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Abstract

Video anomaly detection (VAD) is a significant computer
vision problem. Existing deep neural network (DNN) based
VAD methods mostly follow the route of frame reconstruc-
tion or frame prediction. However, the lack of mining and
learning of higher-level visual features and temporal con-
text relationships in videos limits the further performance
of these two approaches. Inspired by video codec theory,
we introduce a brand-new VAD paradigm to break through
these limitations: First, we propose a new task of video
event restoration based on keyframes. Encouraging DNN to
infer missing multiple frames based on video keyframes so
as to restore a video event, which can more effectively mo-
tivate DNN to mine and learn potential higher-level visual
features and comprehensive temporal context relationships
in the video. To this end, we propose a novel U-shaped Swin
Transformer Network with Dual Skip Connections (USTN-
DSC) for video event restoration, where a cross-attention
and a temporal upsampling residual skip connection are in-
troduced to further assist in restoring complex static and
dynamic motion object features in the video. In addition,
we propose a simple and effective adjacent frame differ-
ence loss to constrain the motion consistency of the video
sequence. Extensive experiments on benchmarks demon-
strate that USTN-DSC outperforms most existing methods,
validating the effectiveness of our method.

1. Introduction

Video anomaly detection (VAD) is a hot but challenging
research topic in the field of computer vision. One of the
most challenging aspects comes from the scarcity of anoma-
lous samples, which hinders us from learning anomalous
behavior patterns from the samples. As a result, it is hard
for supervised methods to show their abilities, as unsuper-
vised methods are by far the most widely explored direc-
tion [1,2,4,8,10,19,25-27,31,33,37,41-43,47-51]. To
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Figure 1. Video codec vs. video event restoration. Compared
to video decoding based on explicit motion information, our pro-
posed video event restoration task encourages DNN to automat-
ically mine and learn the implied spatio-temporal relationships
from several frames with key appearance and temporal transition
information to restore the entire video event.

determine whether an abnormal event occurs under unsu-
pervised, a general approach is to model a regular pattern
based on normal samples, leaving samples that are incon-
sistent with this pattern as anomalies.

Under the unsupervised framework, reconstruction and
prediction-based approaches are two of the most represen-
tative paradigms [10, 19] for VAD in the current era of
deep neural networks (DNN). The reconstruction-based ap-
proaches typically use deep autoencoder (DAE) to learn to
reconstruct an input frame and regard a frame with large
reconstruction errors as anomalous. However, the power-
ful generalization capabilities of DAE enable well recon-
struction of anomalous as well [8]. This is attributed to
the simple task of reconstructing input frames, where DAE
only memorizes low-level details rather than understand-
ing high-level semantics [17]. The idea of the prediction-
based approach assumes that anomalous events are un-
predictable and then builds a model that can predict fu-
ture frames according to past frames, and poor predictions
of future frames indicate the presence of anomalies [19].
The prediction-based approaches further consider short-
term temporal relationships to model appearance and mo-
tion patterns. However, due to the appearance and motion
variations of adjacent frames being minimal, the predic-
tor can predict the future frame better based on the past
few frames, even for anomalous samples. The inherent
lack of capability of these two modeling paradigms in min-
ing higher-level visual features and comprehensive tempo-



ral context relationships limits their further performance im-
provement.

In this paper, we aim to explore better methods for
mining complex spatio-temporal relationships in the video.
Inspired by video codec theory [15, 18], we propose a
brand-new VAD paradigm: video event restoration based on
keyframes for VAD. In the video codec [ 18], three types of
frames are utilized, namely I-frame, P-frame, and B-frame.
I-frame contains the complete appearance information of
the current frame, which is called a keyframe. P-frame con-
tains the motion difference information from the previous
frame, and B-frame contains the motion difference between
the previous and next frames. Based on these three types
of frames containing explicit appearance and motion rela-
tive relationships, the video can be decoded. Inspired by
this process, our idea sprang up: It should be also theoreti-
cally feasible if we give keyframes that contain only implicit
relative relations between appearance and motion, and then
encourage DNN to explore and mine the potential spatio-
temporal variation relationships therein to infer the missing
multiple frames for video event restoration. To motivate
DNN to explore and learn spatio-temporal evolutionary re-
lationships in the video actively, we do not provide frames
like P-frames or B-frames that contain explicit motion in-
formation as input cues. This task is extremely challenging
compared to reconstruction and prediction-based tasks, be-
cause DNN must learn to infer the missing multiple frames
based on keyframes only. This requires a strong regularity
and temporal correlation of the event in the video for a better
restoration. On the contrary, video restoration will be poor
for anomalous events that are irregular and random. Under
this assumption, our proposed keyframes-based video event
restoration task can be exactly applicable to VAD. Fig. 1
compares the video codec and video event restoration task
with an illustration.

To perform this challenging task, we propose a novel
U-shaped Swin Transformer Network with Dual Skip
Connections (USTN-DSC) for video event restoration
based on keyframes. USTN-DSC follows the classic U-
Net [36] architecture design, where its backbone consists of
multiple layers of swin transformer (ST) [21] blocks. Fur-
thermore, to cope with the complex motion patterns in the
video so as to better restore the video event, we build dual
skip connections in USTN-DSC. Specifically, we introduce
a cross-attention and a temporal upsampling residual skip
connection to further assist in restoring complex dynamic
and static motion object features in the video. In addition, to
ensure that the restored video sequence has the consistency
of temporal variation with the real video sequence, we pro-
pose a simple and effective adjacent frame difference (AFD)
loss. Compared with the commonly used optical flow con-
straint loss [19], AFD loss is simpler to be calculated while
having comparable constraint effectiveness.

The main contributions are summarized as follows:

* We introduce a brand-new video anomaly detection
paradigm that is to restore the video event based on
keyframes, which can more effectively mine and learn
higher-level visual features and comprehensive tempo-
ral context relationships in the video.

* We introduce a novel model called USTN-DSC for
video event restoration, where a cross-attention and a
temporal upsampling residual skip connection are in-
troduced to further assist in restoring complex dynamic
and static motion object features in the video.

* We propose a simple and effective AFD loss to con-
strain the motion consistency of the video sequence.

* USTN-DSC outperforms most existing methods on
three benchmarks, and extensive ablation experiments
demonstrate the effectiveness of USTN-DSC.

2. Related Work
2.1. Video Anomaly Detection

Over the past years, extensive works have been devoted
to solving the VAD problem [4, 8, 10,19,25-27,31,33,41-

,46-48,50,51], which can be mainly categorized into two
main groups based on traditional methods and deep neural
network-based methods.
VAD based on traditional methods. Traditional VAD
methods mainly utilize statistical models based on hand-
extracted features or classical machine learning techniques.
For example, Adam et al. in [1] characterized the normal
local histograms of optical based on statistical monitoring
of low-level observations at multiple spatial locations. Kim
and Grauman [13] modeled the local optical flow pattern
with a mixture of probabilistic principal component analyz-
ers and trained a space-time markov random field to infer
abnormalities. Cong et al. in [6] introduced a sparse recon-
struction cost over the normal dictionary to measure the nor-
mality of testing samples. Although these traditional meth-
ods achieve better results in specific scenarios, their perfor-
mance in some complex scenarios is severely constrained
owing to poor feature representation capabilities.
VAD based on deep learning methods. With deep learn-
ing techniques flourishing in various fields [11, 14,32, 34,

,38], anomaly detection methods based on deep learning
have also been widely studied. The most prevalent of these
methods are frame reconstruction and frame prediction. For
example, Hasan et al. in [10] used the extracted features
as input to a fully connected neural network-based autoen-
coder to learn the temporal regularity in the video. A reg-
ularity score was calculated according to the reconstruction
error and used to determine whether an abnormality occurs.
Xu et al. in [45] proposed a stacked denoising autoencoder
to separately learn both the appearance and the motion fea-
tures. Liu et al. in [20] presented a video anomaly detection



method that predicts the future frame with the U-Net archi-
tecture [36]. Yang et al. in [47] introduced a dynamic lo-
cal aggregation network with adaptive clusterer for enhanc-
ing the representation capability of normal prototypes in the
prediction paradigm. Although the approaches of frame re-
construction and frame prediction currently show promising
results, the lack of mining and learning of higher-level vi-
sual features and comprehensive temporal context relation-
ships hinder further performance improvement.

2.2. Video Restoration

Video restoration, such as video super-resolution [3,7,9],
denoising [12], deblurring [39], and inpainting [52], has be-
come a popular research topic in recent years. It aims to
restore a clear and high quality video from a degraded low
quality video. For example, Geng et al. in [7] proposed a
real-time spatial temporal transformer to effectively incor-
porate all the spatial and temporal information for synthe-
sizing high frame rate and high resolution videos. Kim et
al. in [12] proposed a fast online video deblurring method
by efficiently increasing the receptive field of the network
without adding a computational overhead to handle large
motion blurs. Sheth et al. in [39] proposed an unsuper-
vised deep video denoiser, a convolutional neural network
architecture designed to be trained exclusively with noisy
data. Zou et al. in [52] proposed a progressive temporal
feature alignment network for video inpainting, which fills
the missing regions by making use of both temporal convo-
lution and optical flow.

Difference from these existing video restoration tasks, in
this paper, we propose a new video restoration task that re-
stores the video event based on keyframes. This task is more
challenging compared to existing video restoration tasks be-
cause the missing multiple frames result in the discontinu-
ity of temporal clues. This requires a strong regularity and
temporal correlation of the events in the video for a better
restoration. On the contrary, there will be a large restora-
tion error for anomalous events, as it is irregular and ran-
dom. Therefore, the task of restoring the video event based
on keyframes can be well applied to VAD.

3. Method

In the unsupervised VAD framework, most approaches
devote to designing models that characterize normal behav-
ior patterns and consider deviations from them as anomaly
classes. To explore a superior approach to modeling normal
behavior, inspired by video codec theory [15], we propose
a novel normal behavior modeling paradigm for VAD: Re-
store video event based on Keyframes to detect anomalies.
Concretely, given a video sequence of length 7', we take L
keyframes in the video sequence as input, aiming to recover
the missing T' — L frames according to these keyframes.
Compared with reconstruction or prediction tasks, it is more

challenging but better to motivate DNN to mine and learn
the higher-level visual features and comprehensive tempo-
ral context relationships in video sequences. To meet this
challenging task, we propose a novel model called USTN-
DSC for video event restoration. Next, we will describe the
architecture and workflow of USTN-DSC in detail.

3.1. Network Overview

USTN-DSC follows the U-Net [36] architecture design,
which consists of four parts: a feature extractor, an encoder,
a decoder, and an output head. The feature extractor and
output head mainly consist of 2D convolutional layers, and
the encoder and decoder are a combination of swin trans-
former (ST) [21] and 2D convolutional layers.

Fig. 2 illustrates the overall framework of USTN-DSC.
Given a video sequence S = {I,|I, € RFx Wx C}tT:l,
where T' denotes the length of the video sequence and
H, W, C denote the height, width and number of channels
of a video frame, respectively. Following the video codec
theory [18], we first select the first and last frames of the
video sequence as keyframes. To encourage USTN-DSC to
automatically learn potential appearance and motion evolu-
tion relationships in the video sequence, instead of giving P-
frames and B-frames with explicit motion information, we
take the intermediate frame of video sequences as tempo-
ral transition frame for spatio-temporal relationship devel-
opment. Therefore, we take I1, I(7_1)/241, and I of the
video sequence S as the three keyframes of the input, and
stack them up in chronological order as X € R3*HxWxC,
Then, the input X is first processed by the feature extraction
module F for initial feature extraction and dimensionality
reduction. Next is the encoding part, and the encoder con-
sists of four stages, denoted by E,,,n = 0,1,2,3 , each
of which is a stack of ST encoder block EST followed
by a convolution layer ¢,, , except for the final stage E’s.
Symmetrically with the encoder, the decoder is denoted by
Dy,n = 0,1,2,3, each of which is a stack of ST decoder
block D;ol’ T followed by a deconvolution layer ¢!, except
for the first stage Dy. Finally, the output of the decoder is
further transformed by the output head Fj,,; to obtain the
restored video sequence S = {It\It € RHEX Wx C}Z;l.

Specifically, in USTN-DSC, F. first extracts the features

fx € R¥>*H XW xXC from X. Then, E5T first takes fx

as input and obtains f§ = E57(fx) € R3*H xW xC and
then follows a convolutional layer to obtain eg = o (f§) €

R3xH /2xW'/2xC" Subsequently, we have
fi=E"(en), n=12.3
en = on(f), n=12 . (1
es = f§

During the encoding phase, each e, corresponds to the
output features maps of the three keyframes, i.e. e, =
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Figure 2. The overview architecture of USTN-DSC. (a) The complete network structure of USTN-DSC. TU represents the temporal
upsampling module. (b) The structure of ST Encoder Block. LN represents Layer Normalization. W-MSA and SW-MSA are multi-head
self-attention modules with regular and shifted windowing configurations, respectively. (c) The structure of ST Decoder Block. W-MCA
and SW-MCA are multi-head cross-attention modules with regular and shifted windowing configurations, respectively.

{e}l, eF /2 e,:f}. After obtaining the final output e3
from the encoder, a temporal upsampling (TU) module lo-
cated at the bottleneck generates the initial features gy =
TU (e3) based on eg for subsequent restoration of missing
frames. Then, qq is further divided into two parts qg and
Q. qg represents the initial features of the missing frames
between I and I(7_1)/241, and qg represents the one be-
tween I(7_1)/241 and Ir. For the features corresponding
to the timestamps of Iy, I(7_1)/241, and I, we directly
keep following the ones on the corresponding time points
in e3. Eventually, the prototype features used for decoder

input are represented as Q := (e}, g, e{" 7V/2T gt T,

Next, we move on to the decoding phase. First, D57 in
D5 takes e3 and Q as input and obtains f§ = D57 (e3, Q)
and then follows a deconvolution layer to obtain d3 =
031 (f§). Tt is noted that D37 here differs from the orig-
inal ST block which only compute self-attention, we con-
struct a skip connection from the encoder to compute cross-
attention, which is the first channel of the dual skip con-
nections. Next, we construct the second skip connection.
The features e, from the encoder are temporally upsampled

into ey = TU(ez) using the TU module. Then, similar to
the synthesis process of the prototype features (), e and
eo are temporally dimensionally concatenated to obtain the
combined features e5. Then, e}, are added to d3 in the form
of residual and fed into D57 followed by a deconvolution
layer @5 1. The operation of the subsequent layers is simi-
lar and we formulate them as follows:

ds = @3 (D57 (e3,Q)),

el =TU(en)Jen,

dy, = W;l(DfLT(emdn-&-l =+ 62))
d() = D(‘?T(eo,dl + 66)

n=0,1,2

n=12 @

Finally, the output features dy are transformed into the re-

stored video sequence S = {I,|I, € RIT* W C}thl by
the output head F,, ;. we show the specific structure of the
F, and F,,; in the supplementary materials.

3.2. Encoder

The encoder of USTN-DSC mainly consists of stacked
multiple ST encoder blocks followed by a convolutional
layer. The detailed structure of the ST encoder block is



shown in Fig. 2(b). Although we deal with video data here,
we do not use the division of the 3D shifted windows as
in the video swin transformer [22] for capturing the tempo-
ral relationships, as this is a bit trivial for the input of only
three frames. In order to use a more simple way to equip
the ST with the ability to learn long-range spatio-temporal
dependencies, we calculate the local window attention by
combining all the windows on the space corresponding to
the current window simultaneously. Specifically, given an
input video sequence of size 3 X H x W x ', aST
block partitions it into non-overlapping windows of size

’

3 x [Hﬁ-‘ X [%-‘ x C". Here we choose, H = W' = 64,

M = 4and C' = 96. Then, we reshape the video frame

features with divided windows into ZW- x 302 x C',
where HM;/K is the total number of windows. Next, the re-
shaped features are first layer normalized (LN) and followed
by a window-based multi-head self-attention (W-MSA) [21]
to compute the local attention of each window. Immediately
after, a multi-layer perception (MLP) follows another LN
layer for further features transformations. Then, an addi-
tional ST block with shifted window-based multi-head self-
attention (SW-MSA) [21] is applied to implement cross-
window interactions to learn long-range dependency infor-
mation. In this second ST block, every module is the same
as the previous block except that input features are shifted
by L%J X L%J before window partitioning. Using this al-
ternating regular and shifting window partitioning way, it
not only makes the ST block requires less computationally
cost but also enables the ST block to have the cross-window
interaction capability, thus capturing long-range dependen-
cies in both spatial and temporal dimensions. Finally, the
outputs of such ST blocks are downsampled by a convolu-
tional layer with a stride of two, serving as the input of the
next encoder stage.

3.3. Decoder

Symmetrically with the encoder part, the decoder of the
USTN-DSC also consists of four stages with D,,,n =
0,1,2,3, each of which in turn is followed by ST de-
coder block with a deconvolution layer for upsampling.
The detailed structure of the ST decoder block is shown
in Fig. 2(c). We restore the missing frames in the decod-
ing phase mainly by means of the conversion of the features
from the keyframes extracted from the encoder part. For the
missing video frames, they contain both slow moving ob-
jects, whose differences with keyframes are minimal, and
objects with large motion, which need to be synthesized by
inference of spatio-temporal relationship of the keyframes.
In order to cope with these two different motion patterns for
better restoration of missing video frames, we introduce the
dual skip connections in the decoder section. First, we in-
sert a corresponding multi-head cross-attention (MCA) af-

ter the regular and shifted windows-based multi-head self-
attention. The MCA receives the features from the output of
the previous decoding layer as query, and the features from
the corresponding level of the encoder as key and value. By
querying the features at different scales and distances in the
encoder part of the corresponding level, MCA enables the
decoder to assist in the generation of certain fast-motion ob-
ject features of the missing frames. Second, we design a TU
module consisting of a 3D deconvolution layer with a ker-
nel size of (T — 3) x 3 x 3 and stride size of 1 x 1 x 1
to upsample the features generated by the encoder to ob-
tain the features of the intermediate missing frames. (Note
that the TU module in the skip connection shares weights,
except for the one in the bottleneck section.) Then, the fea-
tures at the timestamps of the corresponding keyframes are
filled with the original features from the encoder. Finally,
the combined features are added to the output of the corre-
sponding level of the decoder in the form of residual. This
operation can compensate for the lack of original detail fea-
tures query in the cross-attention connection and can further
facilitate the decoder to better restore the detail information
of background and slow objects in video sequence.

3.4. Loss Function

We mainly consider the loss function from both appear-
ance and motion aspects. First, we use the charbonnier
loss [16], which compensates for the shortcomings of the
L, and Ly losses, to compute the RGB differences between
the corresponding output frame I; and the real frame I, for
appearance constraint:

R n 2
Loy(Iy, 1) = \/‘It‘f’f—“Q 3)

where € is set to 1073 in our experiments. For the motion
constraint, we introduce a simple and effective AFD loss:

T T
La({Li},_ ALY =
2
+ €2,

T-1 2
7 7 2
> HHL —fon|| =10 =
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)

AFD loss directly promotes motion consistency by con-
straining the difference between the pixel of adjacent frames
of the restored video sequence and the real video sequence.
Compared with the computationally expensive optical flow
constraint method, AFD loss is not only simple to compute
but also has a comparable temporal constraint effect. Fi-
nally, the overall loss function is given as follows:

Loy = Ley + Lyq. (5)
3.5. Anomaly Detection on Testing Data

During the testing phase, we take T'-frames as the pro-
cessing unit, but we do not use the error between each re-



stored frame I, and the real frame I, as its corresponding
anomaly indicator. Because we find experimentally that
the keyframes and frames adjacent to the keyframes have
very slight errors with the real frames, even for anomalous
events. Therefore, we take the PSINR corresponding to
the frame with the largest mean square error between the
T-frames and the real frames as the anomaly detection in-
dicator for this video sequence, formulated as follows:

1 K (7
= 1ngzta§xT 7 Qim0 (Lt — I;)?

PSNR(I;-,I;+) = 10logio+ >
K

2
[maxy ] '

{(zo(ft* ,i_It*,i,)2

(6)
where K is the total number of image pixels and max i
is the maximum value of image pixels. We assign the
same PSN R value to each frame of a processing unit for
anomaly metric calculation. To quantify the probability of
anomalies occurring, we normalize each PSN R, following
work [29], to obtain anomaly scores in the range [0, 1]:

PSNR(I;, 1) — min, PSNR(I;, I)

maz;PSNR(I, I,) — mingPSNR(I;, I,)
(7)

S(t)=1-

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the performance of our method on
three classic benchmark datasets widely used in the VAD
community. (1) Ped2 [28]. It contains 16 training videos
and 12 testing videos in fixed scenarios. Abnormal events
include riding a bicycle, skateboarding, and driving a ve-
hicle on the sidewalk. (2) Avenue [24]. It consists of
16 training videos and 21 testing videos with 47 abnormal
events including throwing a bag, moving toward or away
from the camera, and running on the sidewalk. (3) Shang-
haiTech [26]. It contains 330 training videos and 107 testing
videos with 130 abnormal events, such as affray, robbery,
fighting, etc., distributed in 13 different scenes.

Evaluation Metric. Following the widely used evaluation
metrics in the field of VAD, we use the frame-level area
under the curve (AUC) of receiver operation characteristic
to evaluate the performance of our proposed method.
Training Details. In the training phase, we first resize each
frame to the size of 256 x 256, while the values of the pix-
els in all frames are normalized to [0, 1]. Then, we use the
Adam optimizer with Lo and decoupled weight decay [23]
by setting 51 = 0.9 and B2 = 0.99 to train the USTN-
DSC. The initial learning rate is set to 2 x 10~* and is
gradually decayed following the scheme of cosine anneal-
ing. The length of the output video sequence 7' is set to 9.
The ST block depth N of each stage in USTN-DSC is set
to 6. Training epochs are set to 100, 150, 200 on Ped2, Av-

Methods Ped2 | Avenue | SHTech
SCL [24] N/A 80.9 N/A
Unmasking [41] 82.2 80.6 N/A
§ AnomalyNet [51] 949 | 86.1 N/A
2 | DeepOC [43] 96.9 86.6 N/A
MPED-RNN [30] N/A N/A 734
Scene-Aware [40] N/A 89.6 74.7
Conv-AE [10] 90.0 70.2 60.9
ConvLSTM-AE [25] | 88.1 77.0 N/A
Stacked RNN [26] 92.2 81.7 68.0
N AMC [31] 96.2 86.9 N/A
MemAE [8] 94.1 83.3 71.2
CDDA [5] 96.5 86.0 73.3
MNAD [33] 90.2 82.8 69.8
Zhong et al. [50] 97.7 88.9 70.7
FFP [19] 954 84.9 72.8
AnoPCN [48] 96.8 86.2 73.6
MNAD [33] 97.0 88.5 70.5
A | ROADMAP [42] 96.3 88.3 76.6
MPN [27] 96.9 89.5 73.8
AMMC-Net [4] 96.9 86.6 73.7
DLAN-AC [47] 97.6 89.9 74.7
USTN-DSC 98.1 89.9 73.8

Table 1. Quantitative comparison with the state of the art for
anomaly detection. We measure the average AUC (%) on Ped2
[28], Avenue [24], and ShanghaiTech [26] datasets. The com-
parison methods are listed in chronological order. ('R.” and ’P’
indicate the reconstruction and prediction tasks, respectively.)

enue, and ShanghaiTech, respectively, with batch size set to
4. We train our model on a single NVIDIA RTX 3090 GPU.

4.2. Experiment Results

Comparison with Existing Methods. We compare the per-
formance of USTN-DSC with various state-of-the-art meth-
ods under different paradigms in Tab. 1. It can be seen from
Tab. | that the performance of our method on Ped2 and
Avenue datasets achieve state-of-the-art compared to other
methods and has a substantial improvement over the pio-
neer methods based on the deep learning reconstruction [ 10]
and prediction [19] paradigms. This demonstrates that our
method is a more effective modeling paradigm for learn-
ing normal behavior patterns to distinguish anomalies. For
the ShanghaiTech dataset, the performance of our method
does not achieve the optimum, but it is quite competitive
compared with other methods. Because the ShanghaiTech
dataset contains 13 different scenes, where the backgrounds
and motion objects involved are quite complex and variable.
This poses a higher demand on the ability of the model to
learn the spatio-temporal relationships. However, we ana-
lyze the effect of different ST block depth NV on the model
performance in sec.4.3 and demonstrate that USTN-DSC is
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Figure 3. Examples of video events restoration on three datasets. For each dataset, the first row is the real video event sequence, the second
row is the restoration results of our method based on keyframes, and the third row is the restoration error map. The frames with red borders

are keyframes.
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Figure 4. Compare the output results of USTN-DSC with recon-
struction and prediction-based methods for anomalous samples.

able to further improve the model performance as the depth
N continues to increase. In addition, USTN-DSC follows a
simple U-Net architecture design. We do not employ other
assists such as optical flow [4], adversarial training [19],
extraction of the foreground objects [30], or memory en-
hancement [8, 33]. Nevertheless, compared to these well-
equipped methods, USTN-DSC still surpassed them, which
further validates the effectiveness of our method.

Qualitative Results. We present the results of our method
to restore video sequences based on keyframes of abnor-
mal video samples on the ped2, avenue, and ShanghaiTech
datasets, respectively, in Fig. 3. It can be observed that for
the normal regions in the video frames, our method is able
to restore them well, while drastic errors occur for abnor-
mal event regions. Then, Fig. 4 shows the results of video
frames restored by our method compared with the output

of existing reconstruction-based [33] and prediction-based
methods [19]. It can be seen that the frame (located in
the middle of two keyframes) of the anomalous samples re-
stored by our method have much large distortion and defor-
mation errors in the anomalous region compared to the out-
put of the previous two methods. This can further demon-
strate that our approach, which considers the evolutionary
relationship between appearance and motion over the long
term, is able to effectively learn the more discriminative
behavioral patterns in normal videos and thus be able to
more accurately distinguish abnormalities. Fig. 5 shows
the anomaly score curves of some video clips on the three
datasets. Obviously, there is a sharp jump in the anomaly
score with the occurrence of anomalous events, and the
anomaly curve returns to flat when the anomalous events
disappear. This further demonstrates that our method has
excellent sensitivity to anomalies and can effectively detect
anomalous events.

4.3. Ablation Study and Analysis

In this section, we analyze the impact of several key
components, network parameters, and loss functions on the
performance of our method. Due to limited space, the anal-
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Figure 5. Anomaly score curves of several test samples of our method on three benchmark datasets.

Ped2 Avenue ShanghaiTech
w/o DSC 91.1 83.2 67.4
w CAC | 96.4(+5.3) | 87.9(+4.7) 71.2(43.8)
wTUC | 95.2(+4.1) | 85.4(+2.2) 70.6(+3.2)
wDSC | 98.1(+7.0) | 89.9(+6.7) 73.8(+6.4)

Table 2. The AUC(%) obtained by USTN-DSC with different skip
connection configurations on Ped2 [28], Avenue [24] and Shang-
haiTech [26] datasets. (DSC: dual skip connections, CAC: cross
attention connection, TUC: temporal upsampling connection)

Ped2 Avenue ShanghaiTech
w/o AFDL 97.2 88.5 71.5
w AFDL | 98.1(+0.9) | 89.9(+1.4) 73.8(+2.3)

Table 3. The AUC(%) obtained by USTN-DSC with or without
adjacent frames difference loss (AFDL) on Ped2 [28], Avenue [24]
and ShanghaiTech [26] datasets.

ysis of the selection of different video sequence lengths T’
is given in the supplementary materials.

Dual Skip Connections Analysis. In Tab. 2, we show the
variation of the performance of our proposed network on the
three datasets from without any skip connection to equip-
ping two skip connections one by one. As we can see from
Tab. 2, for the encoder-decoder network without any skip
connection, its performance is quite unsatisfactory. When
adding these two skip connections in turn, the performance
of our method is significantly improved. Especially for the
addition of cross-attention skip connection, it boosts the
performance on Ped2, Avenue, and ShanghaiTech datasets
by 5.3%, 4.7%, and 3.8%, respectively. This shows that the
construction of dual skip connections plays a critical role in
contributing to video event restoration. More detailed anal-
ysis can be referenced in the supplementary materials.
AFD loss Analysis. Tab. 3 shows the performance differ-
ences on ped2, avenue, and ShanghaiTech datasets with and
without AFD loss. It can be seen that the AFD loss has
a performance boost on all three datasets, especially for
the ShanghaiTech dataset, where it improves the AUC by
2.3%. This is because the ShanghaiTech dataset involves 13
different scenarios with complex motion patterns of fore-
ground objects that have a higher dependence on motion
constraints. This demonstrates the effectiveness of our pro-

Ped2 Avenue ShanghaiTech
N=2 97.1 87.8 71.5
N=4 | 97.7(+0.6) | 89.2(+1.4) 72.6(+1.1)
N=6 | 98.1(+1.0) | 89.9(+2.1) 73.8(+2.3)

Table 4. The AUC(%) obtained by USTN-DSC with different ST
block depth IV on Ped2 [28], Avenue [24], and ShanghaTech [26].

posed AFD loss for motion constraints.

ST Block Depth N Analysis. As shown in Tab. 4, we show
the performance variation on the Ped2, Avenue, and Shang-
haiTech datasets by setting N to 2, 4, 6. From the Tab. 4,
we can find that the performance of USTN-DSC on all three
datasets gradually improves as N increases. Interestingly,
for the Ped2 dataset, the performance improvement from
increasing N is quite slight, while the improvement is very
obvious for the Avenue and ShanghaiTech datasets. This
can be explained by the fact that the scenes in the Ped2
dataset are fixed and the motion patterns are relatively sim-
ple, so a shallow network can meet the modeling require-
ments. For the Avenue and ShangahiTech datasets, their
scenes are more complex and diverse, and place higher de-
mands on the modeling capabilities of the network. Due to
hardware constraints, we are not attempting to set a larger
N currently. However, it can be expected that the perfor-
mance on Avenue and ShanghaiTech datasets can be further
improved as N continues to increase.

5. Conclusions

In this paper, we introduced a brand-new video anomaly
detection paradigm that is to restore a video event based on
keyframes. To this end, we proposed a novel model called
USTN-DSC for video events restoration, where a cross-
attention and a temporal upsampling residual skip connec-
tion are introduced to further assist in restoring complex dy-
namic and static motion object features in the video. In ad-
dition, we introduced a temporal loss function based on the
pixel difference of adjacent frames to constrain the motion
consistency of the video sequence. Extensive experiments
on three benchmark datasets show that our method outper-
forms most existing state-of-the-art methods, demonstrating
the effectiveness of our method.
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1. Analysis of the video sequence length 7’

We show in Tab. 1 the variation of AUC on the Ped2
dataset for different values of 7. We can infer that as T’
decrease, the difference between video frames decreases,
which reduces the difficulty of network modeling and in-
creases the probability of an anomalous event being re-
stored. The increase in the false negative rate reduces the
overall performance. Conversely, as 7 increases, the differ-
ence between video frames increases, which increases the
difficulty of network modeling and decreases the probabil-
ity of normal events being restored. The increase in the false
positive rate also reduces the overall performance. When T
is set to the middle value of 9, the best performance is ob-
tained by USTN-DSC.

T 5 7 9 11 13
AUC | 964 | 972 | 98.1 | 945 | 943

Table 1. The AUC(%) obtained by USTN-DSC for different values
of T" on the Ped2 dataset.

2. Feature Extraction Module

Tab. 2 shows the detailed architecture of the feature ex-
traction module. Feature extraction module serves two main
purposes. First, it takes advantage of the excellent local
modeling ability of the convolutional neural network to cap-
ture the underlying local features, such as color, texture,
edge, etc., which is beneficial to the restoration of detailed
information of video frames in the decoding stage. Second,
the feature extraction module can reduce the spatial resolu-
tion, thus effectively decreasing the computational effort of
the network and accelerating the inference speed.

fCorresponding authors.

3. Output Head

The detailed architecture of the output head is shown in
Tab. 3. The main role of the output head is to upsample
the low resolution features map output from the decoder to
the target resolution. To better enhance the quality of the
restored video frames, following work [ 1], we use the Pix-
elShuffle operation for upsampling.

4. More Analysis of DSC

Due to page limitations, we only quantitatively analyze
the impact of DSC on model performance in the main pa-
per. To demonstrate more intuitively the role of these two
skip connections on the video event restoration task, we per-
form a qualitative analysis here. First, Fig. | visualizes the
attention maps of cross attention connection on some sam-
ples of the Ped2, Avenue, and ShanghaiTech datasets. It
can be observed from the Fig. 1 that the cross attention con-
nection is mainly responsible for the transfer and transfor-
mation of dynamic objects features in the foreground. Fur-
ther, we visualize the feature maps of the temporal upsam-
pling residual connection in Fig. 2, and it is obvious that
this skip connection mainly serves the feature transfer and
transformation of the background static objects. In addi-
tion, we can find that the cross attention connection and the
temporal upsampling residual connection in different de-
coding stages are responsible for different foreground and
background parts, which complement each other well. As
shown in the quantitative analysis in Tab.2 of the main pa-
per, the performance of the model not equipped with the
DSC performs very poorly. The qualitative analysis here il-
lustrates more intuitively that the design of the DSC plays
a crucial role in the recovery of static and dynamic objects
in video events, facilitating the USTN-DSC to more accu-
rately model normal behavior patterns to better distinguish
anomalies.



5. Inference Speed

In the inference stage, our method is implemented on
a single NVIDIA RTX 3090 GPU on a machine with
CPU core of i7-10700K@3.80Ghz and 32G memory. Our
method takes on average 5.3 x 1072 seconds (188FPS) to
process each image of size 256 x 256.
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Layer name

Structure

Output size

Layer 1

Conv2d (3 x 3) + BN + LeakyReLU

(3, 256, 256, 64)

Layer 2

Conv2d (3 x 3) + BN + LeakyReLU | (3, 256, 256, 64)

Layer 3

MaxPool2d (2 x 2)

(3, 128, 128, 64)

Layer 4

Conv2d (3 x 3) + BN + LeakyReLU | (3, 128, 128, 128)

Layer 5

Conv2d (3 x 3) + BN + LeakyReLU

(3, 128, 128, 128)

Layer 6

MaxPool2d (2 x 2)

(3, 64, 64, 128)

Layer 7

Conv2d (3 x 3) + LeakyReLU

(3, 64, 64, 96)

Table 2. Network architecture of the feature extraction module.

Layer name Structure Output size
Layer 1 Conv2d (3 x 3) (9, 64, 64, 384)
Layer 2 PixelShuffle (2) + LeakyReLU | (9, 128, 128, 96)
Layer 3 Conv2d (3 x 3) (9, 128, 128, 256)
Layer 4 PixelShuffle (2) + LeakyReLU | (9, 256, 256, 64)
Layer 5 Conv2d (3 x 3) + LeakyReLU | (9, 256, 256, 64)
Layer 6 Conv2d (3 x 3) (9, 256, 256, 3)

Table 3. Network architecture of the output head.
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Figure 1. Visualization of attention maps of the across attention connection on some samples of the Ped2, Avenue, and ShanghaiTech
datasets. Column (a) denotes the ground-truth frame, and (b) ~ (e) denote the attention maps generated by cross attention connections
corresponding to the decoder D3 ~ Dy stages, respectively.



Figure 2. Visualization of the feature maps of temporal upsampling residual connection on some samples of the Ped2, Avenue, and Shang-
haiTech datasets. Column (a) denotes the ground-truth frame, and (b) ~ (d) denote the feature maps generated by temporal upsampling
residual connections corresponding to the decoder D2 ~ Dy stages, respectively.



