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Abstract

We present personalized residuals and localized
attention-guided sampling for efficient concept-driven
generation using text-to-image diffusion models. Our
method first represents concepts by freezing the weights of
a pretrained text-conditioned diffusion model and learning
low-rank residuals for a small subset of the model’s layers.
The residual-based approach then directly enables appli-
cation of our proposed sampling technique, which applies
the learned residuals only in areas where the concept
is localized via cross-attention and applies the original
diffusion weights in all other regions. Localized sampling
therefore combines the learned identity of the concept with
the existing generative prior of the underlying diffusion
model. We show that personalized residuals effectively
capture the identity of a concept in ∼3 minutes on a single
GPU without the use of regularization images and with
fewer parameters than previous models, and localized
sampling allows using the original model as strong prior
for large parts of the image.

1. Introduction

Large-scale text-to-image diffusion models have demon-
strated the ability to generate high-quality images that fol-
low the constraints of the input text [21, 22, 26]. How-
ever, these models do not inherently encode any informa-
tion about the identity of a specific concept, thus limiting
the control over specifying a particular instance to appear
in the generated image. To address this, recent approaches
propose techniques to personalize these models such that
they can generate specific concepts in novel environments
and styles.

Given a set of images depicting the desired concept,

*Work performed during an internship at Adobe Research.

personalization approaches differ in which parameters they
train and whether they are specific to a single concept (i.e.,
they need to be separately trained for each new concept) or
can generalize to new concepts without retraining. To en-
able personalization of arbitrary concepts, one can finetune
the model’s parameters [24] or its inputs [7] directly such
that it can reconstruct the training data. These approaches
can be applied to any kind of concepts, but the finetun-
ing needs to be done on a per-concept basis and different
parameters need to be stored for each. Other approaches
train an encoder specific to a particular domain (e.g., faces)
and finetune the diffusion model once to use the encoder’s
embeddings to reconstruct specific concepts within that do-
main [8, 25, 33]. The advantage of the latter approach is
that it does not require retraining for every concept and can
instead be used to instantly generate new concepts from the
given domain. However, this approach is limited to a single
domain and requires a large dataset to train the encoder.

Our approach follows the former setting, i.e., it finetunes
the model’s parameters for each concept so that there are
no constraints on the domain (see Figure 1 for examples
using our proposed method). The main challenges of open-
domain approaches is the need for regularization to mitigate
forgetting of concepts learned in the model’s original train-
ing, and the computational overhead in finetuning a new set
of parameters for each concept. The most common regular-
ization approach is to use images from the same domain as
the target concept with the reference images during the fine-
tuning of parameters. The choice of regularization images
affects the quality of the final outputs and, as such, is usually
model-, training-, and sometimes even concept-dependent.
Finally, to address the large overhead of finetuning a whole
new model for each concept, many approaches only fine-
tune a subset of parameters (e.g., attention layers weights
[16]) or the input to the text-to-image model (e.g., the text
embedding representing a specific concept [7]).

Our approach further reduces the number of learnable
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“A rusty V* toy gnome in a 
post-apocalyptic landscape”

“V* plushie oil painting 
Ghibli inspired”

“V* cat wearing sunglasses”

Pe
rs

on
al

ize
d 

Re
sid

ua
ls

Pe
rs

on
al

ize
d 

Re
sid

ua
ls

+ 
LA

G 
Sa

m
pl

in
g

“V* action figure riding a 
motorcycle”

“The V* lighthouse 
surrounded by a tranquil lake”

“A V* car resting beneath the 
cherry blossoms in full bloom”

Concept

Concept Concept

Concept

Concept

Concept

Figure 1. (Top) Given a set of reference images, we learn personalized residuals for a subset of a pretrained diffusion model’s weights for
efficient concept-driven text-to-image generation. (Bottom) The residuals can be combined with our proposed localized attention-guided
(LAG) sampling, which leverages the cross-attention maps from the diffusion models to localize the application of the residuals and uses
the original, unchanged, diffusion model for generating everything else.

parameters and does not rely on regularization images.
While most approaches focus on finetuning the key and
value weights of the cross-attention layers, we instead pre-
dict a low-rank residual [14] to the weights of the output
projection conv layer after each cross-attention layer. This
allows us to finetune even fewer parameters (about ∼0.1%
of the base model) than previous approaches. Furthermore,
we find that this approach does not require any regulariza-
tion images which makes our approach both simpler, since
we do not need to find appropriate strategies to obtain reg-
ularization images, and faster, since we do not need addi-
tional training iterations for learning from the regularization
images. We also show that the choice of macro class for
personalizing a given image affects the performance, e.g.,
using “car” instead of “Lamborghini” as the macro class in
Figure 1 affects the quality of the outcome (see supplemen-
tary). Based on this, removing the need for regularization
images removes an additional dependency and decreases
the need for manual selections.

Additionally, many personalization approaches struggle
to render specific backgrounds or add new objects often due
to some degree of overfitting to the target concept. For
these scenarios, we propose a novel localized attention-
guided (LAG) sampling scheme, which allows us to use
the finetuned residuals with the original model to generate

the target concept and the rest of the image, respectively.
To achieve this, we use the attention maps from the cross-
attention layers of the diffusion model at each timestep to
predict the location of the concept in the generated image
and then apply the features, produced using the personal-
ized residuals, only in the predicted region such that the rest
of the image (e.g., background and other objects) is gener-
ated by the original model. Thus, we ensure that we do
not lose the capability of generating specific backgrounds or
unrelated objects due to overfitting. Furthermore, this sam-
pling approach does not require any additional training or
data, and does not increase sampling time as no additional
model evaluations are needed.

We evaluate our approach and sampling technique on
the CustomConcept101 dataset [16], which was specifically
designed to evaluate personalization approaches. We use
CLIP and DINO scores to evaluate the text-image align-
ment (i.e., how well the personalized model can generate
the concept in novel scenes and environments) and identity
preservation of the personalized model (i.e., how well it can
generate the desired concept). We also perform a user study
to evaluate human preference for text-image alignment and
identity preservation. Our results show that our model per-
forms on par or better compared to current state-of-the-art
baselines while using significantly fewer parameters, not re-



lying on regularization images, and being faster to train.
To summarize, our key contributions are a novel and

more efficient low-rank personalization approach for text-
to-image diffusion models that works for arbitrary domains
and concepts, uses fewer parameters than previous ap-
proaches, does not rely on regularization images and is,
therefore, faster and simpler to train. We also introduce a
novel localized attention-guided (LAG) sampling approach
that allows us to flexibly combine the original pretrained
and the finetuned model on the fly to generate different
parts of the image, without increasing the sampling time
and without requiring additional training or user inputs.
Our user study and quantitative evaluations show that our
method performs comparably or better than other baselines,
and our proposed sampling approach can address challenges
with certain types of recontextualization scenarios, such as
background changes.

2. Related Work
2.1. Personalization of text-to-image models

The task of text-to-image personalization was proposed by
[7], where a few example images of the given concept are
used to finetune a “personalized” token embedding while
all other parameters of the model frozen. Instead of trying
to find an embedding within the existing text conditioning
space to represent a concept, DreamBooth [24] finetunes
the diffusion model’s parameters to directly inject the con-
cept into the learned prior, leading to better performance.
Custom Diffusion [16] only finetunes the cross-attention
weights in addition to the token embedding to achieve more
efficient personalization compared to DreamBooth. Based
on these works, other aim to improve the performance and
efficiency of personalizing text-to-image models through
approaches such as, but not limited to, learning multiple
personalized tokens [5, 12], imposing constraints on the
trainable parameters (e.g., key-locking [30], orthogonality
[19], low-rank [28], singular values only [9]), training hy-
pernetworks and domain-specific encoders [8, 17, 25, 33],
and injecting of visual features [10, 32, 33].

2.2. Attention-guided text-to-image synthesis

Attention layers [31] have been shown to play an impor-
tant role in the success of text-conditioned image synthesis
using diffusion models. Recent works propose to manipu-
late attention maps from these layers for guided synthesis
and editing. [4] modifies cross-attention values to guide the
generation process so that the subjects specified in an input
prompt appear and the attributes are associated to its cor-
responding subject. [1, 11] enable conditioning on a user-
provided layout by guiding the localization of objects via
cross-attention manipulation. Given an existing image and a
prompt that describes the image, [6, 12] synthesize/edit im-

ages by manipulating the cross-attention map correspond-
ing to the editing target. Similarly, [2] performs edits on ex-
isting images albeit through instructions and modifications
within self-attention layers.

3. Approach
Our method consists of two components: 1) Personal-
ized residuals, which encode the identity of a given con-
cept through a set of learned offsets applied to a subset of
weights within a pretrained text-to-image diffusion model,
and 2) Localized attention-guided (LAG) sampling, which
leverages attention maps to localize where the residuals are
applied, essentially allowing a single image to be efficiently
generated by leveraging both the base diffusion model and
the personalized residuals.

3.1. Preliminaries

Diffusion models. Diffusion models [13] consist of a fixed
forward noising process that gradually adds noise to an
image, and a learned denoising process that iteratively re-
moves noise to produce a valid image. The denoising pro-
cess is learned through a U-Net [23] ϵθ, parameterized by θ,
and is conditioned on an image xt noised to timestep t, and
t itself. Text guidance can be incorporated through condi-
tioning on embeddings c = τ(y) of input prompts y from a
text encoder τ , such as CLIP [20].

In this work, we leverage Stable Diffusion, a text-
conditioned latent diffusion model (LDM) [22]. An LDM
is a variant of a diffusion model that operates in the latent
space of a variational autoencoder [15]. The encoder E em-
beds an input image x into a latent representation z = E(x)
and a decoder D maps z back into pixel space x′ = D(z).
The diffusion portion of LDM operates on z and is trained
using the following objective:

LLDM = Ez∼E(x),y,ϵ∼N (0,1),t

[
∥ϵ−ϵθ

(
zt, t, τ(y)

)
∥22
]
. (1)

Low rank adaptation (LoRA). Low rank adaptation
(LoRA) [14] is an efficient method originally proposed for
updating large language models through learned residuals
instead of directly finetuning their parameters. For a given
layer of the pretrained model with weight matrix W0 ∈
Rm×n, LoRA learns two matrices A and B whose product
forms a residual ∆W = AB ∈ Rm×n, where A ∈ Rm×r,
B ∈ Rr×n, and r ≪ min(m,n) is the rank. The updated
weight matrix is then defined as W ′ = W0 + ∆W . With
small values of r, LoRA has been shown to significantly re-
duce the number of learnable parameters while retaining or
even improving performance.

3.2. Learning residuals for capturing identity

The goal of personalizing text-to-image models is to faith-
fully capture the identity of a target concept while simulta-



neously avoiding overfitting so that the concept can be re-
contextualized into new settings and configurations. Since
concepts are often learned using only a few reference im-
ages, directly finetuning the weights of a very large genera-
tive model can easily lead to overfitting and/or overwriting
unnecessary parts of the learned language prior. Instead we
propose to use a LoRA-based approach to learn low-rank
offsets for a small subset of the diffusion model weights
which will represent the target concept. Thus, we are able
to recover the full generative capacity of the original model
by simply not applying the learned residuals at inference.

The diffusion model contains multiple transformer
blocks, which consist of self- and cross-attention layers [31]
with a 1×1 conv projection layer on either end (see Fig-
ure 2). While several approaches primarily target the cross-
attention layers due to their learning of relationships be-
tween text and images, we choose to learn offsets for the
output projection conv layers because these localized oper-
ations can capture finer details than the global operations of
cross-attention.

We illustrate the process of learning personalized resid-
uals in Figure 2. Given a pretrained text-to-image dif-
fusion model containing L transformer blocks, we learn
∆Wi = AiBi ∈ Rmi×mi for the output projection layer
lproj out,i with weight matrix Wi ∈ Rmi×mi×1 within each
transformer block i, where Ai ∈ Rmi×ri and Bi ∈ Rri×mi .
We reshape the residual such that ∆Wi ∈ Rmi×mi×1 and
add to the original weights Wi to produce W ′

i = Wi+∆Wi.
The ∆Wi’s are updated using the original diffusion objec-
tive in Equation (1).

Similar to other works, we associate the concept with a
unique identifier token (e.g., V*), which is initialized us-
ing a rarely occurring token embedding. During training,
we use the unique token and macro class of the concept in a
fixed template for the prompt associated with each reference
image (e.g., “a photo of a V* macro class”). Person-
alization approaches that involve direct updates to the dif-
fusion model’s weights are susceptible to overwriting parts
of the existing generative prior with the new concept and
thus explicitly require “prior preservation” through regular-
ization images during training [16, 24]. Since our method
does not directly update the diffusion model, we avoid this
issue entirely and eliminate the burden on the user to de-
termine an effective set of regularization images, which is
not always straightforward. Additionally, the low-rank con-
straint on the residuals reduces the number of trainable pa-
rameters, making our method a simpler and more efficient
approach for personalization.

3.3. Localized attention-guided sampling

With our residual-based personalization approach, we have
additional flexibility in how the offsets are applied at infer-
ence. We introduce a new localized attention-guided (LAG)

sampling method to better combine a newly learned concept
with the original generative prior of the diffusion model.
As shown in Figure 2, within every transformer block of
the diffusion model is a cross-attention layer, which aims to
learn the correspondence between text tokens and image re-
gions. Each cross-attention layer computes attention maps
Ayi

for each token yi in the prompt, indicating where the
token will affect the generated image. The attention maps
are produced using the following equation:

A(Q,K) = softmax
(QK⊤
√
dk

)
, (2)

where Q = WQx is the query, K = WKy is the key,
and dk is the dimension of the query and key.

Given the indices C of the unique identifier and macro
class tokens specifying the concept (e.g., “V*” and “dog”),
we sum the values of the corresponding attention maps
Ai,C =

∑
j∈C Aj in transformer block i, and then binarize

using its median value to get Mi = binarize(Ai,C). Finally,
we compute the output feature f̂i of each transformer block
i as:

f̂i = (1−Mi)⊗ fi +Mi ⊗ f ′
i , (3)

where fi = Wix is the feature produced using the origi-
nal conv weight Wi, and f ′

i = W ′
ix is the feature produced

using the updated weight from the personalized residual
W ′

i = Wi + ∆Wi. Thus, the identity represented through
the personalized residuals is only being applied in the re-
gions corresponding to the target concept, and the remain-
ing regions are generated by the original diffusion model.
The proposed LAG sampling technique is visualized in Fig-
ure 4.

While there exist personalization works using attention
guidance (e.g., [10, 33]), they often rely on object masks
and/or additional losses at train time to focus on the relevant
object location in the reference images, whereas manually-
provided object masks or specific training are not needed
to enable LAG. Additionally, LAG sampling explicitly
merges the features of two layers (personalized/finetuned
and original/non-finetuned) on-the-fly based on the cross-
attention maps obtained during inference and has negligible
impact on the sampling speed. In contrast, other synthe-
sis/editing works (see Section 2.2) use cross-attention val-
ues to up- or down-weight the influence of specific tokens
at specific image locations.

LAG sampling can be beneficial in scenarios where the
learned residuals overfit to the reference images and have
not effectively disentangled the target concept from the
background, which can occur as a consequence of ambi-
guities of the target concept given the reference images or
model biases (e.g., furniture often photographed indoors).
By leveraging the attention maps from the tokens denoting
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Figure 2. Overview of our proposed work. (1) Personalized residuals: We learn low-rank residuals for the output projection layer within
each transformer block in the diffusion model. The residuals contain relatively few parameters, are fast to train, and do not require any
regularization images during training. (2) Localized attention-guided sampling: We optionally apply the personalized residuals only in
the areas that the cross-attention layers have localized the concept via predicted attention maps. Thus, we can combine the newly learned
concept with the original generative prior of the base diffusion model within a single image.

the concept, we can localize the residuals so that they do
not affect the background, which can instead be generated
using the base model.

4. Experiments
In this section, we describe our experimental setup and eval-
uation protocols, and visualize examples using the proposed
personalized residuals with and without localized attention-
guided sampling.

4.1. Training details

We build upon Stable Diffusion v1.4 [22]. For each trans-
former block i, we compute the rank ri for its output
projection convolution layer with weight matrix Wi ∈
Rmi×mi×1 as ri = 0.05mi, totalling 1.2M trainable pa-
rameters (∼0.1% of Stable Diffusion). Each of the low-rank
matrices are randomly initialized. We train our method for
150 iterations with a batch size of 4 and learning rate of
1.0e-3 on 1 A100 GPU (∼3 minutes) across all experiments.

4.2. Baselines

We focus on comparisons to open-domain (i.e., does not re-
quire encoders limited to a single given domain) approaches
with publicly available code. Specifically, we compare
our method against four baselines: Textual Inversion [7],
DreamBooth [24], Custom Diffusion [16], and ViCo [10].
Textual Inversion freezes the entire diffusion model and op-
timizes only the unique identifier token V* for each concept.
ViCo optimizes V* as well as newly added cross-attention
layers to the diffusion model to incorporate visual informa-
tion from the reference images while keeping the rest of the

model frozen. DreamBooth finetunes the entire diffusion
model using the reference images and a set of regulariza-
tion images, which are generated within the same domain as
the target concept using the original model. While Dream-
Booth was originally proposed using Imagen [26], we use
an open-source version built on Stable Diffusion1. Custom
Diffusion finetunes only the key and value weights of the
cross-attention layers in addition to the identifier token em-
bedding, and uses a set of real regularization images sam-
pled from LAION-400M [27].

We use the recommended settings described by each pa-
per. For Textual Inversion and ViCo, which initialize the
identifier token embedding to a single word that best rep-
resents the concept, we use our best discretion to pick a
word most similar to the macro class given by CustomCon-
cept101.

4.3. Evaluation metrics

Following the protocol described in [16], we leverage the
CustomConcept101 dataset, consisting of 101 concepts
across 16 broader categories. For every concept we gen-
erate 50 samples for each of the 20 prompts given by the
dataset. We use DDIM sampling [29] with N = 50 steps,
η = 0.0, and a guidance scale of 6.0 for all methods. We
set the same random seed for sampling across each method
so that the “choice” of starting noise does not impact the
results. Results of our method with LAG sampling are ex-
plicitly labeled as such.

We evaluate each method for text alignment and image

1https : / / github . com / XavierXiao / Dreambooth -
Stable-Diffusion

https://github.com/XavierXiao/Dreambooth-Stable-Diffusion
https://github.com/XavierXiao/Dreambooth-Stable-Diffusion


Table 1. Quantitative evaluations for text and image alignment
using the similarity of CLIP and DINO features. We report the
number of parameters for each method in addition to scores from
the base Stable Diffusion model, which is not trained for person-
alization, for reference.

Method # params CLIP text CLIP image DINO image
Textual Inversion 768 0.6150 0.7259 0.4700
ViCo 51.3M 0.7403 0.7111 0.4678
DreamBooth 983M 0.7536 0.7424 0.5212
Custom Diffusion 19M 0.7664 0.7074 0.4669
Ours 1.2M 0.7193 0.7594 0.5671
Ours w/ LAG sampling 1.2M 0.7220 0.7424 0.5411
Stable Diffusion 983M 0.8126 0.6207 0.2920

Table 2. Human preference evaluations for text and image align-
ment through Amazon Mechanical Turk. We perform bootstrap
resampling over the 1250 responses collected for each task.

Ours vs. Textual ViCo DreamBooth Custom Ours w/
Inversion Diffusion LAG

Text 81.85 37.40 41.34 50.99 58.57
±4.15% ±7.46% ±5.08% ±5.46% ±6.34%

Image 61.96 62.11 51.33 63.27 26.26
±4.76% ±5.80% ±4.65% ±5.59% ±4.91%

alignment. Text alignment is measured as the similarity be-
tween the CLIP [20] text feature of the input prompt and the
CLIP image feature of the resulting generated image. Image
alignment is measured as the similarity between image fea-
tures from either CLIP or DINO [3] of the reference images
and corresponding generated images.

Additionally, we evaluate both text and image alignment
using human evaluations through user studies on Amazon
Mechanical Turk (AMT). For each text alignment case, we
display a text prompt and a pair of corresponding gener-
ated images, and ask users “Which image is more consistent
with the given text prompt?”. For each image alignment
case, we display 3 reference images for a concept and a pair
of corresponding generated images, and ask “Which image
better preserves the identity of the subject in the provided
reference images?”. For both studies, each pair of images
contains one from {Textual Inversion, ViCo, DreamBooth,
Custom Diffusion, Ours w/ LAG sampling} and one from
ours with normal DDIM sampling. Users can select either
image or neither (“Not sure”).

4.4. Results

We visualize samples generated by each method for vari-
ous types of prompts in Figure 3. Textual Inversion fails
to reliably capture the concept’s identity and/or the prompt
whereas all other methods, including ours, are able to better
preserve the concept’s identity while also adhering to the
prompt. We highlight that our method is able to achieve
these results while having significantly fewer learnable pa-
rameters and requiring less training time compared to ViCo,
DreamBooth, and Custom Diffusion, as well as not leverag-

ing regularization images.
We compare examples using our proposed personalized

residuals with and without localized attention-guided sam-
pling in Figure 4. We illustrate how LAG sampling affects
the output image by using the same starting noise map zT to
sample each pair of {w/o LAG, w/ LAG} images. We high-
light scenarios where LAG sampling performs better than
normal sampling in Figure 4a and vice versa in Figure 4b.

Quantitative evaluations for text and image alignment us-
ing CLIP and DINO are shown in Table 1. We include re-
sults using the original Stable Diffusion model, which has
no notion of any of the concepts, for reference. We show
that our method performs similarly with and without LAG
sampling averaged across the whole dataset, demonstrating
higher image alignment and slightly lower text alignment
than the more computationally-heavy baselines.

However, as seen by the results of 1250 responses col-
lected through AMT user studies for both text and image
alignment in Table 2, we show that the CLIP text alignment
scores do not necessarily correlate to human preference. We
observe that our method performs similarly to Custom Dif-
fusion for text alignment, which was assigned the highest
CLIP text score, and outperforms all baselines for image
alignment. Again, we note that our method achieves similar
performance to the better performing baselines while being
significantly more computationally efficient. We also com-
pare our method with and without LAG sampling in the user
studies and show that LAG is preferred for image alignment
but not text alignment. Further analysis comparing the two
sampling approaches can be found in the supplementary.

We also train and evaluate our method using CLIP simi-
larity to select the “most representative” macro class among
the 117k nouns in WordNet [18] for each concept. In Ta-
ble 4, we show that using the WordNet macro class leads to
further improvements in image alignment while decreasing
text alignment, the latter of which may not necessarily re-
flect human preference as previously demonstrated. See the
supplementary for additional discussions.

Ablation studies. We perform ablation studies on
changing the targets for where the residuals are applied, re-
moving the macro class from the prompt, including regu-
larization images (sampled from LAION) during training,
updating the concept identifier token embedding V*, and
varying the rank of the residuals. Results are shown in Ta-
ble 3 (see Table 5 for results on changing the rank).

We show that changing where the residuals are applied to
either the key and value weights of the cross-attention layers
(like Custom Diffusion) or the input projection conv layer
(rather than the output) slightly decreases the scores across
all three metrics compared to our proposed approach. We
hypothesize that the output projection layer achieves no-
ticeably higher identity preservation because it refines the
feature map at the end of each block. Additionally, learning



Concept Ours Textual Inversion DreamBooth Custom Diffusion

“V* penguin plushie in Grand Canyon”

“V* backpack on a café table with a steaming cup of coffee nearby”

“A pink V* chair”

“Georgia O’Keeffe style V* dog painting”

“An origami art of V* houseplant”

“V* barn in snowy ice”

“Gold colored V* shoes”

“Marigold flowers in the V* vase”

ViCo

Figure 3. Qualitative comparison of our proposed approach with the baselines.



“V* action figure on a 
sandy beach, with waves 

in the background”

“C-3PO reading a book in 
the light of the V* lamp”

w
/o LAG

w
/ LAG

Concept Concept

Concept “A watercolor painting of 
V* flower and a teapot on 

the table”

Concept “A V* ring on a mossy 
forest floor”

w
/o LAG

w
/ LAG

(a) Examples where LAG produces results that are better aligned with the
concept and prompt.

“A watercolor painting of 
V* car, cruising down a 

countryside road”

Concept “A V* dish formed from 
chocolate”

w
/o LAG

w
/ LAG

Concept

Concept “A red color V* chair” Concept “A koala in the style of V* 
teddybear”

w
/o LAG

w
/ LAG

(b) Examples where normal sampling produces results that are better aligned
with the concept and prompt.

Figure 4. Comparison of image generated with and without LAG sampling. We use the same starting noise map to generate corresponding
pairs of images to directly visualize how LAG sampling affects the output image.

Table 3. We evaluate our method using two different targets for
the residuals and altering various training settings.

Method CLIP text CLIP image DINO image
KV weights 0.7172 0.7508 0.5353
lproj in weights 0.7136 0.7460 0.5333
KV + lproj out weights 0.7049 0.7733 0.5868
KV + lproj in + lproj out weights 0.6739 0.7870 0.6040
w/o macro class 0.6605 0.6521 0.3798
w/ reg images 0.7204 0.6771 0.3830
Update token embedding 0.6673 0.8000 0.6194
Ours 0.7193 0.7594 0.5671

residuals for multiple layers simultaneously leads to overfit-
ting to the reference images as demonstrated by the higher
image alignment scores and lower text alignment.

Omitting the macro class leads to significant drops
across all metrics, demonstrating that the additional infor-
mation is useful to our method for knowing what within
the reference images is important to model. Similar to the
effect of using regularization images for DreamBooth and
Custom Diffusion, regularization images slightly improves
text alignment but decreases image alignment. On the other
hand, updating the token embedding for V* leads to over-
fitting as shown by the increase in image alignment and de-
crease in text alignment.

5. Conclusion

We introduce personalized residuals, a method for concept-
driven synthesis using text-to-image diffusion models. Pre-
vious approaches to personalization are often slow to train,
have high computational demands, require regularization
images, and/or have difficulty recontextualizing the target
concept. Through our proposed LoRA-based approach that
learns a small set of residuals to represent the identity of a
concept, we reduce the number of learnable parameters and
training time and remove the reliance on domain regulariza-
tion while maintaining flexibility with editing. We also in-
troduce localized attention-guided sampling which applies
the personalized residuals only in regions where the concept
is localized via the cross-attention mechanism. We evaluate
our method across several metrics to show that we are able
to efficiently enable personalization.

Limitations and future work. We show that localized
sampling is not always the best choice (e.g., changing the
color of a concept) and relies on the cross-attention layers
to produce high-quality attention maps, which is not always
the case. Our approach can be sensitive to the choice of
macro class and inherits the pretrained model’s biases and
limitations, such as mixing up the relationship between at-
tributes in the prompt. Finally, we leave multi-concept gen-
eration through LAG sampling as future work.
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Figure 5. AMT text alignment scores per prompt type.

6. Additional experimental results
We explore the difference in normal and LAG sampling by
using ChatGPT to categorize each prompt into {add ob-
ject(s), artistic style, change attribute, change background,
identity, object in style of V*}. We note that a prompt may
fall into multiple categories, but we only use one as deter-
mined by ChatGPT. We split the AMT evaluations for text
alignment by category in Figure 5. We observe that LAG
sampling performs best for identity, change background,
and add object(s), which are tasks in which the target object
is somewhat independent of the rest of the image. Tasks
that require modifying the target (artistic style, change at-
tribute, object in style of V*) perform better with normal
DDIM sampling.

In Figures 6 to 11 we directly compare examples from
each of the six prompt categories using the two sampling
methods by generating corresponding pairs using the same
starting noise maps. Additional qualitative samples can be
found in Figures 12 and 13.

We plot CLIP/DINO image alignment scores against
CLIP text scores, averaged across concepts within the the
16 categories of CustomConcept101, for each method from
Section 4.

Additionally, we compare our method to an unofficial
implementation2 of Perfusion [30] (an official version is not
publicly available). We followed the experimental setup and
hyperparameter values described by the original authors,
but note that we were unable to reproduce the quality of the
results shown in the paper: CLIP text 0.6879, CLIP image
0.5669, DINO image 0.2228.

7. Effect of macro class choice
For each concept in CustomConcept101, we compute the
mean CLIP image embedding of its reference images and

2https://github.com/ChenDarYen/Key-Locked-Rank-
One-Editing-for-Text-to-Image-Personalization/

Table 4. We compute the nearest neighbor (NN) in CLIP embed-
ding space for each concept among all WordNet nouns. We com-
pare our method using different combinations of macro classes
during training and sampling.

Macro class choice CLIP text CLIP image DINO imageTraining Sampling

CustomConcept101 CustomConcept101 0.7193 0.7594 0.5671
WordNet NN 0.7155 0.7594 0.5671

WordNet NN CustomConcept101 0.6626 0.7798 0.5904
WordNet NN 0.6869 0.7798 0.5904

calculate the cosine similarity against the CLIP text em-
bedding for each of the 117k nouns within WordNet. We
train our method and/or sample using the WordNet noun
with the highest similarity and compare with using the pro-
vided macro class from CustomConcept101 during train-
ing and/or sampling in Table 4. We observe that using the
WordNet nearest neighbor as the macro class leads to higher
image alignment and lower text alignment compared to the
CustomConcept101-provided macro class.

Selecting the “best” macro class for concepts can be
challenging and given that it can lead to noticeable changes
in alignment metrics, an automatic heuristic for choosing a
suitable macro class would be helpful to users. We leave the
designing of such a heuristic as future work.

8. Ablation study: rank value

Table 5. Quantitative evaluations for varying the rank of the
learned residuals. mi is the dimension of the weight of the pro-
jection layer in transformer block i.

Rank CLIP text CLIP image DINO image
1 0.7398 0.6809 0.4148
8 0.7054 0.7402 0.5239
16 0.6926 0.7573 0.5513
32 0.6832 0.7701 0.5713
64 0.6704 0.7798 0.5865
128 0.6544 0.7938 0.6053
0.025mi 0.6889 0.7622 0.5595
Ours (0.05mi) 0.7193 0.7594 0.5671

We evaluate different values for the rank of the learned
residuals in Table 5 and observe that text alignment is in-
versely proportional to the rank and image alignment is
directly proportional. Since the dimensions of the conv
weight matrix varies across the transformer blocks within
the U-Net, we believe that calculating the rank with respect
to the dimensions is the better approach over setting a fixed
value across all layers, which is empirically validated by the
results with our proposed formula achieving a better balance
of image and text alignment.

https://github.com/ChenDarYen/Key-Locked-Rank-One-Editing-for-Text-to-Image-Personalization/
https://github.com/ChenDarYen/Key-Locked-Rank-One-Editing-for-Text-to-Image-Personalization/


Ours Ours w/ LAG samplingConcept

“V* cat is wearing sunglasses”

“Bouquet of V* flower and roses”

Figure 6. Samples for add object(s) prompts using personalized residuals with and without LAG sampling where corresponding pairs are
generated using the same input noise map.

Ours Ours w/ LAG samplingConcept

”A graffiti mural of V* bottle on a brick wall in a city alley”

“V* person painted with thick, dramatic brush strokes, in the style 
of Edvard Munch”

Figure 7. Samples for artistic style prompts using personalized residuals with and without LAG sampling where corresponding pairs are
generated using the same input noise map.



Ours Ours w/ LAG samplingConcept

“An orange V* sofa”

“A transparent V* cup filled with steaming hot cocoa”

Figure 8. Samples for change attribute prompts using personalized residuals with and without LAG sampling where corresponding pairs
are generated using the same input noise map.

Ours Ours w/ LAG samplingConcept

“V* sculpture in the middle of highway road”

“A V* headphone on a table with mountains and sunset in 
the background”

Figure 9. Samples for change background prompts using personalized residuals with and without LAG sampling where corresponding
pairs are generated using the same input noise map.



Ours Ours w/ LAG samplingConcept

“Photo of a V* unicorn plushie”

“Photo of a V* sofa”

Figure 10. Samples for identity prompts using personalized residuals with and without LAG sampling where corresponding pairs are
generated using the same input noise map.

Ours Ours w/ LAG samplingConcept

“A pair of design shoes in the style of V* earrings”

“An egg chair in the style of V* chair”

Figure 11. Samples for object in style of V* prompts using personalized residuals with and without LAG sampling where corresponding
pairs are generated using the same input noise map.



Ours Ours w/ LAG samplingConcept

“Print of V* houseplant on a sweater”

“V* bear oil painting Ghibli inspired”

“A teapot in the style of V* vase”

“Japanese ukiyo-e style depiction of the V* waterfall”

“A purple colored V* purse”

Figure 12. Samples generated using personalized residuals with and without LAG sampling.



Ours Ours w/ LAG samplingConcept

“Rose flowers in V* wooden pot on a table”

“A funky Picasso-style cubist painting of V* violin”

“V* plushie sitting at the beach with a view of the sea”

“V* canal scene painting by artist Claude Monet”

“A V* car painted with vibrant graffiti, parked in an urban alley”

Figure 13. Samples generated using personalized residuals with and without LAG sampling.



(a) Plot of CLIP image alignment vs. CLIP text alignment. (b) Plot of DINO image alignment vs. CLIP text alignment.

Figure 14. For each method, we plot the either CLIP or DINO image alignment scores against CLIP text alignment scores averaged across
the concepts within each of the 16 categories of CustomConcept101.
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