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Abstract positive matches results in unreliable data for computatio
such as shape analys,[motion analysis [[d], motion
In this paper we address the problem of removing cor- segmentation, and stereo reconstructfofj.|
respondence outliers in a sequence of images. The input As a result, a substantial effort in the literature has fo-
to the system is a set of putative matches which are baseaused on removing outliers from a set of matching features.
upon image-feature similarity. Classical methods for out- Furthermore, computational theories on the perception of
lier removal, such as RANSAC-based approaches, assumenotion @ ] have been proposed so as to capture global
consistency and rigidity in the scene motion between two feature coherence on local measurements. In this paper,
or three frames in the sequence. Here we propose a novelve present an outlier removal method for motion analysis
method for removing correspondence outliers that does notthat imposes consistency constraints in the temporal domai
depend on such assumptions. Our method is based on thevithout assuming any motion or scene model. This con-
observation that correspondence is an equivalence nelatio trasts with other methods elsewhere in the literature for re
and, hence, transitivity must hold between correspondingmoving matching errors, which are based on assumptions
features in different frames. We impose consistency on theon the scene motion or shape e.g., rigid motion or a pre-
transitivity by representing the matching information as a determined modefj, ff]. In these approaches, correspond-
weighted graph with positive and negative edge-weights. ing pairs of features are evaluated and outliers are removed
Consistency is then enforced by partitioning the nodes in based on the consistency of corresponding features across
the graph so as to remove edges corresponding to falsethe image with the predefined model of the motion or the
positive correspondences. The clustering algorithm is of scene. Often these assumptions do not hold, and therefore
spectral nature and can handle graphs whose edge-weightthe quality of the matching results is hindered.
are non-positive. Our method is a general one that can be To develop our outlier removal method, we depart from
used for purposes of outlier removal from correspondencesthe work in ] and [ by viewing the set of putative
between any entities whose putative matches imply equiv-matches between features in a pair of frames as an equiv-
alence relations. We illustrate the utility of the method fo alence relation. Consistency is imposed on the transitiv-
purposes of outlier removal on a real-world image sequenceity for the feature correspondences between a number of
and compare our results with those yield using an alterna-consecutive frames on image sequence, i.e. a time-window
tive. over the frame-set under study. Following this treatment,
the correspondence outlier removal problem can be viewed
. as a grouping of features in different frames so as to enforce
1. Introduction consistency in the transitivity information. We cast thé-ou

This paper proposes a new method of removing outlierslier removal problem in a graph-theoretic setting. Further
for purposes of motion analysis and tracking. The task of our algorithm removes outliers from relatively noisy cor-
matching point patterns between two or more images is ofrespondence data without making any simplifying assump-
central importance for a number of problems in image anal- tions regarding image motion or the geometry of the scene.
ysis and pattern recognition. A matching algorithm should In addition, it is not limited to a given number of views, i.e.
function well in the presence of image noise, geometric dis- 2 or 3, which allows us to impose consistency on the inliers

tortion and structural corruption. A large percentage lsifa ~ making use of more correspondence information than com-
peting approaches. Thus, the method presented here can be
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dences between any entities whose putative matches implynot necessarily non-negative.

equivalence relations. Examples of higher level entities i

clude correspondence between objects (identify the same2. The method

objects in different frames), and correspondence between T goal of our method is to remove outliers from the

events (matching events in different sequences based on &gt of feature correspondences between images in a video
basic event matching). sequence. The input is the result of a matching algorithm
between image features in a sef\dkuccessive frames. We
assume that a similarity measure can be assigned to each
As mentioned earlier, the correspondence problem haspair of image features by the matching algorithm. The pro-
attracted wide attention in the computer vision and patternposed method detects and removes outliers based only on
recognition communities. Hence, the literature on robust the consistency of correspondence information among the
correspondence matching is vast. Statistics have been useset of N frames under study. A consistency constraint fol-
by several authors to overcome measurement noise and corlews from the observation that correspondence is an equiv-
tamination E @] Rangarajaret aI.] have used soft-  alence relation, and is therefore transitive. We present th
assign and Procrustes alignment to perform matching. Chuimatching information in the form of a weighted graph with
and Rangarajarﬂ] use a thin plate model and softassing positive and negative weights. Following this treatment,
to perform non-rigid point matching. Adopting a two stage the consistency constraint can be enforced making use of
process, Wills and BelongifL§j] have used a planar model a score function, maximised by an algorithm for clustering
and a spline fit to achieve results robust under large levelsnodes in the graph.
of disparity between feature points. ) ]
The studies concerning the removal of outliers closest to 2-1. Graph-theoretic Setting
our approach are given ifffand fi]. These methods use We represent the correspondence information computed
transitivity as a relatively simple local heuristic manifar by the matching algorithm between tté frames under
correcting errors in a Wide Baseline, multiple view corre- study as an undirected gragh= (V, E). The set of nodes
spondence. ] also gave a theoretical analysis on the de- ' stands for the set of detected image features inXhe
tectability of matching errors, both false positive andséal  frames. The set of edges is defined by the putative matches.
negative, based solely on transitivity. The current wonk-ge  Formally, let thei*” frame of the image sequence he For
eralises, from a theoretical viewpoint, the developmemts i each framel;, we denote the set of; image feature vec-
[ and f] by using a weighted graph rather than a binary tors as; = {w;(1),w;(2), ... ,w:(n:)}, wherew; (k) is the
one, and using the complete information from the matching ' image feature in the framk. An edge connects the ver-
graph rather than local binary relations. ticesw; (¢) andw; (k) if a putative match was found between
Here, we enforce consistency making use of a graphthe feature points;(¢) andw;(k) when imaged; andI;
cut which aims at removing those inconsistencies detectedvere compared. In this casey;(¢),w;(k)) € E. Also
through the transitive closure without introducing falesp  let f : V x V' — [0, 1] be the similarity function between
itives. Once the conflicting matches are detected makingimage features.
use of transitivity rules, we cut the graph based upon con-  Consider the connected componeqntof a given im-
fidence values governed by the matches at hand. Thus, wege featurev;(k), corresponding to the node € V in
model the problem of enforcing consistency as a pairwise G. Clearly,x = (Vg, ER) is a subgraph of. The graph
clustering one. % consists of all feature points that are detected either di-
Indeed, many problems in computer vision can be posedrectly or transitively as correspondingto Ideally, the fact
as ones of pairwise clustering. One of the most elegantthat correspondence is an equivalence relation should im-
solutions to the pairwise clustering problem comes from ply that each connected componentis a clique. In-
spectral graph theory, i.e. the characterisation of thereig  deed, this is the case so long as the matching process does
pairs of the graph Laplacian and the adjacency matrix not produce false-positive and false-negative errorssd-al
1, [.3, [[4. We use a graph-spectral method to enforce negative errors result in missing clique edges inFalse-
consistency over the matches. Our clustering algorithm ispositive errors may connect subgraphsjothat represent
such that it employs an eigenvalue problem to maximise different features. The graph can therefore contain non-
a cost function defined in terms of the correspondence in-corresponding features that are mistakenly considered to b
formation between image features. What distinguishes itcorresponding due to a false positive error. In this case,
from other approaches in the literature is the fact that we missing edges among nodes#pfmay be correct and rep-
use positive and negative edge weights to model the cor-resent the fact that the two points do not correspond, de-
respondences between features and, hence, our method &pite being transitively matched. In general, wheis not
capable of partitioning weighted graphs whose weights area clique it is not always possible to determine whether ghis i

1.1. Previouswork



due to false-positive or false-negative errors of the nmiatch
process. However, unequivocal evidence for the existence @ L
of a false-positive error can be obtained if the graph con-
tains a path between two vertices that represents two points @
in the same image. We name this casecal conflict I
A local conflict indicates an inconsistency in the putative
D
T

matches that cannot be tolerated and must be resolved. To
see this more clearly, consider the case illustrated in Fig- :
urefla, where we show four frames ih The edges ok, @ ®)
i.e. the putative correspondences between image featureﬁI

o igure 1. Matching graphs. (a): when only a false negative error
are denoted by the solid lines between frames. The daShbccurs between featurésandD. (b): with false positive between

dotted lines CorreSpor_‘d to the Complemem{othat is, the _ featuresA and B. A local conflict occurs in framé;. The solid
matches recovered via the transitive closure. Note that, iNjines are the putative matches. The matches yield by the transitive
Figureflb, through the transitive closure, we can conclude closure have been drawn using dash-dotted lines.
that the two featuresl and E' in frame [; are transitively
matched to one another. This cannot be true since an image . . . :
: Sponds to changing positive to negative, and negative to pos
feature cannot match to any other feature in the same frame. . .
.2 : : itive weights ofG-edges, respectively.

Thus, we can locate conflicting matching results making use — -

. . There are many possibilities to add or remove positive-
of the transitive closure. Once these conflicts have been lo- . . . .
weight matches in order to impose consistency. One pos-

_cated, they can be removed by enforcing consistency rnak'sibility is to remove positive-weighted edges so that each
ing use of graph-cuts.

An edge between a pair of vertices in supports the connected component does not contain negative edges. This

existence of correspondence between these two verticesSOIUtlon clearly gives a strong bias towards edges with neg-

while a missing edge between the two vertices can be re—atlve weights. Another example is where edges with nega-

A tive weights are removed by replacing them with positive-
garded as a negative indication for correspondence between ) . . .
them. Furthermore, a weight can be assigned to the negativéNe'ght edges until no negative edges remain. This clearly

: ’ gives a strong bias to negative-weighted edges. Further-

and positive support of correspondence between two fea_more it cannot be applied when local conflict occurs
ture points based on the similarity between them (obtained WH " a local Eﬁl { s it the araph m t b
via the similarity functionf mentioned above and defined vhen a local conflict occurs 147, the graph must be
in Equatiorﬂ). We represent the positive and negative sup- partitioned mtq at_least two disjoint subgraphs such that
port for the correspondence between the nodeg by a the local confth 'S resolvgd. Formally, lmi(k). and
weighted graply = (Vg, E¢, W) which is the transitive %/ (£) be two vertices OG which correspond 10 two image-
closure ofg . Positive weights are assigned to the original fgatﬂre‘s/ mEth(Ia/Vsame r;rggge._ '?e%lsvgartltloneﬂ 'lﬂtot
edges ofg , whereas negative weights are assigned to the ! —, (1, E1, Wig,) andGa = (Vo, B, W], ) such tha
edges inz’s complement. The edge weights indicate the it wi(k), wi(f) € Vg then the partition must satisfy that
confidence that the two features points correspond. A pos-wi(k) € V1 andw;(0) € V2. . .

To choose the partition, we consider the global informa-

itive weight supports correspondence. A negative weight . " . : .
g PP b g g tion about positive and negative weights in the graph. We

suggests that the points do not correspond. Formally, the ! . N
weight of an edge is defined based-orand the similarity next define a score function for partltlomngt_he grdpmto
function f as follows: two subgraph{{?l, andG». The score function should re-
flect the consistency of each of these graphs and the cost
F(k, 0) it (k,¢)€Eg of separating the vertices i; from those inG». That is,
wik,6) =7 (k,0) otherwise (1) within each cluster we would like to have as many positive
weighted edges as possible and the least number of negative
. . . weighted edges. Similarly, between clusters we would like
2.2. Detecting and correcting failures to have as few positive weighted edges as possible and as
The formulation above implies that, if the set of negative many negative weighted edges as possible. This is equiva-
weights inG is nonempty, then the graph represents incon- lent to maximising the positive and negative edge weights
sistent correspondences which must be corrected. Our goalithin each cluster, and minimising negative and positive
is to modify the initial putative set of matches so as to abtai edge-weight mass between clusters. Different scores may
a consistent set of pairwise correspondences. Adding edgesorrelate with different assumptions on the type of errors
to £ corresponds to correcting false negative matches. Re-expected.
moving edges fronk corresponds to removing false pos- Let U = {41,942} be a partition ofl;. Given a cost
itive edges. Adding and removing edges fregncorre- function, we can compute the clustering that maximises
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2.3. Clustering

In this section, we describe an algorithm for partitioning
the graph so as to maximise the cost functOw) in Eq.E.
If V| is small, an exhaustive search method can be used to
recover the optimal partition.

In practice, we would like to use a large number of image

Figure 2. (a): Example of a connected component with negative frames to impose consistency constraints upon the corre-

edge-weights; (b): Example with non-negative edge-weights.

spondences recovered by the relational matching algorithm
We solve this problem by adopting a graph-spectral parti-

the score and obtain the set of correspondences that arning approach. To do so, the cost functiefV) is first

both, free of conflicts and optimise over the conditions

stated above. Let the sum of positive edge weights be-

tween the two clusterg; ands in the original graphG be
sp(11,12). We denote the sum of negative edge weights
between the clustersy (¢1,12). Similarly, the sum of
inter-cluster positive and negative edge weights forttie
cluster, i.e.h = {1,2}, is given bysp(vy,) and sy (¢ ),
respectively. With these ingredients, the cost function we
aim to maximise becomes

s(¥) (sp(vn) + sn(vn))
h={1,2}

—(sp(1,2) + sn (1, 12))
>

Vi,V EYp

2

v; €Y1,V €Y

2
w(v;, v;) 2)
h={1,2}

w(v;, vy)

Before we describe the clustering algorithm that max-
imises the cost functior(¥), let us first illustrate the role

of the negative edge-weights. Consider two connecetd com-

expressed in a matrix form. Let be the binary putative
matching matrix, that is the adjacency matrix of the graph
%, let F' be a similarity matrix that consists of the simi-
larity measure defined by the functighbetween all ver-
tices of G, and letW be the weight matrix which con-
sists of the weight, defined in Equati@‘nbetween a pair
of nodes inG. Consider the cluster membership variables
r = [2(1),2(2),...,2(|V])]T such thatz(i) € {—1,1}.
The nodes of~ are assigned to either; or ), based upon
the sign of the cluster membership variables so as to satisfy
1 = {v(k) | 2(k) = 1} andey = {u(k) | z(k) = —1}.

We commence by rewriting the cost functie(¥) in
matrix form making use of the fact thatk)z(¢) = 1 if the
two corresponding nodes are within the same cluster and
z(k)z(¢) = —1 when they are at different clusters. More-
over, relaxing the constrains on the elements sb as to be
in the rangg—1, 1] results in the weighted version ef¥),
which is given by

3(V) =" Wa 3

SincelV contains negative values, methods elsewhere in

ponent graphs which result from the same putative matchesthe literature, such as that ifi§], cannot be employed to

The graph in Figurﬂa contains negative edge weights and solve the grouping problem at hand. As a result, we must
that of FigureEb does not. The only difference between take our analysis further. We note that the relaxation of the
the two graphs is in the edge-weights of the edges connectvalues for the componenigk) € 2 turns the optimisation

ing unmatched points: on the right-hand graph such edge-{roblem under study into an under-constrained one. Hence,
weights are set to zero while on the the left-hand graph it is we subject the maximisation problem to the constraint

set to—1.
\4

Consider two different partitions that seperate the two
k=1

x(k)=0 (4)

vertices that correspond to features in the same imadge,
andD. The first consists of two vertices eagh,= { A4, B}
and ¢, = {C, D}, The second consists of a single ver- on the components of the vecter

tex in one cluster and three vertices in the other, e.g., Note that from the definition of the weight of the matrix
¢1 = {A} and¢, = {B,C,D}; Note that, for the case G in Eq.[l, it follows thatW = F + & +1—I wherel is all

in which the negative weights are present, the score func-ones matrix. Therefore, Ef}.can be rewritten, as follows
tion s(¥) clearly favours the partition of the clique such

that¢; = {A, B} and¢, = {C, D} (the score is 4 com- (5)
pared to 1). When no negative weights are present, the score

function yields the same value, 1, for the two partitions. It ~ The algebraic manipulation of the score functi&¥)

is, hence, clear that the inclusion of negative edge-weight above is important due to the fact that it opens up the pos-
favours those partitions whose end result is to “cut” thtoug  sibility of casting the maximisation of the score function
the edges whose weights are negative. 5(¥) as an eigenvalue problem. To do this, we note that,

59) = 2T(® +F+Dz—a"1x



as a consequence of Constrdfnive have that” 12 = 0.
Thus, Equatiofj becomes

2THr + 2%«

(D72¢)"THD 3¢+ (D 2¢)TD 2¢

5()

(6)

where we have used the shorthands= D‘%gb and
H % + F and D is a diagonal matrix such that
D = diag(deg1),deq?2),...,ded|V])) and degk)
Zﬁj'lv‘ H(k,?) is the k'" row-degree ofH. It is worth
noting thatH is a positive definite, symmetric matrix and,
therefore, the degree matrix is always invertible.

From inspection, it is straightforward to note that we can
express the cost functiof(¥) in terms of the normalised
Laplacianl of H. Hence, we write

5(W) = ¢D'o—0"o—¢"D (D -H)D 3¢
= "D -1-L)p=¢"Q¢
whereQ = D! — I — £. By imposing a unit-norm con-

straint on the vectors, we can write

_0"Q¢

)
which is a Rayleigh quotient. Thus, the weighted cost func-
tion () is maximised by the eigenvectgrcorresponding
to the largest eigenvalue of the mat€x

At this point, it is worth noting that, since the degree ma-
trix D and the identity matrid are both diagonalp is an
eigenvector of both, the normalised Laplaciaand the ma-
trix Q. Further, let the eigenvalues of the normalised Lapla-
cianLbel; > Ay > ... > Ny = 0. Similarly, the eigen-
values of the matrix) are given by(; > (2 > ... > (jy|.
The i*" eigenvalue¢; of the matrix@Q can be computed,
making use of); and the eigenvalue of indexedi, using
the relation(; = {1 — A\jy|+1—;- As aresults(¥) is max-
imised by taking the eigenvector gf corresponding to the
eigenvalue); whose rank is smallest, i.e\y|. Unfortu-
nately, the eigenvector corresponding\¢- does not sat-
isfy Constraintﬁ and, hence, for purposes of computing
and separating the verticesGhinto two disjoint subgraphs,
we use the eigenvector of the normalised Lapladiacor-
responding to its second smallest eigenvalueNig;_; .

()

)

no further inconsistent matches can be found. It is worth
noting that, in Step 3, we have used the vecido parti-
tion V, as an alternative to the vector of cluster membership
variablesr. This is possible due to the fact that= D3¢
and, since the degree matiXis a diagonal matrix whose
diagonal elements are all positive, the sign of the coeffi-
cients ofr and¢ is the same.

At this point, we note that, in our experiments, we com-
pute the matrix*' making use of the function

s, 50)) = 30— (k) = 50 (8) - 50
(8)
wherex is a constant.

We always commence by estimating all the pairwise cor-
respondences between a number of consecutive frames in
the image sequence (typically, we employ 7 frames). Once
the set of pairwise correspondences is at hand, we recover
all the connected components, i.e. those sets of image-
feature vectors that can be transitively matched to one an-
other, and process them independently using the step se-
guence above. This has a number of advantages. Firstly,
this opens-up the possibility of parallelising the aldamit
Secondly, since the algorithm makes use of a local consis-
tency check over the correspondences for the image features
in the frames under study, no global optimisation solvegs ar
required.

3. Experiments

In this section, we illustrate the utility of our algorithm
for purposes of outlier removal. To do this, we make use of
two sequences. The first consists of rigid motion, while the
second consists of non-rigid motion.

Rigid motion sequence

The “INRIA Syntim” sequence is an augmented reality
video sequence that depicts an indoors scene with syntheti-
cally generated penguins. In this case, the scene is rigid an
the motion is induced by a simple translation of the camera.
Despite its simplicity, the lack of complex motion makes
this sequence ideal for a qualitative evaluation of theltesu
provided by the algorithm. Here, we use Harris CornE}s [
as features and the KD-tree algorithm to recover the set of
putative matches taken by our algorithm at input.

In the left-hand panel of Figur, we show an exam-

To summarise, the steps of the clustering algorithm areple frame from the image sequence. The white dots mark

as follows:
1.- Compute the matri¥/ = & + F, which corresponds
to the connected component under consideration.
2.- Compute the normalised Laplacidrof H.
3.- Recover the eigenvectgrcorresponding to the second
smallest eigenvalue of and partition the connected
component based upon the sign of its coefficients.

the centroids for the connected components consisting of
the pairwise correspondences between Harris corners. To
visualize our algorithm on a single connected component,
an enlarged connected component of the putative matches
is presented in the center panel (the white arrow on the left
panel indicates its location on the original sequence). The
connected component was computed from the features of

The above steps are repeated recursively, for every confive frames. In the plots, every colour is indicative of a fea-

nected component, i.e. graphin the video sequence, until

ture originating from a different frame. For example, the
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Figure 3. From left-to-right: Tenth frame of the INRIA Syntim sequertietail of the raw correspondences and detail of the cliques
delivered by our outlier removal algorithm.

mental matrix, a Levenberg-Marquardt algorithm was used.
) T In Figurefj, we show the Sampson distanff fpetween
B i T the features at thé" frame and its point correspondences
on the image plane at the framg3 for the first 20 frames of
ot 1 the image sequence. The Sampson distance can be viewed
as an approximation to the first-order geometric error for
the set of recovered correspondences. It employs the funda-
mental matrix as a means to measure the accordance of the

recovered correspondences with the underlying epipolar ge

Sampson Distance

[ A e e l
T e N
p " g% ’

2 ‘ ) o RAM — ometry. Thus, for our algorithm, we estimate the fundamen-
| ChnSAGbasedpproh tal matrix from the outlier-free correspondences using the
5 f E B o MOE W w maximum likelihood algorithm inff]. For the alternative to

. . . our method, the computation is straightforward due to the
Figure 4. Sampson distance plots for the INRIA Syntim sequence. fact that the recovery of the fundamental matrix is an inte-

blue dots indicate th i fih inthe f fgral part of the RANSAC-based outlier removal algorithm.
ue dots indicate the position ot the corners in the irame o Hence, for our method, the estimation of the fundamental

referengg, €.g., the tenth frame, vyhereas the red one ShOWﬁ1atrix is a backward step, whereas for the RANSAC-based
the position of the corners at the fifteenth frame. It can eas-

. : pproach is a forward computation. From the plots, we note
lly be seen that the connected component in the center pan hat the difference in performance between the two methods
contains local conflicts. The right-hand panel consistheft is not significative. This is important due to the fact that
result of applying our outlier removal algorithm. The orig- despite the lack of constraints on the motion assumed t;y
inal connected component in the center panel is partitionedour method, the detriment in the outlier removal results is
into three graphs which are the result of two bipartitions of marginal. '
the original graph. Our algorithm has partitioned the con-
nected component so as to isolate the outlier, which in this Non-rigid motion sequence
case is the red-coloured dot on the far-right side of the pan-  The second sequence we studied is a real-world image
els. The other two graphs correspond to two Harris-corner sequence which presents a number of rigid motions, which
cliques which are consistent with the camera panning mo-combined make it largely non-rigid. This sequence, which
tion in the sequence. _ ~ we call “Vehicles from the Air", captures two vehicles,
To further evaluate our method, we provide & sim- moving at different speeds on a highway. The video has
ple comparison of our results to those obtained using heen captured from a helicopter and exhibits a large amount
RANSA] for a robust estimation of the fundamental ma- of jitter.

trix. Both methods are applied to the putative matches re- ¢ this sequence, we have used three alternatives for the
covered by the KD-Tree. The RANSAC is applied to these recoyery of the image features used in the matching pro-
putative matches and then used to estimate the fundamentgloss  These are the Harris corneﬂ}s Maximally Stable
matrix [§]. Once the fundamental matrix has been recov- Extremal Regions (MSERSsL]]] and Scale Invariant Fea-

ered,_those matches that are outligrs related to this @stima ;e Transform (SIFT) descriptor@]. For the matching
are discarded. In_our |mplementat|on,_ the_threshold for thestep, we have made use of the KD-Trdf. [ Once the
inliers was 1.25 pixels and, for the estimation of the funda-

matches are at hand, we impose consistency over the cor-

1we have used the model fitting and robust estimation routines in r_95p0ndences and remove outliers _making USG_Of our algo-
http://www.csse.uwa.edu.au/ pk/research/matlabfns/ rithm. Here, we have imposed consistency making use of 7




Figure 5. Results for the “Vehicles from the Air” sequence. For evew; each column corresponds to a different image feature( from
right-to-left: Harris corners, MSERs and SIFT regions); Top rowrr€spondences delivered by the KD-Tree; Middle row: Results for
our method; Bottom row: Results for the RANSAC-based method.

consecutive frames. the RANSAC-based alternative.

In Figureﬁ, from left-to-right, we show the results for From the figure, we can see that our algorithm outper-
the correspondences between the first and the third framegorms the alternative. It has not only removed the outliers,
of the sequences yield by the KD-Tree for the Harris cor- clearly visible in the plots for the non-outlier free copes-
ners, MSERs and SIFT descriptors. The red “dot” shows dences, butit has also recovered a much denser cloud of cor-
the position of the image feature under study at the frame ofrespondences and inlier feature points than the RANSAC-
reference. The tail of the arrow starts at the red dot and itsbased approach. The RANSAC alternative has removed in-
head points towards the point in which the corresponding liers that does not agree with the fundamental matrix re-
feature is at the third frame. In the top row of the figure, we covered under rigid motion assumptions. To see this more
show the initial correspondences as recovered by the KD-clearly, we show in FigurE details of the feature cloud cor-
Tree, before any outlier removal is performed. In the middle responding to the car in the sequence. In the left-hand col-
row, we show the results for those correspondences after reumn of the figure we present the results for our algorithm.
moving outliers by our method for the three alternatives of The right-hand column corresponds to the inliers yield by
image feature vectors. The bottom row shows the results forthe alternative. From the figure, we note that, specially in



Figure 6. Details for the “Vehicles from the Air” sequence for the
three image descriptors used in our experiments. In the left-hand
row we show, from top-to-bottom, the results yield by our method
when Harris corners, MSERs and SIFT descriptors are used, re-
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(1]

(2]

(3]

(4]

(5]

(6]

(7]

8l

]

spectively. The right-hand column shows the results for the alter- [12]

native.

(23]

the case of the Harris corners, the inlier cloud recovered by
the algorithm is clearly denser and better localised over th
moving car. [

4. Conclusions

In this paper, we have shown how the problem of remov-
ing outliers for motion analysis can be cast in a graph theo-
retic setting. The algorithm presented here imposes consis

[16

[15]

]

tency constraints on the set of putative matches recoverediz)

by a matching algorithm in the literature and makes no as-
sumptions on the nature of the motion in the scene. Fur-

ther, it is not limited to a predetermined number of views [18]

and allows the use of an arbitrary number of frames. We
have illustrated the utility of the algorithm for outlier-re

moval. Further, the results yield by our algorithm compare
favorably with those recovered using an alternative. In fu-

[19

]

ture work, we intend to explore the utility of the method for 20]

purposes of motion segmentation and tracking in sequences
which exhibit non-rigid motion. Our algorithm is quite gen-
eral and can be used for other outlier correspondence re-
moval tasks.
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