
OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation

Bohao Peng1 Xiaoyang Wu2 Li Jiang3 Yukang Chen1

Hengshuang Zhao2 Zhuotao Tian4 Jiaya Jia1

1CUHK 2HKU 3CUHK, Shenzhen 4HIT, Shenzhen

Abstract

The booming of 3D recognition in the 2020s began
with the introduction of point cloud transformers. They
quickly overwhelmed sparse CNNs and became state-of-
the-art models, especially in 3D semantic segmentation.
However, sparse CNNs are still valuable networks, due to
their efficiency treasure, and ease of application. In this
work, we reexamine the design distinctions and test the
limits of what a sparse CNN can achieve. We discover
that the key credit to the performance difference is adap-
tivity. Specifically, we propose two key components, i.e.,
adaptive receptive fields (spatially) and adaptive relation,
to bridge the gap. This exploration led to the creation
of Omni-Adaptive 3D CNNs (OA-CNNs), a family of net-
works that integrates a lightweight module to greatly en-
hance the adaptivity of sparse CNNs at minimal computa-
tional cost. Without any self-attention modules, OA-CNNs
favorably surpass point transformers in terms of accuracy
in both indoor and outdoor scenes, with much less latency
and memory cost. Notably, it achieves 76.1%, 78.9%, and
70.6% mIoU on ScanNet v2, nuScenes, and SemanticKITTI
validation benchmarks respectively, while maintaining at
most 5× better speed than transformer counterparts. This
revelation highlights the potential of pure sparse CNNs to
outperform transformer-related networks. Our code is built
upon Pointcept [9], which is available at here 1.

1. Introduction

3D scene understanding is critical in various practical appli-
cations, including robotics, autonomous driving, and aug-
mented reality [13, 16, 19, 20, 30, 56, 71, 72, 75]. In con-
trast to images, which typically exhibit densely and uni-
formly arranged pixels [10, 23, 36, 50, 52, 53], 3D point
clouds often manifest irregular and scattered distributions.
It leads to various feature extractors in 3D scene under-
standing.

There are two mainstream 3D networks. The first is

1https://github.com/Pointcept/Pointcept
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Figure 1. Visualization of 3D scene receptive fields controlled by
our proposed adaptive aggregator. Objects’ edges and junctions re-
quire smaller receptive fields due to their sophisticated structures,
while flat planes and unitary structures require broader fields.

point-based networks [42, 43], which advocate directly ma-
nipulating the unstructured points. Thanks to the flexibility
of point-wise operations, point-based methods, particularly
those with transformer architectures [12, 32, 37, 40, 51, 54,
55, 74], have gradually become dominant. The second is
sparse CNNs [7, 13], where irregular point clouds are con-
verted into voxels during data preprocessing. This allows us
to leverage the locally structured benefits and facilitate high
efficiency. Due to this practical value, sparse CNNs have
been widely exploited in existing literature [38, 46, 66, 76].
However, its accuracy is usually inferior to its transformer
counterparts [21, 37, 61, 74], especially in 3D scene seman-
tic segmentation.

Given the high potential of sparse CNNs, we carefully
examine the inner reasons for the performance gap in this
paper. We find that the key distinction between sparse
CNNs and point transformers behind is adaptivity – the
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Figure 2. Comparison between various transformer-based [21, 61,
74] and CNN-based [7, 13] within RTX 3090. For OctFormer, we
reproduce the official repository and include the cost of building
the octree. If a method has multiple versions, they are indicated
by different dots.

latter can flexibly adapt to individual contexts while it may
not be feasible for the former with static perception. With-
out degrading efficiency, we bridge this gap via two key
components: (1) spatially adaptive receptive fields, and (2)
adaptive relations.

Adaptively adjusting receptive fields via attention
mechanisms is one of key designs in transformer-based
frameworks [55, 74] to achieve top performance. Intu-
itively, different parts of the 3D scene with various geomet-
ric structures and appearances should be catered with differ-
ent receptive sizes, as visualized in Fig. 1. Flat and sparse
regions like the wall and floor need large receptive fields
to yield consistent predictions with broader cues, while so-
phisticated parts like the plane junctions and small objects
need smaller ones to screen unnecessary context that may
overwhelm the local details. To enable our CNN-based
framework to adaptively perceive the contextual informa-
tion, we partition the 3D scene into non-overlapping pyra-
mid grids. We then utilize the proposed Adaptive Rela-
tion Convolution (ARConv) in multiple scales and design
a selective aggregator to adaptively aggregate the multi-
scale outputs based on the local characteristics. Instead
of pursuing consistent large receptive fields (like LargeK-
ernel3D [6]), we find that this adaptive manner is sufficient
and more efficient.

Adaptive relationships, achieved via self-attention
maps, is another key strength over CNNs. To facilitate the
establishment of relationships among local contexts, we in-
troduce a multi-one-multi paradigm in ARConv, as depicted
in Fig. 6. Specifically, we dynamically generate kernel
weights for non-empty voxels based on their correlations
with the grid centroid. By adopting this approach, we can
maintain a lightweight design[59] with a linear complexity
proportional to the voxel quantity, which effectively expands
the receptive fields and achieves optimal efficiency.

Extensive experiments validate our approach’s effective-
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Figure 3. Comparisons between the 3D point-based [42, 74] and
convolutional networks [7, 13]. PointNets directly process the raw
points and provide more flexible and broader receptive fields. Con-
vNets handle structural data after additional voxelization pretreat-
ment with higher efficiency and lower consumption.

ness, and our designs enable sparse CNNs to outperform
state-of-the-art point-based methods with transformer ar-
chitectures, with little efficiency compromise, as shown in
Fig. 2. We conduct the comparisons under the same ex-
perimental settings, without any additional pretraining or
auxiliary methods. Remarkably, it achieves mIoU scores
of 76.1%, 78.9%, and 70.6% on the ScanNet v2 [11],
nuScenes [4], and SemanticKITTI [2] validation bench-
marks, respectively. It highlights the potential of sparse
CNNs over transformer-related models in both performance
and efficiency, regardless of indoor or outdoor scenes.

In conclusion, our contributions are listed as follows:
• We analyze and find that adaptivity is the key to bridging

the gap between sparse CNNs and point transformers.
• We propose OA-CNNs as solutions, consisting of dy-

namic receptive fields and adaptive relation mapping.
• Our method outperforms state-of-the-art methods with

promising efficiency on popular benchmarks including
ScanNet v2, ScanNet200, nuScenes and SemanticKITTI
semantic segmentation.

2. Related Work
Point-based learning. Point-based methods advocate di-
rectly processing the unstructured raw points without any
additional regulation pretreatment [14, 18, 31, 64, 68].
PointNet [42] is pioneering work in this trend which lever-
ages point-wise MLP and permutation invariance operation
to obtain the global feature of input points. More details
and comparisons are shown in Fig. 3. Several follow-up
works [15, 18, 43] continue to strengthen their capabilities
through hieratical multi-scale perception and local-global
feature aggregation. Especially with the development of
the attention mechanism [55, 69, 70], point-wise perception
with the transformer architecture [21, 61, 63, 74] provides
long-range dependences and bridges global contexts rela-
tionships. These frameworks have shown outperforming su-
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periority and gradually become dominant. However, atten-
tion calculation and point-wise operation suffer from more
expensive computation and memory consumption, and the
complex architecture also makes them more challenging to
deploy.

CNN-based learning. Compared with dense images ar-
ranging pixels into a rasterized grid, point cloud directly
records the points’ spatial coordinates, which are typically
irregular and lack unified metrics. Projection-based [5, 24–
26, 29, 47] methods intuitively project the raw 3D points
into flat images from various views, and the subsequence
operations are logically the same as the 2D pipeline. How-
ever, the projection seriously destroyed the point cloud’s
geometrical information, especially for the in-door scenes
with more stereoscopic structures. An alternative technique
is to quantize the 3D scene and transform irregular point
clouds into regular voxel representation [3, 38, 39, 46]. 3D
convolutions are commonly applied to handle these voxel
collections while consuming high computation and mem-
ory. Sparse and submanifold convolutions [13] are in-
troduced to alleviate these issues and improve efficiency.
Sparse convolution introduces the hash table for the voxels’
indices retrieval, which is convenient and efficient. More-
over, 3D submanifold convolution has made a further re-
striction only processing the non-empty elements sacrific-
ing some flexibility in change for more efficiency and less
consumption. However since the complexity of the kernel
size is O(K3), the receptive fields of sparse convolutions
are still limited by the parameter quantity, which seriously
restricts the global perception ability. In this work, we ex-
plore a lightweight design [59] to expand 3D convolution
with an adaptive receptive range [27].

Dynamic convolutions. Regular convolutions optimize
the learnable kernel weights during training and fix ker-
nel weights in the inference process. Dynamic convolu-
tion [17, 67] proposes to generate the convolution kernel
adaptively depending on the specific conditions. Previous
works [49, 60, 65] have widely explored introducing dy-
namic convolution into sparse data processing. However,
these works are also based on point-wise methods and typi-
cally generate kernel weights depending on the relative po-
sition information, which requires expensive computation
and memory consumption. In this work, we inherit condi-
tional convolution to propose a lightweight grid convolution
with a regular structure. Moreover, we introduce the adap-
tive aggregator for the multi-scale pyramid aggregation to
bridge extended-range contexts efficiently.

3. Omni-Adaptive 3D Sparse CNNs
In this section, we provide a detailed introduction to our
designed lightweight modules and their application in con-
structing a series of omni-adaptive 3D sparse CNNs (OA-
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Figure 4. Illustration for the adaptive aggregator, which learns to
aggregate various grid contexts under multi-pyramid scales from
the voxel’s instinct characteristics.

CNNs). It surpasses point transformers in 3D recognition
with limited latency/memory overhead. OA-CNNs consist
of three design contents, i.e., spatially adaptive receptive
fields in Sec. 3.1, Adaptive Relation Convolution (ARConv)
in Sec. 3.2, and the overall architecture in Sec. 3.3.

3.1. Spatially adaptive receptive fields

Motivation. Various receptive field sizes are required in
distinct positions and objects in one 3D scene. For exam-
ple, as shown in Fig. 1, regions belonging to the wall and
floor are relatively flat and elementary, which require larger
receptive fields to yield consistent predictions. However
the geometric structures of the plane junction or sophisti-
cated objects are more complex and need smaller recep-
tive fields to retain the local characteristics. Transformer
frameworks [21, 55, 74] adjust the perception range by the
attention mechanism retrieving the relevance with the sur-
rounding contexts but significantly increasing memory and
computing consumption. However, sparse CNNs lack the
ability to handle this issue. In OA-CNNs, we overcome this
by directly determining the perception size with the aid of
the intrinsic voxel features, as illustrated in Fig. 4.

Voxel grid. Expanding the receptive field is necessary for
pursuing adaptive perception since the typical 3D convo-
lution kernel size is generally set as 3 × 3 × 3 limited
by the parameter quantity. To achieve this, we utilize the
voxel grid in our approach. Formally, define V = (P,F)
as a sparse voxelized 3D scene representation containing
a set of voxels vi = (pi,fi), where pi ∈ R3 represents
the positional integer indice and fi ∈ Rd is the corre-
sponding feature with d channels. The global voxel set
V is then partitioned into N non-overlapping voxel grids
[V1,V2, . . . ,VN ], Vi = {vj | pj ∈ Ω(i)}, where Vi indi-
cates i-th voxel grid and Ω(i) obtains i-th voxel grid’s in-
dices range. The voxel grid size can be considerably larger
than that of the typical 3D convolution kernel, such that the
receptive field is effectively expanded.
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Pyramid grid partition. Although a sufficiently large
grid size can provide a global view, it may not be able to
capture intricate details for sophisticated objects. In an ef-
fort to prepare the alternative grid sizes for adaptively ac-
commodating different areas, we rasterize the entire 3D
scene into pyramid voxel grids. Specifically, let’s define
G = {gk}K as the set of K grid sizes partitioning the 3D
space, where K is set as 3 in our experiments. The output
oi ∈ Rk×d of the i-th voxel grid under k-th scale is obtained
as:

oi,k,: = Conv({fj | pj ∈ Ω(i, gk)}), (1)

where Ω(i, gk) represents the range of voxel indices in the
i-th voxel grid in the size gk, and Conv(·) indicates the con-
volution for aggregating voxel features in the voxel grids to
get the voxel grid feature. Observing the intolerably heavy
parameters associated with the standard sparse 3D convolu-
tion Conv(·) using a large kernel, we introduce the ARConv
in Sec. 3.2 as a solution to this issue. The ARConv im-
proves results without sacrificing efficiency and establishes
relationships among the voxel grid.

Adaptive aggregator. To achieve a customizable recep-
tive field, we propose an adaptive aggregator that au-
tonomously adjusts the receptive fields based on the intrin-
sic characteristics and spatial structure of individual voxels,
which is illustrated in Fig. 4. Given K multi-scale grid par-
titions with sizes G = {gk}K , our proposed adaptive aggre-
gator weights and fuses the multi-scale outputs. We use a
learnable function δadp to predict the preference weights wi

of K grid sizes as:

wi = SoftMax(δadp(fi)), (2)

where w ∈ RNi×K , Ni denotes the number of voxels in-
side the i-th voxel grid, and δadp : Rd 7→ RK is a learnable
linear layer and SoftMax(·) denotes the softmax operation
over K grid sizes. We subsequently employ the predicted
weights to aggregate the convolution outputs, which contain
global information, with the original features to enhance
them,

f ′
i = δout(δproj(fi)⊕

K∑
k=1

wi,k · oϕ′(i,k),k), (3)

where δout : R2d 7→ Rd and δproj : Rd 7→ Rd are two linear
layers with normalization and activation, ⊕ denotes vector
concatenation and ϕ′(i, k) reversely returns the voxel grid
index containing the i-th voxel under gk grid size partition.

So far, we have presented a method for constructing the
spatially adaptive receptive fields based on individual con-
text, but it is not yet capable of establishing adaptive rela-
tionships as the point-based transformer counterparts.
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Figure 5. Illustration of the Adaptive Relation Convolution (AR-
Conv). It dynamically generates grid convolution’s kernel weights
only for the non-empty voxels with their relationships to the cen-
troid voxel.

3.2. Adaptive relation convolution

Observations. Transformer frameworks [40, 61] have
achieved remarkable success and become one of the domi-
nant architectures in 3D semantic segmentation. Their per-
formance superiority is largely related to the ability of re-
lation learning among various local point features. It is
achieved by self-attention mechanisms and essentially in-
creases the representation capacity. However, plain sparse
CNNs miss this design.

On the other hand, CNNs have verified, via extensive re-
search [6, 33, 58], the importance of large receptive fields to
enable a global perception. Unfortunately, 3D convolution
struggles to improve perception range by directly expand-
ing the convolution kernel since its complexity is O(K3),
where K is the kernel size, indicating that the consump-
tion of the large kernel may be unacceptable in practice,
especially for the edge devices. To this end, we explore the
large-kernel design to be lightweight and propose the Adap-
tive Relation Convolution (ARConv), which incorporates
the aforementioned adaptive relation reasoning into sparse
CNNs. More details are illustrated in Fig. 5.

Depthwise convolution. To assemble the framework in a
lightweight manner, we could start by considering depth-
wise convolution for parsing the voxel grid features. In
practical applications, it is also found that the depthwise
convolution generalizes better [59] and converges faster as
shown in our experiments. Compared with regular convo-
lutions performed over multiple input channels, depthwise
convolutions independently apply a single convolutional fil-
ter for each input channel and keep each channel separate.
The output for i-th voxel grid feature oi ∈ Rd and c-th di-

4



Reference Set

Query Set

Centroid

Voxel Block

K-Nearest 
Neighbors

Multi-to-Multi Multi-One-Multi

Grid
Partition
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transformers with the multi-one-multi paradigm in OA-CNNs.

mension can be precisely described as,

oi,c =
∑Ni

j=1
Wi,c,j · fϕ(i,j),c, (4)

where Ni is the number of non-empty voxels in the i-th
voxel grid Vi, Wi ∈ Rd×Ni indicates the learnable kernel
weight and ϕ(i, j) returns the j-th non-empty voxel index
in i-th voxel grid.

Adaptive relation kernel. For accomplishing the adap-
tive relation reasoning, the attention mechanisms [55, 74]
adopt the multi-to-multi paradigm, which incorporates a
“reference set” [43, 61] for capturing long-range depen-
dencies through multiple queries and keys. However, this
approach results in significant inference time and memory
demands on GPUs. In contrast, we propose a more effi-
cient multi-one-multi pipeline, generating a single centroid
voxel of the grid, which serves as the agent for capturing
long-range relationships. This strategy facilitates efficient
computation and lowers memory consumption, while still
enabling the extraction of complex relationships among the
non-empty voxels in the grid. The idea is illustrated in
Fig. 6.

Specifically, for the sub voxel grid Vi, its corresponding
centroid voxel feature f ctr

i ∈ Rd, where d indicates the
number of channels, is formed as:

f ctr
i = AvgPool({δproj(fj) | pj ∈ Ω(i)}), (5)

where AvgPool(·) applies 3D average pooling over the in-
put, Ω(·) indicates the subset’s indices range, and δproj :
Rd 7→ Rd is a linear projection layer with normalization
and activation.

Then the dynamic kernel weight Wi ∈ Rd×Ni of the
depthwise convolution for the i-th voxel grid is generated
by considering voxels’ feature correlations with the centroid
voxel:

Wi,:,j = δweight(fϕ(i,j) − f ctr
i ), (6)
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Figure 7. Illustration for the whole architecture and more imple-
mentation details.

where δweight : Rd 7→ Rd is a linear projection layer, and
ϕ(i, j) returns the j-th non-empty voxel index in i-th voxel
grid.

We normalize the dynamically generated weights Wi,:,j

using softmax operation along each channel separately
across the whole voxel grid. The normalization enhances
the stability of the neural network outputs during training
and assigns feature weights based on internal relevance be-
tween the specific voxel and the centroid voxel. Mathemat-
ically, for the c-th channel,

W ′
i,c,j =

exp(Wi,c,j − Max(Wi,:,:))∑Ni

k=1 exp(Wi,c,k − Max(Wi,:,:))
, (7)

where Max(·) returns the maximum value. We empirically
find that the dynamically generated weights were volatile
at the early training phase, yielding large values that may
cause the exponential function explosion and lead to “inf”
outputs. Thus, we adopt an additional operation in Eq. (7)
that subtracts the maximum values from the numerator and
denominator respectively to prevent the explosion without
affecting the output – it is numerically equal to the case
without this operation.

In essence, we have introduced an efficient approach
named Adaptive Relation Convolution (ARConv) that gen-
erates kernel weights only for the non-empty voxels dynam-
ically by considering their correlations to the geometric cen-
troid representatives, thus achieving effectiveness without
sacrificing efficiency.

3.3. Architecture

In this section, we provide the architectural details of the
OA-CNNs. Fig. 7 depicts the overall structure.

Concretely, the sparse and submanifold voxel mod-
ules [13, 37] both process spatially sparse data effectively.
The primary difference between them is that submanifold
convolution only handles the non-empty voxels in the 3D
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scene and strictly preserves the original geometric struc-
ture. Differently, sparse convolution can extract features at
empty locations and is more flexible. We construct our basic
blocks with an ARConv module followed by two subman-
ifold convolutions with necessary normalization and acti-
vation layers. Following [41, 43], we adopt the hieratical
structure to the encoder and use a sparse convolution with
kernel size and stride that are both set to (2, 2, 2), down-
sampling the spacial size to 1/8 at each time. As for the
upsampling process, the up-block only consists of a skip
connection and a single linear layer that aligns the feature
channel numbers without other components.

4. Experiments
4.1. Implementation details.

Datasets. We conducted experiments using our proposed
OA-CNNs on the standard benchmark, ScanNet v2 [11],
as well as its recent extension, ScanNet200 [45], and the
S3DIS dataset [1] for indoor scenes. ScanNet v2 con-
tains 1,201 training scenes and 312 validation scans recon-
structed from RGB-D frames. The model utilizes recon-
structed meshes to sample point clouds as input, where each
point cloud is attributed a semantic label from a set of 20
categories. ScanNet200 benchmark extends the class cate-
gories to 200, an order of magnitude more than the previ-
ous. The S3DIS dataset consists of 271 rooms in six areas
from three different buildings with 13 categories. Following
a standard protocol, area 5 is withheld during training and
used for S3DIS testing. As for the outdoor semantic seg-
mentation, we select two popular benchmarks, nuScenes [4]
and SemanticKITTI [2]. The nuScenes dataset contains
approximately 1000 scenes, with each scene consisting of
multiple sensor sweeps captured from a moving vehicle. In
contrast, the SemanticKITTI dataset consists of sequences
from the raw KITTI dataset, which contains 22 sequences
in total. Each sequence includes around 1,000 lidar scans,
corresponding to approximately 20,000 individual frames.

Training details. We train our models on 4 RTX 3090
GPUs with the batch size and the number of epochs set
to 16 and 100, respectively. With the considerations re-
garding computational efficiency and memory constraints,
the training process leverages a subset of up to 100,000
randomly sampled points from the point cloud. In con-
trast, the full point cloud is used during validation to en-
sure an unbiased and rigorous evaluation of the model’s per-
formance. Moreover, we attribute parts of the point-based
frameworks’ performance superiority to the modern train-
ing strategy with advanced data enhancement [44, 61]. We
refer to these strategies to train our models. Specifically, we
use the AdamW optimizer [34] for parameter optimization,
which is widely used in transformer architectures. The ini-

Method Input Val mIoU Test mIoU

PointNet++ [43] point 53.5 55.7
PointNeXt-XL [44] point 71.5 71.2
PointCNN [28] point - 45.8
KPConv [49] point 69.2 68.6
PointConv [60] point 61.0 66.6
PointTransformer [74] point 70.6 -
FastPointTransformer [40] point 72.1 -
Stratified Transformer [21] point 74.3 73.7
OctFormer [57] point 75.7 76.6
PTv2 [61] point 75.4 75.2

SparseUNet [13] voxel 69.3 72.5
MinkowskiNet [7] voxel 72.2 73.6
LargeKernel3D [6] voxel 73.2 73.9
OA-CNNs(ours) voxel 76.1 75.6

Table 1. We compared semantic segmentation results on ScanNet
v2. All the selected methods are under the same experimental set-
tings without the use of additional pretraining or auxiliary meth-
ods.

Outdoor Sem. Seg. Benchmarks
Method nuScenes [4] SemanticKITTI [2]

SparseUNet [13] 73.3 63.8
SPVNAS [48] 77.4 64.7
Cylender3D [77] 76.1 64.3
SphereFormer [22] 78.4 67.8

OA-CNNs(ours) 78.9 70.6

Table 2. Results on outdoor semantic segmentation benchmarks.

Method Val Test
Head Comm. Tail All All

MinkowskiNet [7] 48.3 19.1 7.9 25.1 25.3
LGround [45] 51.5 22.7 12.5 28.9 27.2
SparseUNet [62] - - - 28.8 -
OctFormer [57] - - - - 32.6
PTv2 [62] - - - 29.3 -

OA-CNNs(Ours) 51.3 28.0 17.7 32.3 33.3

Table 3. Results on ScanNet200 for semantic segmentation.

tial learning rate lr is 0.001, and the weight decay is set to
0.02 with the cosine annealing strategy. Following [61] for
data preprocessing, we estimate normal vectors for points
and add coordinates as additional feature input. As for the
data augmentation, we apply random drop, random defor-
mation, and color jitter following [61, 74].

4.2. Comparisons

Performance. We conduct a comprehensive comparison
of our proposed OA-CNNs with alternative backbone mod-
els on multiple benchmarks, including ScanNet v2, Scan-
Net200, S3DIS, nuScenes, and SemanticKITTI [1, 2, 4, 11,
45]. All the methods compared in our experiments are eval-
uated under the same experimental settings, without any ad-
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Method Input OA mIoU

PointNet [42] point - 41.1
PointTransformer [74] point 90.8 70.4
PTv2 [61] point 91.1 71.6

MinkowskiNet [7] voxel - 65.4
OA-CNNs(ours) voxel 90.7 71.1

Table 4. Results on S3DIS area 5 for semantic segmen-
tation.

ID Aggregation Stage Nums
mIoU

∆
(%)

I w/o 1 75.0 + 0.0
II Concatenation 3 75.2 + 0.2
III Adaptive (ours) 2 75.2 + 0.2
IV Adaptive (ours) 3 76.1 + 1.1

Table 5. Effectiveness of adaptive aggregator and naive concatenation
through ablation studies with varying stage numbers.

ID Enlarge Methods mIoU
(%)

I Baseline 73.0
II Multi-head Self-attention 73.5
III Grouped Vector Attention 74.3
IV Pyramid Pooling 75.0
V ARConv 76.1

Table 6. Ablation studies on the different methods com-
monly used for enlarging receptive fields.

ID Conv Groups
mIoU
(%)

I Grouped [2, 2, 4, 8] 75.0
II Grouped [4, 4, 8, 16] 75.4
III Depthwise - 76.1

Table 7. Performance Comparison of
Depthwise Convolution and Regular
Grouped Convolution.

ID Type
mIoU
(%)

I Pos 75.3
II Pos+Ctr 75.9
III Ctr 76.1

Table 8. Comparison of
various weight generation
methods.

Epoch Epoch

Val / Loss Val / mIoU

Ours Multi-head Self-attention Group Vector Attention Pyramid Pooling

Figure 8. Compared with other classical modules to expand the
receptive fields, our proposed method is more stable, has faster
convergence during training, and acquires better performance.

ditional pretraining or auxiliary methods. The results are
shown in Tabs. 1, 2, 3, 4. Our proposed model exhibits su-
perior performance over prior state-of-the-art point-based
frameworks and transformer architectures in both indoor
and outdoor scenes. Indeed, these results highlight the su-
perior generalization capability of OA-CNNs, demonstrat-
ing their potential to outperform point-based and trans-
former models in various benchmarks even without any
self-attention modules.

4.3. Ablation Study

Efficiency. We also compare our models with various
CNN-Based and transformer-based methods [7, 13, 21, 61,
74] regarding accuracy, inference speed, and GPU mem-
ory consumption, as shown in Fig. 2. We can observe that,
while transformer-based methods have demonstrated im-
pressive performance, they come with a drawback – they
require extensive time and memory for frequently querying
nearest neighbors, attention computation, and other point-
based operations. Differently, thanks to the CNN architec-

Type Blocks
Time Mem. mIoU
(ms) (G) (%)

OA-CNN (S) [ 2, 2, 2, 2] 117 2.1 73.6
OA-CNN (B) [ 3, 3, 9, 3] 190 3.3 75.3
OA-CNN (L) [ 3, 3, 9, 8] 213 3.6 76.1

Table 9. Comparison between various versions of our proposed
models. The channels for each stage are set to [64, 64, 128, 256]
and kept the same.

ture that exploits the structural data arrangement and hash
acceleration to attain notable efficiency and low memory
consumption, our method takes the performance lead but
still preserves a superior balance between effectiveness and
efficiency.

Receptive field expansion. We verify the effectiveness
of our proposed Adaptive Relation Convolution (ARConv)
by the comparison with three alternative modules com-
monly used for receptive field expansion: 1) multi-head
self-attention [55]; 2) grouped vector attention [61]; and 3)
pyramid pooling [73].

For attention-based modules, we operate the voxels like
nearest neighbor finding and grouping following the point
transformer [74]. The test results are shown in Tab. 6, where
our ARConv outperforms other competitors. Moreover,
Fig. 8 presents the comparison of the validation loss/mIoU
during the training process, and ARConv exhibits a supe-
rior capacity for mitigating overfitting than the others, as
evidenced by the lack of considerable deterioration in vali-
dation loss during the later period of training.

Aggregation methods. We validate the effectiveness and
superiority of the pyramid grid partition and proposed adap-
tive aggregator, and the experimental results are shown in

7



Input Ground Truth Prediction

Figure 9. Visualization of semantic segmentation results on Scan-
Net v2.

Tab. 5. The first row shows the result of the model with the
single-scale partition, where the additional aggregation is
not necessary. The second experiment, which adopts direct
concatenation for aggregation, leads to a marginal improve-
ment in performance. Then, by introducing our proposed
adaptive aggregator that adjusts the receptive field of each
voxel based on its intrinsic properties, we observed a sig-
nificant improvement in performance as compared to using
concatenation. Also, we investigate the effects of the num-
ber of pyramid stages and find that the three stages acquire
the best result, and all experiments follow this configuration
without otherwise specified.

Depthwise convolution. In contrast to regular convolu-
tion that applies one filter W ∈ Rc×l×c, where c repre-
sents the channels and l represents the inputs’ length, across
all input channels, depthwise convolution applies a single
filter for each input channel independently. Initially, we
attempted to implement regular convolution with the pro-
posed dynamic kernel weights but found it to be unstable
and non-convergent, particularly during the early training
stages. Consequently, we replaced it with both grouped
convolution [8] and depthwise convolution. The outcomes
are presented in Tab. 7. Our adoption of depthwise con-
volution with dynamically generated weights W ∈ Rl×c

yields linear complexity to input channels, showcasing the
dual benefits of efficiency and performance.

Dynamic kernel weights. Previous point-based methods,
such as [49, 65], have also explored dynamically generated
kernel weights. However, their approaches aim to incor-
porate geometric information from points rather than local
semantic relationships, mimicking convolutional operations
while still following the PointNet paradigm. Differently,

our work is based on sparse convolution networks. We
assess the effectiveness of our design for dynamic kernel
weight generation by comparing it with other alternatives
in Tab. 8, where ctr represents our adaptive relation kernel
and pos denotes kernel weight generation using relative po-
sitions. Our adaptive relation kernel demonstrates superior
performance to other methods.

Multiple versions. We present multiple versions of OA-
CNNs, achieved by adjusting the number of blocks in each
stage while keeping other configurations consistent. In
all models, the number of channels per block is set to
[64, 64, 128, 256]. The impact on performance and effi-
ciency is demonstrated in Tab. 9, where all models are eval-
uated on a single RTX 3090 to ensure a fair comparison.

4.4. Visual Analysis

Predictions. The qualitative results of point cloud seman-
tic segmentation are presented in Fig. 9. Our model ex-
hibits exceptional predictive accuracy on the ScanNet v2
dataset, with results that demonstrate high consistency with
the ground truth.

Receptive fields. Fig. 1 visualizes the varying receptive
field sizes of different objects and parts with distinct geo-
metric structures and appearances within a 3D indoor scene.
We calculate the sizes of the receptive fields as follows:

ri =
∑K

k=1
wi,kgk, (8)

where gk represents the k-th grid size and w ∈ Rn×K in-
dicates preference weights predicted by the learnable adap-
tive aggregator in Eq. (2). We then map different sizes ri to
the corresponding colors. Fig. 1 confirms our intuition that
3D scenes’ flatter areas with simplistic structures, such as
walls and floors, require larger receptive fields. Conversely,
smaller objects and more intricate areas, such as edges and
junctions, need smaller ones. Additionally, we observe that
the floor generally requires a smaller receptive field than the
wall and ceiling, since it is necessary to exploit more local
contexts to distinguish itself from the objects placed on the
floor. More visual comparisons of the receptive field are put
in the supplementary materials.

5. Conclusion
This study highlights the potential of sparse convolution
networks to surpass transformer architectures in both ef-
ficiency and performance. To achieve this, we introduce
omni-adaptive 3D CNNs (OA-CNNs), which consist of two
key components: spatially dynamic receptive fields and
adaptive relation convolution. As for limitations, the cur-
rent pyramid grid sizes are set empirically, highlighting the
need for future research to develop more scientifically and
logically grounded search algorithms.
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Appendix

A. Implementation Details
In this section, we present further details and configurations utilized in our experiments.

A.1. Environment

Experimental environment.
• PyTorch version: 1.10.1
• CUDA version: 11.1
• cuDNN version: 1.10.1
• GPU: Nvidia RTX 3090 × 4

A.2. Data Propocessing

Data preprocessing and augmentation. This work maintains consistency in data preprocessing and augmentation with
PTv1 and Ptv2 [61, 74] for the ScanNet series and S3DIS datasets [1, 11, 45]. The specific data augmentation strategies
employed during training are outlined in Tab. 10.

Drop Rotate Scale Flip Jitter Disort Chromatic

ScanNet v2 [11] ✓ ✓ ✓ ✓ ✓ ✓ ✓
ScanNet200 [45] ✓ ✓ ✓ ✓ ✓ ✓ ✓
S3DIS [1] ✓ ✓ ✓ ✓

Table 10. Data augmentation strategies on various datasets.

Voxelization.
• voxel size: 0.02m
• hash type: Fowler-Noll-Vo (FNV)

A.3. Training Setting

This subsection offers additional details on our training settings for the three standard benchmarks, including optimizer and
learning configurations. More details are listed in Tab. 11.

Epoch LR Weight Decay Scheduler Optimizer Batch Size

ScanNet v2 [11] 600 1e-3 0.02 Cosine AdamW 16
ScanNet200 [45] 900 1e-3 0.02 Cosine AdamW 12
S3DIS [1] 3000 1e-3 0.05 MultiStep AdamW 16

Table 11. Training settings on various datasets.

B. Experimental Results
B.1. Test Benchmarks

In this section, we present detailed results for each category on the ScanNet v2 and ScanNet200 test set. For more detailed
information refer to the official benchmarks [11, 45].

ScanNet v2 contains over 1, 513 RGB-D indoor scans of various environments, including apartments, offices, and public
spaces. The dataset includes high-quality 3D point clouds with per-point semantic annotations. On the other hand, the
ScanNet200 benchmark extends the class categories to 200, an order of magnitude more than the previous, significantly
increasing the difficulty and generalizability requirements. Moreover, ScanNet200 partitioned the 200 categories into three
distinct subsets based on the labeled surface points’ frequency in the train set: head, common, and tail, comprising 66, 68, and
66 categories, respectively, for a more granular understanding of the segmentation performance. As for the evaluation, we
follow the standard protocol using the mean class-wise intersection over union (mIoU) for both ScanNet v2 and ScanNet200.
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Specifically, Tab. 12 presents comprehensive results on the ScanNet v2, offering a detailed breakdown of the performance
for each semantic class. Similarly, Tab. 13 provides the results of the head, common, and tail subsets on the ScanNet200
benchmark, offering a more nuanced understanding of the performance across different levels of class imbalance. Further-
more, Fig. 10 visually represents the segmentation performance for each specific class in the ScanNet200 benchmark.

Category AVG bathtub bed bookshelf cabinet chair counter curtain desk door shower curtain

mIoU 75.6 78.3 82.6 85.8 77.6 83.7 54.8 89.6 64.9 67.5 80.2
(%)

Category picture floor refrigerator sink sofa table toilet wall window otherfurniture

mIoU
33.5 96.2 77.1 77.0 78.7 69.1 93.6 88.0 76.1 58.6

(%)

Table 12. Results for each category on the ScanNet v2 test benchmark.

Set Head Common Tail All

mIoU
55.8 26.9 12.4 33.3

(%)

Table 13. Results for various sets on the ScanNet200 test benchmark.

Figure 10. Results for each category on the ScanNet200 test benchmark.

B.2. Raw Points and Structural Voxels

The Point Transformer methods, building upon the fundamental principles of the PointNet series [42, 43], emphasize the ad-
vantages of operating directly on raw point data to capture finer-grained local features and preserve the underlying geometric
structure of the data. In contrast, traditional CNN-based methods typically require voxelization preprocessing, which in-
volves partitioning the 3D space into a regular grid of equally-sized cubic volumes (voxels). This mapping allows the points’
positions to be transformed into discrete indices [7, 13], which can be used for convolutional and index retrieval operations.

However, voxelization may result in losing fine-grained geometric details and potential aliasing effects. To test the in-
fluence of voxelization on performance, we conducted an experiment where we input the discretized voxels into the Point
Transformer with normalized indices instead of the original positional information while keeping all other configurations the
same. The voxelization used in this experiment was the same as for our OA-CNNs’ input. The results are shown in Tab. 14,
and we observed that the degradation in performance due to discretization was acceptable with appropriate granularity.

B.3. Decoder Design

Typically, U-Net architectures are adopted by 3D semantic segmentation models, which split the entire process into feature
encoding and decoding. The encoder processes the input point cloud features and generates downsampled pyramid features
using multi-scale and multi-revolution techniques, while the decoder integrates all the cues. Previous 3D semantic models
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Method Input
mIoU

Input Size Hash
mIoU

(%) (%)

PointTransformer v2 [61] Point 75.6 Voxel 0.02m FNV 75.5

Table 14. Comparison between point and voxel inputs.

have constructed decoder blocks using the same components, replacing the downsample sparse modules with upsample
modules. In this study, we have constructed our decoder blocks with only essential upsample modules and a single MLP
layer, resulting in an extremely lightweight and simple design. Additionally, we have transferred the main components to the
encoder section, ensuring the lightweight decoder’s effectiveness.

To be specific, our initial model construction adhered to the typical pipeline, which involves constructing the decoder
in a manner similar to the encoder, while replacing the downsample modules with upsample modules for the basic blocks.
Subsequently, we designed the decoder block to comprise only a single upsample and MLP layer. The experimental results
are shown in Tab. 15 and more detailed architectural comparison is displayed in Fig. 11.

Method Encoder Blocks Decoder Blocks
mIoU
(%)

Basic Blocks (upsample) [ 2, 2, 6, 6] [ 2, 2, 2, 2] 75.0
MLP [ 3, 3, 9, 8] - 76.1

Table 15. Performance comparison between different decoder designs.
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Figure 11. Comparison between our and typical decoder blocks.

B.4. Decoder Design

Typically, U-Net architectures are adopted by 3D semantic segmentation models, which split the entire process into feature
encoding and decoding. The encoder processes the input point cloud features and generates downsampled pyramid features
using multi-scale and multi-revolution techniques, while the decoder integrates all the cues. Previous 3D semantic models
have constructed decoder blocks using the same components, replacing the downsample sparse modules with upsample
modules. In this study, we have constructed our decoder blocks with only essential upsample modules and a single MLP
layer, resulting in an extremely lightweight and simple design. Additionally, we have transferred the main components to the
encoder section, ensuring the lightweight decoder’s effectiveness.

To be specific, our initial model construction adhered to the typical pipeline, which involves constructing the decoder
in a manner similar to the encoder, while replacing the downsample modules with upsample modules for the basic blocks.
Subsequently, we designed the decoder block to comprise only a single upsample and MLP layer. The experimental results
are shown in Tab. 15 and more detailed architectural comparison is displayed in Fig. 11.
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C. Impact of the grid size.
To examine the impact of grid size, we supplement ablation experiments by adjusting the grid size to 0.5x, 0.67x, 0.75x,
and 1.25x times compared to the original setting. The experimental results are shown in Fig. 12, which shows that: (1)
Significantly reducing the grid size leads to notable performance degradation, attributed to insufficient receptive range. (2)
Continuing to expand the grid size does not yield improvements and may even cause minor negative impacts. This could
be because fine-grained local details are overwhelmed by the surrounding context, especially for small objects. The time
consumption generally remains consistent across different grid sizes, which shows the robustness of our method.

74.3

75.2 75.1

76.1
75.8

74

75

76

0.5x 0.67x 0.75x Ours 1.25x

Grid Size

mIoU (%)

Small grid size Large grid size  𝒈𝒌

Figure 12. Comparative analysis of the impact of various grid sizes.

D. Visualization Studies
D.1. Receptive Fields Comparison

In this subsection, we present the Effective Receptive Field (ERF) [35] visualization for the feature of interest in the first
stage, denoted by red and yellow stars representing the table and wall, respectively. Effective Receptive Field (ERF) is used
to measure the ability of a deep neural network to capture the contextual information of an input image or feature map. The
ERF of a neuron in a deep network is defined as the area in the input space that influences the neuron’s activation, which
helps to explain the network’s behavior and performance. We conducted ablation experiments to assess the effectiveness of
our proposed ARConv and adaptive aggregator on distinct 3D scene parts with different spatial structures and appearances.
The visualization results are shown in Fig. 13.

The experimental results demonstrate that our proposed ARConv can significantly expand the receptive range compared
to the baseline. Moreover, the adaptive aggregator can dynamically adjust the receptive fields based on the specific geometric
and appearance features, allocating a larger receptive field for the wall and a smaller one for the table. These findings suggest
that our proposed methods can effectively capture the key features of different parts of the 3D scene and improve the model’s
overall performance on 3D point cloud tasks.

D.2. Prediction Visualization

In this subsection, we provide additional visualizations of our proposed model’s predictions on the ScanNet dataset. Fig. 14
showcases a diverse set of indoor scenes to demonstrate our model’s performance across different environments. The vi-
sualizations demonstrate that our model performs remarkably well in various indoor scenes, regardless of complexity and
structural variations. Specifically, the model accurately segments different indoor objects such as furniture, walls, and floors,
and effectively captures their fine details and shapes. Furthermore, the model generates consistent and coherent predictions
even in complex indoor environments, where objects are densely packed and occluded.

These visualizations provide compelling evidence of the effectiveness of our proposed approach in achieving accurate and
robust 3D semantic segmentation results on the ScanNet dataset.
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Raw Points
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Table
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Figure 13. Visualization comparison of the receptive fields on various 3D scene parts.
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Input Ground Truth Prediction

floor wall cabinet bed chair sofa table door window

bookshelf picture counter desk curtain refrigerator bathtub

shower curtain toilet sink other furniture ignore

Figure 14. Visualization results of the raw point cloud, ground truth, and our model’s prediction.
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