) = xTHx+ xTx (6)

= (D− 1

2φ)THD− 1

2φ+ (D− 1

2φ)TD− 1

2φ

where we have used the shorthandsx = D− 1

2φ and
H = R + F and D is a diagonal matrix such that
D = diag(deg(1),deg(2), . . . ,deg(|V |)) and deg(k) =∑ℓ=|V |
ℓ=1

H(k, ℓ) is the kth row-degree ofH. It is worth
noting thatH is a positive definite, symmetric matrix and,
therefore, the degree matrixD is always invertible.

From inspection, it is straightforward to note that we can
express the cost function̂s(Ψ) in terms of the normalised
LaplacianL of H. Hence, we write

ŝ(Ψ) = φD−1φ− φTφ− φTD− 1

2 (D −H)D− 1

2φ

= φT (D−1 − I − L)φ = φTQφ

whereQ = D−1 − I − L. By imposing a unit-norm con-
straint on the vectorsφ, we can write

ŝ(Ψ) =
φTQφ

φTφ
(7)

which is a Rayleigh quotient. Thus, the weighted cost func-
tion ŝ(Ψ) is maximised by the eigenvectorφ corresponding
to the largest eigenvalue of the matrixQ.

At this point, it is worth noting that, since the degree ma-
trix D and the identity matrixI are both diagonal,φ is an
eigenvector of both, the normalised LaplacianL and the ma-
trix Q. Further, let the eigenvalues of the normalised Lapla-
cianL beλ1 ≥ λ2 ≥ . . . ≥ λ|V | = 0. Similarly, the eigen-
values of the matrixQ are given byζ1 ≥ ζ2 ≥ . . . ≥ ζ|V |.
The ith eigenvalueζi of the matrixQ can be computed,
making use ofζ1 and the eigenvalue ofL indexedi, using
the relationζi = ζ1 − λ|V |+1−i. As a result,̂s(Ψ) is max-
imised by taking the eigenvector ofL corresponding to the
eigenvalueλi whose rank is smallest, i.e.λ|V |. Unfortu-
nately, the eigenvector corresponding toλ|V | does not sat-
isfy Constraint4 and, hence, for purposes of computingx
and separating the vertices inG into two disjoint subgraphs,
we use the eigenvector of the normalised LaplacianL cor-
responding to its second smallest eigenvalue, i.e.λ|V |−1.

To summarise, the steps of the clustering algorithm are
as follows:
1.- Compute the matrixH = R + F , which corresponds

to the connected component under consideration.
2.- Compute the normalised LaplacianL of H.
3.- Recover the eigenvectorφ corresponding to the second

smallest eigenvalue ofL and partition the connected
component based upon the sign of its coefficients.

The above steps are repeated recursively, for every con-
nected component, i.e. graphG in the video sequence, until

no further inconsistent matches can be found. It is worth
noting that, in Step 3, we have used the vectorφ to parti-
tionV , as an alternative to the vector of cluster membership
variablesx. This is possible due to the fact thatx = D− 1

2φ

and, since the degree matrixD is a diagonal matrix whose
diagonal elements are all positive, the sign of the coeffi-
cients ofx andφ is the same.

At this point, we note that, in our experiments, we com-
pute the matrixF making use of the function

f(ωi(k), ωj(ℓ)) = exp

„

− κ
˙

ωi(k) − ωj(ℓ), ωi(k) − ωj(ℓ)
¸

«

(8)
whereκ is a constant.

We always commence by estimating all the pairwise cor-
respondences between a number of consecutive frames in
the image sequence (typically, we employ 7 frames). Once
the set of pairwise correspondences is at hand, we recover
all the connected components, i.e. those sets of image-
feature vectors that can be transitively matched to one an-
other, and process them independently using the step se-
quence above. This has a number of advantages. Firstly,
this opens-up the possibility of parallelising the algorithm.
Secondly, since the algorithm makes use of a local consis-
tency check over the correspondences for the image features
in the frames under study, no global optimisation solvers are
required.

3.. Experiments
In this section, we illustrate the utility of our algorithm

for purposes of outlier removal. To do this, we make use of
two sequences. The first consists of rigid motion, while the
second consists of non-rigid motion.

Rigid motion sequence
The “INRIA Syntim” sequence is an augmented reality

video sequence that depicts an indoors scene with syntheti-
cally generated penguins. In this case, the scene is rigid and
the motion is induced by a simple translation of the camera.
Despite its simplicity, the lack of complex motion makes
this sequence ideal for a qualitative evaluation of the results
provided by the algorithm. Here, we use Harris corners [7]
as features and the KD-tree algorithm to recover the set of
putative matches taken by our algorithm at input.

In the left-hand panel of Figure3, we show an exam-
ple frame from the image sequence. The white dots mark
the centroids for the connected components consisting of
the pairwise correspondences between Harris corners. To
visualize our algorithm on a single connected component,
an enlarged connected component of the putative matches
is presented in the center panel (the white arrow on the left
panel indicates its location on the original sequence). The
connected component was computed from the features of
five frames. In the plots, every colour is indicative of a fea-
ture originating from a different frame. For example, the



Figure 3. From left-to-right: Tenth frame of the INRIA Syntim sequence,detail of the raw correspondences and detail of the cliques
delivered by our outlier removal algorithm.

Figure 4. Sampson distance plots for the INRIA Syntim sequence.

blue dots indicate the position of the corners in the frame of
reference, e.g., the tenth frame, whereas the red one shows
the position of the corners at the fifteenth frame. It can eas-
ily be seen that the connected component in the center panel
contains local conflicts. The right-hand panel consists of the
result of applying our outlier removal algorithm. The orig-
inal connected component in the center panel is partitioned
into three graphs which are the result of two bipartitions of
the original graph. Our algorithm has partitioned the con-
nected component so as to isolate the outlier, which in this
case is the red-coloured dot on the far-right side of the pan-
els. The other two graphs correspond to two Harris-corner
cliques which are consistent with the camera panning mo-
tion in the sequence.

To further evaluate our method, we provide a sim-
ple comparison of our results to those obtained using
RANSAC1 for a robust estimation of the fundamental ma-
trix. Both methods are applied to the putative matches re-
covered by the KD-Tree. The RANSAC is applied to these
putative matches and then used to estimate the fundamental
matrix [9]. Once the fundamental matrix has been recov-
ered, those matches that are outliers related to this estimate
are discarded. In our implementation, the threshold for the
inliers was 1.25 pixels and, for the estimation of the funda-

1We have used the model fitting and robust estimation routines in
http://www.csse.uwa.edu.au/ pk/research/matlabfns/

mental matrix, a Levenberg-Marquardt algorithm was used.
In Figure4, we show the Sampson distance [9] between

the features at theith frame and its point correspondences
on the image plane at the framei+3 for the first 20 frames of
the image sequence. The Sampson distance can be viewed
as an approximation to the first-order geometric error for
the set of recovered correspondences. It employs the funda-
mental matrix as a means to measure the accordance of the
recovered correspondences with the underlying epipolar ge-
ometry. Thus, for our algorithm, we estimate the fundamen-
tal matrix from the outlier-free correspondences using the
maximum likelihood algorithm in [9]. For the alternative to
our method, the computation is straightforward due to the
fact that the recovery of the fundamental matrix is an inte-
gral part of the RANSAC-based outlier removal algorithm.
Hence, for our method, the estimation of the fundamental
matrix is a backward step, whereas for the RANSAC-based
approach is a forward computation. From the plots, we note
that the difference in performance between the two methods
is not significative. This is important due to the fact that,
despite the lack of constraints on the motion assumed by
our method, the detriment in the outlier removal results is
marginal.

Non-rigid motion sequence
The second sequence we studied is a real-world image

sequence which presents a number of rigid motions, which
combined make it largely non-rigid. This sequence, which
we call “Vehicles from the Air”, captures two vehicles,
moving at different speeds on a highway. The video has
been captured from a helicopter and exhibits a large amount
of jitter.

For this sequence, we have used three alternatives for the
recovery of the image features used in the matching pro-
cess. These are the Harris corners [7], Maximally Stable
Extremal Regions (MSERs) [11] and Scale Invariant Fea-
ture Transform (SIFT) descriptors [10]. For the matching
step, we have made use of the KD-Tree [3]. Once the
matches are at hand, we impose consistency over the cor-
respondences and remove outliers making use of our algo-
rithm. Here, we have imposed consistency making use of 7



Figure 5. Results for the “Vehicles from the Air” sequence. For every row, each column corresponds to a different image feature( from
right-to-left: Harris corners, MSERs and SIFT regions); Top row: Correspondences delivered by the KD-Tree; Middle row: Results for
our method; Bottom row: Results for the RANSAC-based method.

consecutive frames.

In Figure5, from left-to-right, we show the results for
the correspondences between the first and the third frames
of the sequences yield by the KD-Tree for the Harris cor-
ners, MSERs and SIFT descriptors. The red “dot” shows
the position of the image feature under study at the frame of
reference. The tail of the arrow starts at the red dot and its
head points towards the point in which the corresponding
feature is at the third frame. In the top row of the figure, we
show the initial correspondences as recovered by the KD-
Tree, before any outlier removal is performed. In the middle
row, we show the results for those correspondences after re-
moving outliers by our method for the three alternatives of
image feature vectors. The bottom row shows the results for

the RANSAC-based alternative.

From the figure, we can see that our algorithm outper-
forms the alternative. It has not only removed the outliers,
clearly visible in the plots for the non-outlier free correspon-
dences, but it has also recovered a much denser cloud of cor-
respondences and inlier feature points than the RANSAC-
based approach. The RANSAC alternative has removed in-
liers that does not agree with the fundamental matrix re-
covered under rigid motion assumptions. To see this more
clearly, we show in Figure6 details of the feature cloud cor-
responding to the car in the sequence. In the left-hand col-
umn of the figure we present the results for our algorithm.
The right-hand column corresponds to the inliers yield by
the alternative. From the figure, we note that, specially in



Figure 6. Details for the “Vehicles from the Air” sequence for the
three image descriptors used in our experiments. In the left-hand
row we show, from top-to-bottom, the results yield by our method
when Harris corners, MSERs and SIFT descriptors are used, re-
spectively. The right-hand column shows the results for the alter-
native.

the case of the Harris corners, the inlier cloud recovered by
the algorithm is clearly denser and better localised over the
moving car.

4.. Conclusions

In this paper, we have shown how the problem of remov-
ing outliers for motion analysis can be cast in a graph theo-
retic setting. The algorithm presented here imposes consis-
tency constraints on the set of putative matches recovered
by a matching algorithm in the literature and makes no as-
sumptions on the nature of the motion in the scene. Fur-
ther, it is not limited to a predetermined number of views
and allows the use of an arbitrary number of frames. We
have illustrated the utility of the algorithm for outlier re-
moval. Further, the results yield by our algorithm compare
favorably with those recovered using an alternative. In fu-
ture work, we intend to explore the utility of the method for
purposes of motion segmentation and tracking in sequences
which exhibit non-rigid motion. Our algorithm is quite gen-
eral and can be used for other outlier correspondence re-
moval tasks.
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