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Abstract

Predictions made by deep learning models are prone
to data perturbations, adversarial attacks, and out-of-
distribution inputs. To build a trusted AI system, it is there-
fore critical to accurately quantify the prediction uncertain-
ties. While current efforts focus on improving uncertainty
quantification accuracy and efficiency, there is a need to
identify uncertainty sources and take actions to mitigate
their effects on predictions. Therefore, we propose to de-
velop explainable and actionable Bayesian deep learning
methods to not only perform accurate uncertainty quan-
tification but also explain the uncertainties, identify their
sources, and propose strategies to mitigate the uncertainty
impacts. Specifically, we introduce a gradient-based uncer-
tainty attribution method to identify the most problematic
regions of the input that contribute to the prediction uncer-
tainty. Compared to existing methods, the proposed UA-
Backprop has competitive accuracy, relaxed assumptions,
and high efficiency. Moreover, we propose an uncertainty
mitigation strategy that leverages the attribution results as
attention to further improve the model performance. Both
qualitative and quantitative evaluations are conducted to
demonstrate the effectiveness of our proposed methods.

1. Introduction

Despite significant progress in many fields, conventional
deep learning models cannot effectively quantify their pre-
diction uncertainties, resulting in overconfidence in un-
known areas and the inability to detect attacks caused by
data perturbations and out-of-distribution inputs. Left unad-
dressed, this may cause disastrous consequences for safety-
critical applications, and lead to untrustworthy AI models.

The predictive uncertainty can be divided into epistemic
uncertainty and aleatoric uncertainty [16]. Epistemic un-

certainty reflects the model’s lack of knowledge about the
input. High epistemic uncertainty arises in regions, where
there are few or no observations. Aleatoric uncertainty mea-
sures the inherent stochasticity in the data. Inputs with high
noise are expected to have high aleatoric uncertainty. Con-
ventional deep learning models, such as deterministic clas-
sification models that output softmax probabilities, can only
estimate the aleatoric uncertainty.

Bayesian deep learning (BDL) offers a principled frame-
work for estimating both aleatoric and epistemic uncertain-
ties. Unlike the traditional point-estimated models, BDL
constructs the posterior distribution of model parameters.
By sampling predictions from various models derived from
the parameter posterior, BDL avoids overfitting and al-
lows for systematic quantification of predictive uncertain-
ties. However, current BDL methods primarily concentrate
on enhancing the accuracy and efficiency of uncertainty
quantification, while failing to explicate the precise loca-
tions of the input data that cause predictive uncertainties and
take suitable measures to reduce the effects of uncertainties
on model predictions.

Uncertainty attribution (UA) aims to generate an uncer-
tainty map of the input data to identify the most problem-
atic regions that contribute to the prediction uncertainty. It
evaluates the contribution of each pixel to the uncertainty,
thereby increasing the transparency and interpretability of
BDL models. Previous attribution methods are mainly de-
veloped for classification attribution (CA) with determinis-
tic neural networks (NNs) to find the contribution of im-
age pixels to the classification score. Unlike UA, directly
leveraging the gradient-based CA methods for detecting
problematic regions is unreliable. While CA explains the
model’s classification process, assuming its predictions are
confident, UA intends to identify the sources of input im-
perfections that contribute to the high predictive uncertain-
ties. Moreover, CA methods are often class-discriminative
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since the classification score depends on the predicted class.
As a result, they often fail to explain the inputs which have
wrong predictions with large uncertainty [28]. Also shown
by Ancona et al. [1], they are not able to show the trou-
blesome areas of images for complex datasets. Existing
CA methods can be categorized into gradient-based meth-
ods [15, 31, 33–37, 41, 43] and perturbation-based meth-
ods [7, 10, 11, 29, 30, 42]. The former directly utilizes the
gradient information as input attribution, while the latter
modifies the input and observes the corresponding output
change. However, perturbation-based methods often re-
quire thousands of forward propagations to attribute one im-
age, suffering from high complexity and attribution perfor-
mance varies for different chosen perturbations. Although
CA methods are not directly applicable, we will discuss
their plain extensions for uncertainty attribution in Sec. 2.2.

Recently, some methods are specifically proposed for
UA. For example, CLUE [3] and its variants [20, 21] aim
at generating a better image with minimal uncertainty by
modifying the uncertain input through a generative model,
where the attribution map is generated by measuring the dif-
ference between the original input and the modified input.
Perez et al. [28] further combine CLUE with the path inte-
gral for improved pixel-wise attributions. However, these
methods are inefficient for real-time applications because
they require solving one optimization problem per input for
a modified image. Moreover, training generative models is
generally hard and can be unreliable for complex tasks.

We propose a novel gradient-based UA method, named
UA-Backprop, to effectively address the limitations of ex-
isting methods. The contributions are summarized below.

• UA-Backprop backpropagates the uncertainty score to
the pixel-wise attributions, without requiring a pre-
trained generative model or additional optimization.
The uncertainty is fully attributed to satisfy the com-
pleteness property, i.e., the uncertainty can be decom-
posed into the sum of individual pixel attributions. The
explanations can be generated efficiently within a sin-
gle backward pass of the BDL model.

• We introduce an uncertainty mitigation approach that
employs the produced uncertainty map as an attention
mechanism to enhance the model’s performance. We
present both qualitative and quantitative evaluations to
validate the efficacy of our proposed method.

2. Preliminaries
2.1. BDL and Uncertainty Quantification

BDL models assume that the neural network parameters
θ are random variables, with a prior p(θ) and a likelihood
p(D|θ), where D represents the training data. We can apply
the Bayes’ rule to compute the posterior of θ, i.e., p(θ|D)

as shown in the following equation:

p(θ | D) =
p(D | θ)p(θ)

p(D)
. (1)

Computing the posterior analytically is often intractable.
Therefore, various methods have been proposed for ap-
proximately generating parameter samples from the poste-
rior, including MCMC sampling methods [6, 12, 13], vari-
ational methods [5, 22–24], and ensemble-based methods
[14,19,38–40]. The advantages of the BDL models are their
capability to quantify aleatoric and epistemic uncertainties.

Let us denote the input as x, the target variable as y,
and the output target distribution as p(y|x,θ) parameter-
ized by θ, which are the Bayesian parameters such that
θ ∼ p (θ|D). In this paper, we will focus on classification
tasks. For a given input x and training data D, we estimate
the epistemic uncertainty and the aleatoric uncertainty by
the mutual information and the expected entropy [9] in:

H [p(y|x,D)]︸ ︷︷ ︸
Total Uncertainty Ut

= I [y,θ|x,D]︸ ︷︷ ︸
Epistemic Uncertainty Ue

+Ep(θ|D)

[
H[p(y|x,θ)]

]︸ ︷︷ ︸
Aleatoric Uncertainty Ua

(2)

where H, I, and E represent the entropy, mutual informa-
tion, and expectation, respectively. Using Monte Carlo ap-
proximation of the posterior, we have

H [p(y|x,D)] = H
[
Ep(θ|D)[p(y|x,θ)]

]
(3a)

≈ H

[
1

S

S∑
s=1

p(y|x,θs)

]
(3b)

Ep(θ|D)

[
H[p(y|x,θ)]

]
≈ 1

S

S∑
s=1

H[p(y|x,θs)] (3c)

where θs ∼ p (θ|D) and S is the number of samples.

2.2. Gradient-based Uncertainty Attribution

The gradient-based attribution methods can efficiently
generate uncertainty maps via backpropagation. While cur-
rent CA methods mainly utilize the gradients between the
model output and input, some of them can be directly ex-
tended for UA by using the gradients from the uncertainty
to the input. However, raw gradients can be noisy, neces-
sitating the development of various approaches for smooth-
ing gradients, including Integrated Gradient (IG) [37] with
its variants [15, 41], SmoothGrad [34], Grad-cam [31], and
FullGrad [36]. Some methods use layer-wise relevance
propagation (LRP) to construct classification attributions.
Although the LRP-based methods [4, 25, 32] can backprop-
agate the model outputs layer-wisely to the input, there is
no direct extension for the uncertainties since we focus on
explaining output variations instead of output values. More-
over, they often require specific NN architectures where the
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Figure 1. The overall framework of the proposed method. Figure (a) shows the forward propagation of the BDL model for uncertainty
quantification. Figure (b) demonstrates the backward process from the uncertainty to the input for attribution analysis, crossing the softmax
probabilities, the logits, and the BDL model. The brighter regions indicate higher attributions.

entropy and softmax functions for uncertainty estimation
will violate their requirements. In this paper, we consider
the vanilla extension of SmoothGrad, FullGrad, and IG-
based methods as baselines. Please refer to Appendix A
and the survey papers [1, 2, 27] for more discussions.

We contend that the straightforward application of exist-
ing attribution methods may not be adequate for conduct-
ing UA. Our approach relies on three crucial goals: (1)
the uncertainty should be fully attributed with the com-
pleteness property satisfied; (2) the pixel-wise attributions
should be positive due to data imperfections; (3) the pro-
posed approach should prevent gradient-vanishing issues.
Vanilla backpropagation of uncertainty gradients often suf-
fers from the vanishing gradients because of the small mag-
nitude of uncertainty estimates. The resulting visualizations
may have “scatter” attributions, which are incomprehensi-
ble. Since vanilla adoption of existing methods for deter-
ministic NNs would always violate some of these goals, it
is necessary to establish a new gradient-based UA method
with competitive accuracy and high efficiency.

3. Uncertainty Attribution with UA-Backprop
3.1. Overall Framework

As shown in Figure 1, let z(x,θ) ∈ RC denote the out-
put of the neural network with input x parameterized by
θ, which is the probability logit before the softmax layer.
The number of classes is represented by C. The prob-
ability vector g(x,θ) is generated from z(x,θ) through

the softmax function, i.e., g(x,θ) = softmax(z(x,θ)),
where gi(x,θ) = exp(zi(x,θ))∑C

j=1 exp(zj(x,θ))
. For simplicity, we

write z(x,θ) as z and g(x,θ) as g. Since the complex
posterior distribution p(θ|D) is often intractable, we use
a sample-based approximation. We assume that {θs}Ss=1

are drawn from p(θ|D), leading to samples {zs}Ss=1 and
{gs}Ss=1. During forward propagation, {gs}Ss=1 is used to
calculate the epistemic uncertainty Ue, aleatoric uncertainty
Ua, and total uncertainty Ut. Let U represent one of the un-
certainties in general. For the backpropagation, the uncer-
tainty traverses U → g → z → x. The pseudocode for
UA-Backprop is provided in Algorithm 1.

Basically, the contribution of each gi to U , referred to as
Ugi , is first computed. Since the backward pass of the BDL
model contains S paths gs → zs → x for θs ∼ p(θ|D), we
then obtain the contribution of each zsi to U , denoted as Uzs

i

by exploring all softmax paths gsj → zsi for j ∈ [1, · · · , C].
Subsequently, zs

i → x is backpropagated. The UA map
M(x) is then generated as the pixel-wise contribution to
the uncertainty, which aggregates all existing paths zs

i →
x with different s ∈ [1, · · · , S] and i ∈ [1, · · · , C]. To
fully attribute the uncertainty, the completeness property is
enforced on M(x), as shown in Sec. 3.5. The backward
steps are elaborated in the following sections.

3.2. Attribution of Softmax Probabilities

In this section, we calculate the attribution of g to un-
certainty U . For any i, we denote the contribution of gi to



Algorithm 1 UA-Backprop + FullGrad

Input: A BDL model θ ∼ p(θ|D) with sample approx-
imation {θs}Ss=1; Normalization hyperparameter τ1, τ2;
The target input x for explanation.
Ouput: The uncertainty attribution map M(x).
Step 1 (U → g): Compute the attribution of softmax
probabilities {Ugj}Cj=1 based on Eq. (4).
Step 2 (g → z): Based on Eq. (5) and Eq. (8), compute
the attribution of each logit Us

zi .
Step 3 (z → x): Generate the uncertainty attribution
map with the aggregation from all paths zs

i → x based
on Eq. (9) and Eq. (10).

Ue, Ua, and Ut as Ue,gi , Ua,gi , and Ut,gi , respectively. In
general, we denote Ugi as the attribution of gi to U . By
utilizing Eq. (3), we can express Ue, Ua, and Ut in terms of
{gs}Ss=1, and subsequently decompose them into the sum of
individual attributions, as shown in the following equation:

Ut,gi = −

(
1

S

S∑
s=1

gsi

)
log

(
1

S

S∑
s=1

gsi

)
(4a)

Ua,gi =
1

S

S∑
s=1

−gsi log gsi (4b)

Ue,gi = Ut,gi − Ua,gi , (4c)

In general, we can observe that Ue,gi , Ua,gi , Ut,gi only
depend on gi and are independent of other elements of
g. Moreover, the uncertainties are completely attributed
to the softmax probability layer, i.e., Ut =

∑C
i=1 Ut,gi ,

Ua =
∑C

i=1 Ua,gi , Ue =
∑C

i=1 Ue,gi . When backpropa-
gating the path gs → zs to get the attribution of logits, Ugi

is shared across samples {gsi }Ss=1.

3.3. Attribution of Logits

In this section, we aim to derive Ue,zs
i
, Ua,zs

i
, and Ut,zs

i

as the contribution of zsi to Ue, Ua, and Ut by investigating
the path from gs to zs. We introduce cgs

j→zs
i
∈ (0, 1) as the

coefficient that represents the proportion of the uncertainty
attribution that zsi receives from gsj . Through collecting all
the messages from {gsj}Cj=1, the contribution of zsi to U , do-
nated as Uzs

i
, is a weighted combination of the attributions

received from the previous layer:

Uzs
i
=

C∑
j=1

cgs
j→zs

i
Ugj . (5)

To satisfy the completeness property, it is expected that
Ugj is fully propagated into the logit layer as shown in the
following equation:

Ugj =

C∑
i=1

cgs
j→zs

i
Ugj , (6)

which is a commonly held assumption in many message-
passing mechanisms. Eq. (6) indicates that

∑C
i=1 cgs

j→zs
i
=

1. In this paper, we apply the softmax gradients to deter-
mine cgs

j→zs
i

for the backward step from gs to zs. Specifi-
cally, the gradient of gsj to zsi is as follows:

∂gsj
∂zsi

=

{
gsj (1− gsj ) if i = j

−gsi gsj if i ̸= j
. (7)

Since
∑C

k=1 g
s
k = 1 due to the definition of softmax func-

tion, it is notable that |∂g
s
i

∂zs
i
| > |∂g

s
j

∂zs
i
| for i ̸= j, signifying

that gsi is the primary source of the attribution for zsi . We
normalize the gradients to the obtain the coefficients using
ϕ(·), with the aim of circumventing extremely small coeffi-
cients and thus addressing the gradient-vanishing problem.
In this study, ϕ(·) is a softmax function with temperature
τ1, i.e.,

cgs
j→zs

i
= ϕi

({
∂gsj
∂zsk

}C

k=1

, τ1

)

=
exp

(
∂gs

j

∂zs
i
/(gsj · τ1)

)
∑C

k=1 exp
(

∂gs
j

∂zs
k
/(gsj · τ1)

) , (8)

where gsj ·τ1 is employed for avoiding uniform or extremely
small coefficients. It is expected that gsi provides the ma-
jor contribution to zsi since the denominator of the softmax
function in zs → gs serves only as a normalization term.

3.4. Attribution of Input

Given the uncertainty attribution {Uzs
i
}Ci=1, associated

with {zsi }Ci=1, the attribution map in the input space is gen-
erated by backpropagating through zs → x. Since each zsi
may represent different regions of the input, we individually
find the corresponding regions of x that contribute to each
zsi , denoted by Ms

i (x). Finally, the uncertainty attribution
map M(x) is derived by a linear combination of Ms

i (x)
and Uzs

i
, i.e.,

M(x) =
1

S

S∑
s=1

C∑
i=1

Us
ziM

s
i (x). (9)

M(x) indicates the pixel-wise attributions of U , which is a
two-dimensional matrix that has the same height and width
as x. It is worth noting that during exploring the possible
paths for aggregation, the noisy gradients may be smoothed.
We notice that some existing gradient-based methods can
be used for exploring the path zs → x. For example,
the magnitude of the raw gradient can be employed such
that Ms

i (x) = |∂z
s
i

∂x |. Especially, more advanced gradient-
based methods such as SmoothGrad [34], Grad-cam [31],



and FullGrad [36] can be applied. Intuitively, our pro-
posed method can be a general framework. For the Full-
Grad method as an example, it aggregates both the gradient
of zsi with respect to input (∂z

s
i

∂x ) and the gradient of zsi with
respect to the bias variable bsl in each convolutional or fully-
connected layer l (i.e., ∂zs

i

∂bs
l

) to create Ms
i (x), i.e.,

Ms
i (x) = ψ

(∣∣∣∣∂zsi∂x
⊙ x

∣∣∣∣+∑
l

∣∣∣∣∂zsi∂bsl
⊙ bsl

∣∣∣∣ , τ2
)
, (10)

where ⊙ is the element-wise product and | · | returns the
absolute value. Since different methods will have differ-
ent scales of Mi(x), we apply a post-processing function
ψ for normalizing and rescaling the gradients. The func-
tion ψ first averages over the channels of

∣∣∣∂zs
i

∂x ⊙ x
∣∣∣ +∑

l

∣∣∣∂zs
i

∂bs
l
⊙ bsl

∣∣∣ and then applies an element-wise softmax
function with temperature τ2. As a general framework, we
can leverage the current development of gradient-based at-
tribution methods for deterministic NNs to smooth the gra-
dients and avoid the gradient-vanishing issue.

3.5. Special Properties

Our proposed method satisfies the completeness prop-
erty, shown in the following equation:

U =

C∑
i=1

Ugi =

C∑
i=1

Uzs
i
=
∑
(u,v)

M(x)[u, v], (11)

where (u, v) is the index for the entries ofM(x). The proof
can be found in Appendix A. Our method can also be used
with various sensitivity methods for z → x to satisfy dif-
ferent properties such as implementation invariance and lin-
earity, which are detailed in Appendix A.

4. Uncertainty Mitigation
Leveraging the insights gained from uncertainty attribu-

tion, uncertainty mitigation is to develop an uncertainty-
driven mitigation strategy to enhance model performance.
In particular, the uncertainty attribution map M(x) can be
utilized as an attention mechanism by multiplying the in-
puts or features with 1 − M(x). This can help filter out
problematic input information and improve prediction ro-
bustness. However, this approach also assigns high weights
to unessential background pixels, which is undesirable. To
address this issue, the attention weight A(x) is defined by
the element-wise product of (1−M(x)) andM(x) in order
to strengthen more informative areas, as shown as follows:

A(x) = (1−M(x))⊙M(x). (12)

It is important to note that the attention mechanism can be
implemented either in the input space or in the latent space.

In this study, we apply A(x) in the latent space, while con-
ducting ablation studies for the input-space attentions in
Sec. 5.2.3. Let {hk(x)}Kk=1 with size K be the 2D feature
maps generated by the last convolutional layer. We down-
sample A(x) to match the dimensions of hk(x) and utilize
{(1+αA(x))⊙hk(x)}Kk=1 as inputs to the classifier, where
α is a hyperparameter that can be tuned. Through retraining
using the masked feature maps, the model gains improved
accuracy and robustness by ignoring the unimportant back-
ground information and the fallacious regions. The com-
plete process is illustrated in Figure 2.

𝑥

⨁ Classifier y

CNN Model

… ⨂

𝐴(𝑥)

downsample

ℎ1(𝑥) ℎ2(𝑥) ℎ𝐾(𝑥)

Figure 2. The uncertainty mitigation with attention mechanism.

5. Experiments
Dataset. We evaluate the proposed method on the
benchmark image classification datasets including MNIST
[8], SVHN [26], CIFAR-10 (C10) [18], and CIFAR-100
(C100) [17].
BDL Model. In our experiments, we use the deep ensem-
ble method [19] for uncertainty quantification, which trains
an ensemble of deep neural networks from random initial-
izations. It demonstrates great success in predictive un-
certainty calibration and outperforms various approximate
Bayesian neural networks [19].
Implementation Details. We use standard CNNs for
MNIST/SVHN and Resnet18 for C10/C100. The experi-
ment settings, implementation details, and hyperparameters
are provided in Appendix B.
Baselines. We compare our proposed method (UA-
Backprop + FullGrad) with various baselines on gradient-
based uncertainty attribution. The baselines include the
vanilla extension of Grad [33], SmoothGrad [34], FullGrad
[36], IG [37], and Blur IG [41] for UA. Although CLUE-
variants require a generative model and have low efficiency,
we include CLUE [3] and δ-CLUE [20] for comparison.
Evaluation Tasks. In Sec. 5.1, we qualitatively evaluate the
UA performance. In Sec. 5.2, we provide the quantitative



Image Ours Grad SmoothGrad Fullgrad Blur IGIG CLUE 𝛿-CLUE

Figure 3. Examples of the epistemic uncertainty attribution maps for various methods on different datasets. Brighter areas indicate essential
regions that contribute most to the uncertainty. More examples can be found in Appendix E.

evaluations including the blurring test, and the attention-
based uncertainty mitigation. Various supplementary stud-
ies are provided in Appendices C and D.

5.1. Qualitative Evaluation

Figure 3 exhibits various examples of attribution maps
generated using different techniques. Our analysis reveals
that vanilla adoption of CA methods may not be sufficient to
generate clear and meaningful visualizations. For instance,
as illustrated in Figure 3, we may expect the digit “3” to
have a shorter tail, the digit “9” to have a hollow circle with
a straight vertical line, and the face of the dog and the small
dark body of the spider to be accurately depicted. However,
methods such as Grad and Smoothgrad produce ambigu-
ous explanations due to noisy gradients, while FullGrad em-
ploys intermediate hidden layers’ gradients to identify prob-
lematic regions but often lacks detailed information and
overemphasizes large central regions. Furthermore, CLUE-
based methods tend to identify multiple boundary regions
as problematic. They may also fail to provide a compre-
hensive explanation for complex datasets, where generative
models may face significant difficulties in modifying the in-
put to produce an image with lower uncertainty. Finally,
CLUE-based methods, Grad, SmoothGrad, and FullGrad
fail to fully attribute the uncertainty through the decompo-
sition of pixel-wise contributions. While IG-based methods
satisfy the completeness property if the starting image has
zero uncertainty, they often produce scattered attributions
with minimal regional illustration, posing difficulties in in-
terpretation.

Figure 4 presents various examples of UA maps that de-
pict different types of uncertainties. It is a well-known fact
that epistemic uncertainty inversely relates to training data

Image Epistemic Aleatoric Total

Figure 4. Epistemic, aleatoric, and total uncertainty attribution
maps for our proposed method on MNIST dataset.

density. Hence, the epistemic uncertainty maps indicate the
areas that deviate from the distribution of training data. In
some cases, inserting or blurring pixels will help to reduce
uncertainty for performance improvement. The aleatoric
uncertainty maps quantify the contribution of input noise
to prediction uncertainty, which tends to assign high attri-
butions to object boundaries. As displayed in Figure 4, the
total uncertainty maps are quite similar to the aleatoric un-
certainty maps. That is because the aleatoric uncertainty
quantified in Eq. (2) is often much larger than the epistemic
uncertainty, which dominates the total uncertainty.

5.2. Quantitative Evaluation

5.2.1 Blurring Test

Following [28], we evaluate the proposed method
through the blurring test. If the most problematic regions
are blurred for a highly uncertain image, we expect a signif-
icant uncertainty reduction due to the removal of mislead-



Table 1. Attribution performance in terms of MURR and AUC-URR. We evaluate on four different datasets and blur the image with a
maximum of 2% or 5% pixels with the highest contribution to the epistemic uncertainty. The bold values indicate the best performance.

Method
Maximum Uncertainty Reduction Rate (MURR) ↑

MNIST C10 C100 SVHN Avg. Performance
%2 %5 %2 %5 %2 %5 %2 %5 %2 + %5

Ours 0.648 0.850 0.629 0.848 0.195 0.302 0.625 0.758 0.607
Grad 0.506 0.741 0.578 0.798 0.165 0.276 0.555 0.705 0.541
SmoothGrad 0.601 0.779 0.566 0.800 0.154 0.255 0.575 0.735 0.558
FullGrad 0.691 0.869 0.555 0.772 0.156 0.274 0.565 0.709 0.574
IG 0.434 0.725 0.632 0.827 0.159 0.270 0.649 0.773 0.559
Blur IG 0.305 0.515 0.693 0.971 0.184 0.318 0.762 0.896 0.581
CLUE 0.614 0.874 0.291 0.628 0.074 0.148 0.171 0.352 0.394
δ-CLUE 0.625 0.901 0.415 0.577 0.073 0.150 0.146 0.295 0.398

Method
Area under the Uncertainty Reduction Curve (AUC-URR) ↓

MNIST C10 C100 SVHN Avg. Performance
%2 %5 %2 %5 %2 %5 %2 %5 %2 + %5

Ours 0.667 0.445 0.664 0.484 0.901 0.821 0.526 0.407 0.614
Grad 0.709 0.534 0.701 0.538 0.912 0.843 0.613 0.448 0.662
SmoothGrad 0.675 0.461 0.730 0.551 0.919 0.860 0.584 0.424 0.651
FullGrad 0.603 0.429 0.696 0.543 0.924 0.859 0.596 0.455 0.638
Blur IG 0.816 0.667 0.638 0.466 0.914 0.851 0.541 0.402 0.662
IG 0.752 0.529 0.731 0.444 0.905 0.824 0.523 0.298 0.626
CLUE 0.709 0.397 0.861 0.624 0.966 0.926 0.919 0.815 0.777
δ-CLUE 0.665 0.395 0.793 0.710 0.968 0.924 0.932 0.848 0.779

ing information. The blurring can be conducted via a Gaus-
sian filter with mean 0 and standard derivation σ. We itera-
tively blur the pixels based on their contributions to the un-
certainty, where we evaluate the corresponding uncertainty
reduction curve to demonstrate the effectiveness of our pro-
posed method. Some examples are shown in Figure 5 and
the detailed experiment setting is shown in Appendix B.

The evaluation for the blurring test is conducted on the
epistemic uncertainty map since the aleatoric uncertainty
captures the input noise and is likely to increase when blur-
ring the image. Denote v1, v2, · · · , vT as the pixels that

Image Uncertainty Map Blurred Image Uncertainty Reduction Curve

Figure 5. Examples of the blurring test for UA-Backprop.

contribute most to the epistemic uncertainty, following the
decreasing order. We iteratively blur up to t pixels, i.e.,
v1:t, and denote the resulting blurred image as xt. The un-
certainty reduction rate (URR) shown in Eq. (13) quantifies
the extent of achieved uncertainty reduction for blurring up
to t problematic pixels:

URR(t) =
1

|X |
∑
x∈X

max
i≤t

1− U(xi)

U(x)
. (13)

For URR, we aggregate the results for various sampled im-
ages x ∈ X . The URR curve, obtained by plotting the
decreasing normalized values of {URR(t)}Tt=1, is a key
performance metric. We report two evaluation metrics,
namely, the maximum uncertainty reduction rate (MURR),
i.e., maxt=1:T URR(t), and the area under the URR curve
(AUC-URR). Larger MURR and smaller AUC-URR values
indicate superior performance of the UA method. Since the
blurring may lead some images to be out-of-distribution, we
report median values instead.

As shown in Table 1, our proposed method achieves the
best average performance and ranks among the top three
in all datasets. In particular, it consistently outperforms
Grad, SmoothGrad, FullGrad, and IG. While Blur IG shows
promising performance on certain datasets such as C10 and
SVHN, it requires a larger number of blurred pixels to
achieve improvements and has no advantages to identify
the highest problematic regions. Generative-model-based



Table 2. Acc (%) ↑ and NLL ↓ for uncertainty mitigation evaluation. The results are aggregated over 5 independent runs.

Method
MNIST C10 C100 SVHN Avg. Performance

ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL
Ours 91.95 0.287 36.48 1.768 12.12 4.326 65.13 1.489 51.42 1.968
Grad 91.35 0.302 31.60 1.938 12.13 4.422 63.74 1.578 49.71 2.060
SmoothGrad 90.68 0.324 32.05 1.942 12.57 4.508 62.35 1.628 49.41 2.100
FullGrad 91.39 0.300 32.85 1.920 12.06 4.574 62.38 1.568 49.67 2.091
IG 91.98 0.350 34.43 1.829 11.89 4.265 64.31 1.511 50.65 1.989
Blur IG 91.57 0.288 32.20 1.935 12.34 4.630 65.04 1.526 50.29 2.095
CLUE 91.64 0.348 33.34 1.846 12.15 4.299 60.01 1.572 49.29 2.016
δ-CLUE 91.76 0.350 35.02 1.809 12.22 4.362 62.71 1.612 50.43 2.033
No attention 90.78 0.358 31.62 1.921 12.02 4.536 60.64 1.569 48.77 2.096

methods, such as CLUE and δ-CLUE, perform well on
MNIST but face difficulties in attributing complex images.
Additionally, SmoothGrad, Blur IG, and IG require multi-
ple backward passes to attribute one input, while CLUE and
δ-CLUE also require a specific optimization process per im-
age, which makes them less efficient. Overall, our proposed
method demonstrates superior performance and stands out
as the optimal approach for UA in the blurring test.

5.2.2 Uncertainty Mitigation Evaluation

Building on the methodology in Sec. 4, we adopt pre-
generated attribution maps as attention mechanisms to en-
hance model performance. The formulation of attention,
denoted by A(x), is presented in Eq. (12), and is exem-
plified in Figure 6. To ensure consistency in scale across
different methods, the attribution map M(x) is normalized
using the element-wise softmax function before being used
in Eq. (12).

The experimental focus is on training with limited data
due to the time-consuming process of generating attribution
maps for large datasets, particularly for methods such as
Blur IG, SmoothGrad, and CLUE. To this end, we randomly
select 500, 1000, 2000, and 4000 images from MNIST, C10,
SVHN, and C100, respectively. The selected samples are
trained with pre-generated attention maps and evaluated on
the original testing data. The evaluation metrics used are ac-
curacy (ACC) and negative log-likelihood (NLL). The ex-
perimental setup is detailed in Appendix B.

Table 2 presents the results obtained for uncertainty mit-
igation. The method “no attention” refers to plain training
without attention incorporated. Our method demonstrates a
6% improvement in ACC compared to vanilla training, sug-
gesting a promising potential for utilizing attribution maps
for further model refinement. Our method consistently out-
performs other attribution methods in terms of averaged
ACC and NLL. We notice that more significant improve-
ment in NLL often occurs for smaller datasets, whereas
C100 is challenging to fit with limited samples, and the per-
formance will be more influenced by stochastic training.

Image

Attention
Map

Figure 6. Examples of attention maps for UA-Backprop.

5.2.3 Ablation Studies and Further Analysis

To have a comprehensive evaluation, we conduct the
anomaly detection experiment in Appendix C, which com-
pares the predicted problematic regions with the known
ground truth. Ablation studies such as efficiency analy-
sis, attribution performances under different experiment set-
tings, and hyperparameter sensitivity analysis are provided
in Appendix D.

6. Conclusion

This research aims at developing explainable uncer-
tainty quantification methods for BDL. It will significantly
advance the current state of deep learning, allowing it
to accurately characterize its uncertainty and improve its
performance, facilitating the development of safe, reliable,
and trustworthy AI systems. Our proposed method is
designed to attribute the uncertainty to the contributions of
individual pixels within a single backward pass, resulting
in competitive accuracy, relaxed assumptions, and high
efficiency. The results of both qualitative and quantitative
evaluations suggest that our proposed method has a high
potential for producing dependable and comprehensible
visualizations and establishing mitigation strategies to
reduce uncertainty and improve model performance.
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Markus Gross. Towards better understanding of
gradient-based attribution methods for deep neural
networks. arXiv preprint arXiv:1711.06104, 2017. 2,
3, 11

[2] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and
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A. Properties of UA Methods

In this section, we present an overview of the key char-
acteristics of uncertainty attribution methods, which are ex-
tended from the attribution methods for deterministic NNs.
We also provide a brief introduction to various existing
gradient-based attribution methods for deterministic NNs,
along with their vanilla extensions. Lastly, we provide a
theoretical demonstration of the essential properties of our
proposed method.

A.1. Essential Properties for Uncertainty Attribu-
tion

Adopted from the survey papers [1, 2, 27] for attribution
methods of deterministic NNs, some important properties
are extended for uncertainty attribution of BDL models.

• Implementation Invariance. The uncertainty attribu-
tion methods should assign the same attribution score
to the same input for equivalent neural networks, no
matter how they are implemented.

• Completeness. The uncertainty score can be fully de-
composed into the sum of individual attributions of the
input features.

• Sensitivity. The attribution methods should assign
zero attribution to the features that will not affect the
uncertainty. For two inputs that are different in one
feature, this feature should be assigned non-zero attri-
bution if the two inputs lead to different uncertainties.

• Saturation. Saturation demonstrates a phenomenon
in that we assign zero attribution for the regions with
zero gradients. The attribution methods should provide
tools to avoid saturation.

• Linearity. Denote f1, f2 as two different BDL mod-
els and M1(x),M2(x) as the corresponding attribu-
tion maps for x. The linear combination of the two
BDL models is af1 + bf2, where a, b ∈ [0, 1] and
a + b = 1. If the linearity is satisfied, the attribution
map for af1 + bf2 is aM1(x) + bM2(x).

• Positivity. Attribution methods should assign non-
negative values to input features. Since features are
always imperfect, they should positively contribute to
the uncertainty unless they are irrelevant.

• Fidelity. The features with higher attribution scores
should be more sensitive to uncertainty change.
Through certain changes in the problematic regions,
the uncertainty should be significantly reduced.

A.2. Further Discussion on the Vanilla Extensions
of Existing Gradient-based Methods

• Grad. For this method, we use the magnitude of the
raw gradients from the uncertainty U to the input x,
shown in Eq. (14):

MG(x) =

∣∣∣∣∂U∂x
∣∣∣∣ . (14)

• SmoothGrad. SmoothGrad tries to smooth the noisy
gradients by aggregating from the attributions of var-
ious noisy images. Donote K as the number of
noisy images we generate through adding Gaussian
noises, the attribution map of SmoothGrad is shown
in Eq. (15):

MSG(x) =
1

K

K∑
k=1

MG(x+N (0, σ2I)) (15)

where N (0, σ2I) represents the random noise sampled
from the Gaussian distribution with 0 mean and covari-
ance matrix σ2I . σ is a hyperparameter and I is the
identity matrix.

• FullGrad. The FullGrad method calculates the attri-
bution map MFG(x) by considering both the gradi-
ent of the uncertainty measure U with respect to the
input x (i.e., ∂U

∂x ) and the gradient of U with respect
to the bias variable bl in every convolutional or fully-
connected layer l (i.e., ∂U

∂bl
). This aggregation is math-

ematically expressed in Eq. (16):

MFG(x) = ψ

(∣∣∣∣∂U∂x ⊙ x

∣∣∣∣+∑
l

∣∣∣∣∂U∂bl ⊙ bl

∣∣∣∣
)

(16)

where ⊙ is the element-wise product and | · | returns
the absolute values. ψ is a post-processing function
for normalizing and rescaling the gradients.

• Itegrated Gradient (IG). Integrated gradient method
creates a path integral from a reference image x0 to x,
shown in Eq. (17):

MIG(x) = (x−x0)⊙
∫ 1

0

∂U(x0 + α(x− x0))

∂x
dα.

(17)
Since IG requires a reference image x0 and the attri-
bution results highly depend on the difference between
the reference image and the original image, various
extensions are proposed, leading to Blur IG [41] and
Guided IG [15].

Based on the survey papers [1,2,27], we briefly summarize
the properties satisfied by the aforementioned approaches
in Table 3. In the next section, we will show the theoretical
analysis of our proposed method.



Table 3. The properties of the selected gradient-based attribution methods. The “Yes” in saturation means the attribution method has tools
to avoid zero attribution for zero-gradient regions. “*” means the property depends on specific architectures or the chosen layers.

Method
Properties

Implementation Invariance Completeness Sensitivity Saturation Linearity Positivity Fidelity
Grad Yes No Yes No No Yes No
SmoothGrad Yes No Yes No No Yes Yes
FullGrad Yes* Yes Yes Yes No Yes Yes
IG Yes Yes Yes Yes Yes No Yes

A.3. Special Properties of UA-Backprop

Proposition A.1. UA-Backprop always satisfies the com-
pleteness property.

Proof. Based on Algorithm 1 of the main body of the paper,
the uncertainty attribution map generated by our proposed
method is shown in Eq. (18):

M(x) =
1

S

S∑
s=1

C∑
i=1

Us
ziM

s
i (x) (18)

where Ms
i (x) is the normalized relevance map showing the

essential regions of x that contribute to zs
i . Us

zi is the un-
certainty attribution of zs

i received from gs. By taking the
sum of M(x) over all the elements,∑

(u,v)

M(x)[u, v]

=
1

S

S∑
s=1

C∑
i=1

Us
zi

∑
(u,v)

Ms
i (x)[u, v]

=
1

S

S∑
s=1

C∑
i=1

Us
zi =

1

S

S∑
s=1

C∑
i=1

C∑
j=1

cgs
j→zs

i
Ugj

=
1

S

S∑
s=1

C∑
j=1

(

C∑
i=1

cgs
j→zs

i
)Ugj

=
1

S

S∑
s=1

C∑
j=1

Ugj =
1

S

S∑
s=1

U = U

(19)

By incorporating the FullGrad method into the attri-
bution proposed backpropagation framework for the path
z → x, our method is able to satisfy several crucial prop-
erties. It should be noted that the fulfillment of these prop-
erties is primarily contingent on the choice of backpropaga-
tion method employed for z → x, as the attribution propa-
gation from U → g and g → z does not involve neural net-
work parameters. In the case of UA-Backprop + FullGrad,
our method is able to achieve completeness, sensitivity, sat-
uration, positivity, and fidelity.

B. Implementation Details and Experiment
Settings

In this section, we will discuss the implementation de-
tails of the proposed method and provide further informa-
tion about the experiment settings.

B.1. Implementation Details and Training Hyper-
parameters

B.1.1 Model Architecture

As described in Sec. 5 of the main body of the paper, we
adopt the deep ensemble method to estimate the uncer-
tainty. Specifically, we train an ensemble of five models
for each dataset with different initialization seeds. Common
data augmentation techniques, such as random cropping and
horizontal flipping, are applied to C10, C100, and SVHN
datasets. Our experiments are conducted on an RTX2080Ti
GPU using PyTorch. The model architecture and hyperpa-
rameters used in our experiments are detailed below.

• MNIST. We use the architecture: Conv2D-Relu-
Conv2D-Relu-MaxPool2D-Dropout-Dense-Relu-
Dropout-Dense-Softmax. Each convolutional layer
contains 32 convolution filters with 4 × 4 kernel size.
We use a max-pooling layer with a 2 × 2 kernel, two
dense layers with 128 units, and a dropout probability
of 0.5. The batch size is set to 128 and the maximum
epoch is 30. We use the SGD optimizer with a learning
rate of 0.1 and momentum of 0.9.

• C10. For the C10 dataset, we employ ResNet18 as the
feature extractor, followed by a single fully-connected
layer for classification. We use the stochastic gradient
descent (SGD) optimizer with an initial learning rate
of 0.1 and momentum of 0.9. The maximum number
of epochs is set to 100, and we reduce the learning rate
to 0.01, 0.001, and 0.0001 at the 30th, 60th, and 90th
epochs, respectively. The batch size is set to 128.

• C100. For the C100 dataset, we use the same model
architecture as in C10, with ResNet18 as the feature
extractor and a single fully-connected layer for classi-
fication. We adopt the SGD optimizer with an initial



learning rate of 0.1 and momentum of 0.9. The maxi-
mum number of epochs is set to 200, and we decrease
the learning rate to 0.01, 0.001, and 0.0001 at the 60th,
120th, and 160th epochs, respectively. The batch size
is set to 64.

• SVHN. We use the same architecture as MNIST. The
batch size is set to 64 and the maximum epoch is 50.
We use the SGD optimizer with a learning rate of 0.1
and momentum of 0.9. The learning rate is decreased
to 0.01 and 0.001 at the 15th and 30th epochs.

B.1.2 Implementation of the Attribution Approaches

• Ours. Regarding the MNIST dataset, we set τ1 and τ2
to 0.08 and 0.3 respectively, whereas for C10, C100,
and SVHN, we set τ1 and τ2 to 0.55 and 0.02. The
hyperparameters are different since MNIST contains
only grayscale images, while the other datasets consist
of colorful images. We utilize the FullGrad method,
which is an internal part of the UA-Backprop for
z → x, and we refer to the implementation available
at https://github.com/idiap/fullgrad-
saliency with the default hyperparameters.

• Grad. We use the Torch.autograd to directly compute
the gradient from the uncertainty score and the input.

• SmoothGrad. Based on Eq. (15), we use K =
50, σ = 0.1 to smooth the gradients.

• FullGrad. We use the implementation in https:
//github.com/idiap/fullgrad-saliency
as a basis and extend it to the uncertainty attribution
analysis by computing the full gradients from the un-
certainty score to the input. We utilize the default hy-
perparameters.

• Blur IG and IG. We follow https://github.
com / Featurespace / uncertainty -
attribution for the uncertainty-adapted ver-
sions of the Blur IG and IG. The number of path
integrations used for Blur IG and IG is set to 100. We
use the white starting image for IG.

• CLUE and δ-CLUE. For CLUE and δ-CLUE,
a two-stage process is performed where we first
train two variational autoencoders (VAEs). Specif-
ically, for the MNIST dataset, the VAE imple-
mentation follows that of https://github.
com/lyeoni/pytorch-mnist-VAE/blob/
master/pytorch-mnist-VAE.ipynb. Mean-
while, for C10, C100, and SVHN datasets, we utilize
the implementation of https://github.com/
SashaMalysheva/Pytorch-VAE, with the same
model architectures and the default hyperparameters.

The output layer of the aforementioned implementa-
tion is modified to use a sigmoid activation function
for the binary cross-entropy loss. Once the VAEs are
trained, we apply the CLUE and δ-CLUE methods to
learn a modified image for each test data, where the un-
certainty loss and the reconstruction loss are weighted
equally. We use Adam optimizer with a learning rate
of 0.01 and set the maximum iteration to 500 with an
early stop criteria based on an L1 patience of 1e− 3.

B.2. Experiment Settings

B.2.1 Blurring Test

In Sec. 5 of the main context, we examine the performance
of the epistemic uncertainty maps in a blurring test. In this
test, the key hyperparameter is the standard deviation σ of
the Gaussian filter. However, using a fixed σ would be un-
fair since a small σ would have no impact on the image,
while a large σ would cause the blurred images to be out-of-
distribution. Different images may require varying degrees
of blurriness to reduce uncertainty appropriately. Therefore,
we perform an individual search for σ for each image, en-
suring that the blurred image has the minimum uncertainty.
The search range is from 0 to 20, with a step of 0.2. As
our proposed method aims to identify problematic regions
by analyzing uncertain images, we focus on the top 500 im-
ages with the highest epistemic uncertainty for the blurring
test evaluation. Note that for MNIST dataset, only the top
100 uncertain images are selected for evaluation since most
of the images have a good quality with low uncertainty. For
each metric, the median value is reported considering that
some blurred images could be out-of-distribution with in-
creased uncertainty.

B.2.2 Uncertainty Mitigation With Attention Mecha-
nism

In this study, we aim to improve model performance by us-
ing pre-generated uncertainty maps as attention to mitigate
uncertainty. Following Eq. (12) of the main body of the
paper, the uncertainty attribution mapM(x) is first normal-
ized using an element-wise softmax function and then used
for constructing the attention A(x). We use bilinear inter-
polation to rescale A(x) to the size of the hidden feature
maps. We then do an element-wise product of (1+αA(x))
with the hidden features, where α is a positive real number
that controls the strength of the attention. We choose α =
0.2 across all datasets and adding 1 is to keep the informa-
tion of the regions with low importance to ensure no knowl-
edge loss. In the main experiment, we use the epistemic un-
certainty maps, while an ablation study for using aleatoric
and total uncertainty maps as attention is provided in Ap-
pendix D.2.3. To evaluate model robustness, we retrain the
model with the attention mechanism under limited data and
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Table 4. IoU ↑ and ADA ↑ for anomaly detection for various datasets. The bold values indicate the best performance

Method
C10 C100 SVHN Avg. Performance

IoU ADA IoU ADA IoU ADA IoU ADA
Ours 0.353 0.285 0.363 0.375 0.217 0.124 0.311 0.261
Grad 0.141 0.090 0.167 0.135 0.198 0.096 0.169 0.107
SmoothGrad 0.321 0.260 0.316 0.245 0.212 0.114 0.283 0.206
FullGrad 0.341 0.285 0.320 0.295 0.206 0.114 0.289 0.231
IG 0.171 0.090 0.170 0.105 0.139 0.052 0.160 0.082
Blur IG 0.182 0.125 0.318 0.290 0.150 0.078 0.217 0.164
CLUE 0.253 0.210 0.208 0.180 0.115 0.042 0.192 0.114
δ−CLUE 0.248 0.240 0.229 0.220 0.105 0.044 0.194 0.168

test on the original testing dataset. With limited data, there
is no need for applying complex models. Hence, we use the
CNN-based models for all the datasets. The model architec-
ture is Conv2D-Relu-Conv2D-Relu-MaxPool2D-Dropout-
Dense-Relu-Dropout-Dense-Relu-Dense-Softmax. Each
convolutional layer contains 32 convolution filters with 4×4
kernel size. We use a max-pooling layer with a 2×2 kernel,
several dense layers with 128 units, and a dropout proba-
bility of 0.5. The maximum training epoch is 120 and the
batch size is 128. We use the SGD optimizer with an ini-
tial learning rate of 0.1 and momentum of 0.9. The learning
rate is decreased at the 30th, 60th, and 90th epoch with a de-
cay rate of 0.2. Additional results for different experiment
settings can be found in Appendix D.2.

C. Anomaly Detection

In this section, we employ our method to conduct
anomaly detection by leveraging the known ground-truth
problematic regions. Specifically, we substitute one patch
of each testing image with a random sample from the train-
ing data at an identical location. Despite the modified patch
still being marginally in-distribution, it mismatches with the
remaining regions, creating the ground-truth problematic
regions. We perform a quantitative assessment of the ef-
ficacy of our proposed method in detecting these anomaly
patches.

The experimental evaluation is conducted on three
datasets, namely C10, C100, and SVHN. MNIST is ex-
cluded from the comparison due to its grayscale nature.
To generate the ground-truth problematic regions, we ran-
domly modify a 10 by 10 patch in each testing image by
replacing it with a sample from the training data distribu-
tion at the same location. Out of the resulting modified im-
ages, we select 200 images that exhibit the largest increase
in uncertainty compared to the original images, indicating
the most problematic areas. Then the epistemic uncertainty
maps are generated, based on which, we predict the trou-
blesome regions by fitting a 10 by 10 bounding box that has
the highest average attribution score. It is worth noting that
we use a brute-force method to identify the predicted 10 by

10 patch. The predicted bounding boxes are compared with
the ground-truth counterparts using Intersection over Union
(IoU) and anomaly detection accuracy (ADA). The IoU is
calculated by dividing the area of the overlap by the area
of union, while the detection accuracy is the percentage of
images with IoU greater than 0.5.

Modified Images

Attribution Maps

Figure 7. The anomaly detection examples. The red bounding
boxes represent the predicted problematic regions while the orange
bounding boxes are the ground truth.

As shown in Figure 7, the predicted problematic bounding
boxes are well-matched with the ground truth, indicating
the method’s capability to accurately identify anomalous re-
gions. The quantitative evaluation in Table 4 reveals that
UA-Backprop outperforms other baselines, especially for
Grad, IG, Blur IG, CLUE, and δ-CLUE. These baselines
perform poorly in detecting anomalous regions, which may
be attributed to their limited ability to identify continuous
problematic regions (i.e., the 10 by 10 patches), as they tend
to detect only scattered locations.

D. Ablation Studies and Further Analysis
D.1. Efficiency Evaluation

In this section, we present a theoretical efficiency anal-
ysis of gradient-based methods for generating uncertainty
maps. We define the runtime of a single backpropagation
as O(1). Our proposed method, along with Grad and
FullGrad, can generate the maps within a single backpass,
resulting in a runtime of O(1). However, SmoothGrad, IG,



Table 5. Acc (%) and NLL for uncertainty mitigation evaluation of varying number of training samples N on MNIST and C10 datasets.
The results are aggregated over 5 independent runs.

Method
MNIST

N = 200 N = 500 N = 1000 N = 1500 N = 2000 Avg. Performance
ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL

Ours 85.86 0.461 91.95 0.287 95.65 0.186 96.43 0.161 96.72 0.152 93.32 0.249
Grad 85.02 0.490 91.35 0.302 94.89 0.192 95.76 0.176 96.47 0.159 92.70 0.264
SmoothGrad 85.38 0.480 90.68 0.324 95.15 0.188 95.97 0.171 96.35 0.159 92.71 0.264
FullGrad 84.75 0.503 91.39 0.300 95.23 0.175 95.98 0.153 96.44 0.142 92.76 0.255
IG 82.66 0.563 91.98 0.350 94.94 0.220 95.71 0.190 96.34 0.162 92.33 0.297
Blur IG 85.34 0.485 91.57 0.288 95.04 0.184 96.02 0.155 96.48 0.145 92.89 0.252
Non-attention 84.64 0.524 90.78 0.358 95.01 0.221 95.94 0.189 96.29 0.172 92.55 0.293

Method
C10

N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 Avg. Performance
ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL

Ours 36.48 1.768 49.25 1.454 52.17 1.377 56.92 1.255 57.64 1.222 50.49 1.415
Grad 31.47 1.945 47.35 1.472 51.62 1.374 46.91 1.508 52.85 1.322 46.04 1.524
SmoothGrad 31.73 1.944 42.72 1.943 48.15 2.482 47.96 2.342 48.02 2.435 43.72 2.229
FullGrad 32.53 1.920 46.67 1.485 51.46 1.371 54.57 1.290 53.70 1.297 47.79 1.473
IG 34.43 1.829 47.96 1.472 53.32 1.349 56.37 1.263 58.41 1.200 50.10 1.423
Blur IG 31.96 1.932 46.38 1,495 52.11 1.364 52.48 1.335 54.71 1.277 47.53 1.481
Non-attention 31.58 1.922 46.57 1.490 51.25 1.378 54.89 1.281 55.11 1.265 47.88 1.467

and Blur IG require multiple backward passes for attribu-
tion analysis, with runtimes of O(T ) where T represents
the number of backward iterations. For SmoothGrad, the
value of T depends on the number of noisy images used for
aggregation, while for the IG-based method, T is based on
the number of samples generated to approximate the path
integral. The CLUE-based methods necessitate solving an
optimization problem per input to obtain a modified image
for reference, which further extends their runtimes. In Table
6, we provide the empirical results on the runtime required
for each baseline to attribute a single image, demonstrating
that our proposed method outperforms various baselines in
terms of computational efficiency.

Table 6. Runtime (s) for attributing one image.
Dataset/Method Ours Blur-IG SmoothGrad CLUE
MNIST 0.34 3.39 3.06 6.93
C10 0.46 4.06 3.59 18.43

D.2. Different Experiment Settings for Uncertainty
Attention Mitigation

D.2.1 Varying Number of Training Samples

In this section, we present the results of a study in which
we investigate the effect of varying the number of training
samples on the MNIST and C10 datasets in the context of
the retaining with the attention mechanism. The experimen-
tal outcomes are reported in Table 5. We observe that our
proposed method consistently outperforms other methods

when the training data is limited, as evidenced by the im-
proved testing accuracy and NLL. We also find that adding
attention to the training of the C10 dataset may not be bene-
ficial for some methods, possibly due to the noisy gradients.

D.2.2 Varying Hyperparameters

In this section, we investigate the impact of the attention
weight coefficient, denoted by α, on the performance of our
proposed method for MNIST and C10 datasets. We vary α
from 0 to 2 with a step of 0.2 and present the results in Table
7. Our proposed method consistently outperforms the plain
training without attention (α = 0) as we vary α. In this
study, we set α to a minimum value of 0.2. Remarkably,
even a small value of α leads to a significant improvement.
Furthermore, larger values ofα progressively accentuate the
informative regions, resulting in better performance, as ev-
idenced by the improved results for α = 1.8, 2 on MNIST
and α = 1.2, 1.4 on C10. Considering the stochastic na-
ture of the training process, we note that the model’s perfor-
mance is insensitive to α within a certain range.

D.2.3 Aleatoric and Total Uncertainty Map

In this study, we explore the use of alternative uncertainty
maps, namely aleatoric and total uncertainty maps, in place
of epistemic uncertainty maps as the attention mechanism.
Table 8 presents a comparison of model performance us-
ing different types of uncertainty maps. While all maps
exhibit a similar accuracy on the MNIST dataset, utiliz-
ing the epistemic uncertainty maps results in better fitting



Table 7. Acc (%) and NLL for uncertainty mitigation evaluation of varying α on MNIST and C10 datasets for our proposed method. We
randomly select 500 and 1000 training samples for MNIST and C10, respectively. The results are aggregated over 5 independent runs.
α = 0.2 is used for the main body of the paper.

α =
Dataset

MNIST C10 Avg. Performance
ACC NLL ACC NLL ACC NLL

0.0 90.78 0.358 31.62 1.921 61.20 1.140
0.2 91.95 0.287 36.48 1.768 64.22 1.028
0.4 91.62 0.329 35.22 1.806 63.42 1.068
0.6 91.98 0.320 35.73 1.793 63.86 1.057
0.8 92.07 0.297 38.39 1.735 65.23 1.016
1.0 92.17 0.299 36.42 1.779 64.30 1.068
1.2 92.28 0.285 37.59 1.750 64.94 1.018
1.4 91.86 0.307 38.00 1.737 64.93 1.022
1.6 91.99 0.295 36.24 1.782 64.12 1.038
1.8 92.52 0.269 36.52 1.760 64.52 1.015
2.0 92.51 0.269 37.77 1.743 65.14 1.006

Table 8. Acc (%) and NLL for uncertainty mitigation evaluation with different kinds of uncertainty maps.

Uncertainty
Dataset

MNIST C10
ACC NLL ACC NLL

Epistemic 91.95 0.287 36.48 1.768
Aleatoric 91.94 0.315 37.38 1.761
Total 91.60 0.330 35.14 1.810

based on NLL. On the C10 dataset, the aleatoric uncertainty
maps yield slightly better performance in both ACC and
NLL. Since aleatoric uncertainty captures input noise, the
aleatoric uncertainty maps can strengthen the regions with
less noise and may benefit when the input imperfections
result mainly from input noise. The superior results for
aleatoric uncertainty maps on the C10 dataset may be due
to the fact that the C10 dataset is noisier than the MNIST
dataset.

D.2.4 Input/Latent-space Attention for Uncertainty
Mitigation

Table 9 presents our experimental results using UA maps
as input-space attention. The weighted inputs A(x) ⊙ x
are obtained by using A(x) as input attention. We then use
the weighted inputs to retrain the model under the same ex-
perimental conditions as described in Appendix B.2.2. Our
results demonstrate that using UA maps as input-space at-
tention yields similar performance compared to the results
obtained through latent-space experiments.

D.3. Hyperparameter Sensitivity of Our Proposed
Method

The temperatures τ1 and τ2 used in the normaliza-
tion functions are crucial hyperparameters in our proposed
method. It is necessary to perform normalization in the in-
termediate steps to ensure the satisfaction of the complete-

ness property. By choosing appropriate values for τ1 and
τ2, we aim to avoid uniform or overly sharp coefficients.
It is essential to avoid setting τ1 and τ2 too small or too
large, as this would result in uniform or extreme scores. In
this section, we show some blurring test results for SVHN,
C10, and C100 datasets to evaluate the sensitivity of τ1, τ2
within a certain range. In Table 10, the first row shows the
hyperparameters used for the experiments of the main body
of the paper. We can observe that the performance varies
slightly by choosing different hyperparameters within cer-
tain ranges. During experiments, we tune τ1, τ2 on C10
dataset and use the same hyperparameters (τ1 = 0.55, τ2 =
0.02) for all other datasets with color images. Since MNIST
contains only gray-scale images, we use a different set of
hyperparameters, i.e., τ1 = 0.08, τ2 = 0.3. It is worth not-
ing that the cross-dataset results are insensitive to the varia-
tions of τ1, τ2 within certain ranges. Tuning different τ1, τ2
for different datasets can further improve the performance.

D.4. Different Methods for the Path z → x

As described in Sec. 3 of the main paper, the UA-
Backprop method has the potential to serve as a gen-
eral framework for utilizing advanced gradient-based tech-
niques to investigate the path from z to x. By exploring the
path zsi → x, we obtain the relevance map Ms

i (x), which
highlights the crucial regions of x for zsi , as presented in
Eq. (10) of the main paper. Although we use the Full-
Grad method as our primary approach, other gradient-based



Table 9. Mitigation results (ACC ↑,NLL ↓) for MNIST and C10. The comparison is conducted for input-space attention and latent-space
attention for uncertainty mitigation.

Method
MNIST C10 Average

ACC NLL ACC NLL ACC NLL
Ours-latent 0.920 0.287 0.365 1.768 0.642 1.028
Ours-input 0.919 0.284 0.376 1.742 0.648 1.013

Table 10. MURR and AUC-URR (AUC) of the blurring test for our proposed method with different hyperparameters. The number of
blurring pixels is 2% or 5% of the total pixels. The first row shows the hyperparameters used for displaying the main results. The studies
are conducted on SVHN dataset.

Hyperparameter
Dataset - SVNH Dataset - C10 Dataset - C100

2% 5% 2% 5% 2% 5%
MURR AUC MURR AUC MURR AUC MURR AUC MURR AUC MURR AUC

τ1 = 0.55, τ2 = 0.02 0.625 0.526 0.758 0.407 0.629 0.664 0.848 0.484 0.195 0.901 0.302 0.821
τ1 = 0.50, τ2 = 0.02 0.603 0.550 0.739 0.419 0.622 0.664 0.848 0.496 0.194 0.900 0.304 0.821
τ1 = 0.60, τ2 = 0.02 0.607 0.540 0.732 0.407 0.626 0.666 0.850 0.489 0.194 0.901 0.303 0.821
τ1 = 0.65, τ2 = 0.01 0.645 0.518 0.771 0.397 0.617 0.666 0.848 0.491 0.194 0.901 0.298 0.820
τ1 = 0.70, τ2 = 0.02 0.595 0.545 0.747 0.419 0.624 0.660 0.854 0.480 0.194 0.901 0.302 0.821
τ1 = 0.55, τ2 = 0.03 0.635 0.509 0.758 0.387 0.603 0.690 0.848 0.510 0.194 0.905 0.296 0.831
τ1 = 0.55, τ2 = 0.04 0.608 0.562 0.761 0.406 0.592 0.682 0.829 0.508 0.190 0.903 0.294 0.835

techniques can also be employed within the UA-Backprop
framework. As a simple baseline, UA-Backprop + Grad
uses

Ms
i (x) = ψ

(
∂zsi
∂x

)
(20)

where ψ is a softmax function with temperature τ2, similar
to UA-Backprop + FullGrad. However, the raw gradients
could be noisy, and advanced gradient-based methods could
be used. For example, UA-Backprop + InputGrad uses

Ms
i (x) = ψ

(
x⊙ ∂zsi

∂x

)
(21)

where the input image is used to smooth the gradients. We
can also use the integrated gradient (IG) method, which is
an extension of InputGrad by creating a path integral from
a reference image x0 to input x. For UA-Backprop + IG,

Ms
i (x)

= ψ

(
(x− x0)⊙

∫ 1

0

∂zi(x0 + α(x− x0),θ
s)

∂x
dα

)
(22)

where x0 could be a black or white image as the reference.
In this section, we provide an ablation study of using
different gradient-based methods for the path z → x.
The blurring test evaluations are provided in Table 11 for
MNIST and SVHN datasets. The first row ”UA-Backprop
+ FullGrad” represents the method shown in the main body
of the paper. By using other methods for the path z → x,
we can also achieve considerable results. For example, UA-
Backprop + InputGrad can achieve some improvements for
the MNIST dataset. In short, our proposed method can be

a general framework combining the recent development of
other gradient-based methods for deterministic NNs.

D.5. UA-Backprop for A Deterministic NN

Our method can be applied to Ensemble-1 where the
uncertainty is calculated by the entropy, i.e., the aleatoric
uncertainty. However, the results shown in Table 12 are
not good due to inadequate uncertainty quantification (UQ).
By using more advanced single-network UQ methods, i.e.
Laplacian approximation (LA) [23], our UA method can
yield improved results. Note that LA can also provide pa-
rameter samples from the posterior distribution, which can
be directly used for UA-Backprop. Further studies on effec-
tively performing UA on deterministic models can be our
future direction. We will also concentrate on developing an
end-to-end training approach that produces the attribution
maps for a single network during training iterations and in-
tegrates the knowledge of UA for further model enhance-
ment.

D.6. Compare to Random Map

In this section, we compare our proposed method with
the random map to better illustrate the effectiveness of the
proposed method. The random map is generated by sam-
pling each element from the uniform distribution U [0, 1].
To this end, the blurring test results are presented in Ta-
ble 13 to compare the performance of the proposed method
against the random maps. The experimental results show
that the random maps fail to reduce the uncertainty during
the blurring test.



Table 11. MURR and AUC-URR (AUC) of the blurring test for our proposed method with different approachs for z → x. The number of
blurring pixels is 2% or 5% of the total pixels. The studies are conducted on MNIST and SVHN datasets.

Method
MNIST SVHN

2% 5% 2% 5%
MURR AUC MURR AUC MURR AUC MURR AUC

UA-Backprop + FullGrad 0.648 0.667 0.850 0.445 0.625 0.526 0.758 0.407
UA-Backprop + Grad 0.519 0.714 0.720 0.532 0.611 0.543 0.712 0.451
UA-Backprop + InputGrad 0.673 0.618 0.826 0.413 0.549 0.598 0.702 0.445
UA-Backprop + IG 0.611 0.641 0.795 0.439 0.529 0.618 0.703 0.456

Table 12. Attribution results (MURR ↑, AUC-URR ↓).

Method
MNIST (%2) C10 (%2)

MURR AUC-URR MURR AUC-URR
Ours-Ensemble-5 0.648 0.667 0.629 0.664
Ours-Ensemble-1 0.425 0.828 0.506 0.710
Ours-LA 0.487 0.768 0.534 0.692

Table 13. MURR and AUC-URR (AUC) of the blurring test to
compare our proposed method with randomly generated maps.
The number of blurring pixels is 2% of the total pixels. The studies
are conducted on MNIST and SVHN datasets.

Method
Dataset

MNIST (2%) SVHN (2%)
MURR AUC MURR AUC

Ours 0.648 0.667 0.625 0.526
Random 0.023 0.987 0.011 0.992

D.7. Compare to UA-Backprop without Normaliza-
tion

The normalization steps are required to achieve the
completeness property. Nevertheless, an ablation study
shows that with normalization, the MURR (2% / 5%) is
0.648/0.850 for MNIST and 0.629/0.848 for C10; without
normalization, it can only achieve 0.471/0.797 for MNIST
and 0.518/0.727 for C10.

E. Additional Examples
Figure 8 displays supplementary instances of the uncer-

tainty attribution maps generated by various methods across
multiple datasets. Our proposed method offers a more un-
derstandable and clear visualization of the generated maps
compared to the vanilla application of existing CA methods.
The latter often yields ambiguous explanations because of
the presence of noisy gradients. In contrast, our approach
provides a decomposition of pixel-wise contributions that
efficiently explains the uncertainty while offering better re-
gional illustrations that could be comprehended by individ-
uals without expertise in the field.



Image Ours Grad SmoothGrad FullGrad Blur IGIG CLUE 𝛿-CLUE

Figure 8. Additional examples of the uncertainty attribution maps for various methods across multiple datasets.
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