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Abstract—Inspired by ideas in cognitive science, we propose
a novel and general approach to solve human motion under-
standing via pattern completion on a learned latent represen-
tation space. Our model outperforms current state-of-the-art
methods in human motion prediction across a number of tasks,
with no customization. To construct a latent representation for
time-series of various lengths, we propose a new and generic
autoencoder based on sequence-to-sequence learning. While
traditional inference strategies find a correlation between an
input and an output, we use pattern completion, which views
the input as a partial pattern and to predict the best corre-
sponding complete pattern. Our results demonstrate that this
approach has advantages when combined with our autoencoder
in solving human motion prediction, motion generation and
action classification.

Keywords-Human Motion Prediction, Motion Generation,
Action Classification, Pattern Completion, Recurrent Neural
Network, Representation Learning

I. INTRODUCTION

Knowledge of how humans move can help intelligent
robots in tasks involving an interactive human environment,
such as navigating through a crowded street or playing sports
and tabletop games with humans. Capturing human motion
requires feature detection and tracking, as well as model-
ing a complex dynamical structure which is highly non-
linear, spontaneous and entangled with physical constraints,
intention and high-level semantics. With the arrival of large
motion capture databases, such as the Human3.6M dataset
[1], and 3D pose estimation algorithms, research has focused
on the core patterns present in human motion rather than the
distracting visual features. Recently, a series of skeleton-
based deep learning methods have greatly increased the
performance for human motion prediction, while introducing
increasingly specialized and sophisticated model designs.

We attack skeleton-based human motion prediction using
a general representation learning approach [2] without re-
lying on specialized architectures or external knowledge on
the data structure. Our method consists of two coordinated
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Figure 1: By encoding motion sequences into a well-structured latent space,
we are able to complete the pattern A to a pattern that approximates B by
simply using vector addition, e.g. A + v ≈ B, where v is a vector that
can be directly computed. The process is recursive and can be repeated to
extend to motion C.

steps. First, we learn a latent representation space using a
hierarchical sequence-to-sequence (Seq2Seq) architecture, to
reveal the underlying structure in the complex Human3.6M
dataset. Then, we use the learned representations for motion
prediction and for two related tasks: motion generation and
action classification, through a process called pattern com-
pletion [3]. The latter is the core idea in our method; instead
of viewing inference as finding the correlation between an
input and an output, we view the input as a partial pattern
that is to be completed.

As proposed in situated conceptualization in cognitive
science [3], pattern completion can support diverse forms of
intelligent tasks and provides an important grounding of new
situations into experienced situations, rendering structure to
the latent representations. To our knowledge, we are the
first to attempt this conceptual contribution in the domain of
human motion understanding. See an illustration of pattern
completion in Fig. 1.

In summary, our main contributions are:
1) We propose a new and generic autoencoder that uses

a hierarchical Seq2Seq structure to construct latent
representations of time-series of various lengths while
maintaining a well-structured embedding.

2) We implement pattern completion on the latent repre-
sentation space with either a single-layer network or
vector addition for human motion prediction, motion
generation and action classification. We often achieve
high performance.

Our results show competitive and sometimes higher per-
formance compared to state-of-the-art methods in human
motion prediction. In particular, our method outperforms the
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state of the arts for some aperiodic actions in Human3.6M
such as greeting, sitting and taking photo, which are notori-
ously challenging. Furthermore, the representations learned
by our method also allow for the motion generation and
action classification tasks to be performed effectively.

II. RELATED WORKS

A. Human motion prediction with Human3.6M

The Human3.6M dataset [1] is one the largest and most
challenging benchmarks to evaluate human motion under-
standing. Its large variety of poses are recorded from 7
professional actors doing 15 activities, including walking,
eating, smoking and engaging in a discussion. Due to the
stochastic nature of human movement, previous authors
have separated motion prediction into two sub-tasks: short-
term and long-term prediction. Short-term prediction is com-
monly compared quantitatively with mean angle error, while
long-term predictions are usually assessed qualitatively. This
is because even human intelligence is not able to uniquely
determine the motion of a character tens of seconds into
the future but rather only capture a sampling of plausible
outcomes.

Recurrent neural networks (RNN) are commonly used
to solve both short-term and long-term prediction. Earlier
works [4], [5] suffer from a noticeable discontinuity between
the end of the input (last observed frame) and the first
predicted frame. Martinez et al. [6] alleviates this problem
using a Seq2Seq model with a residual connection, boosting
the performance for short-term prediction.

Recent works focus on long-term prediction which often
collapses to an undesired common pose, especially for
aperiodic motions. This failure is possibly caused by the
common use of mean squared error (MSE), a high-tailed loss
that discourages making risky predictions [6]. Additionally,
MSE, as well as other traditional losses, treat each joint
with equal weight. In reality, the impact of joints on any
given motion is non-uniform. This motivates many complex
or data-specialized loss function. Pavllo et al. [7] propose to
perform Forward Kinematics during training to compute the
loss in Cartesian space. Gui et al. [8] introducing geodesic
loss to capture the geometric structure of the angles. Several
authors [7], [9], [10] also propose to tackle the short-term
and long-term prediction tasks separately, or to have two
model variations, each adapted and optimized for one of the
tasks.

Furthermore, RNNs of all flavors, including both Long
Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU), are hypothesized to have difficulty in keeping track
of long-term information [11] and spatial correlation (e.g.
between left and right arms) [10]. Tang et al. [11] approach
this problem by adding an attention unit and their Modified
Highway Unit (MHU) to summarize motion history and
to focus on joints with large motions. Li et al. [10] use
convolutional filters to learn spatio-temporal dependencies.

In our work, we design a single model to address both
short-term and long-term prediction without additional data-
specialized or task-specialized architectures. We also employ
a Hierarchical Seq2Seq architecture [12] to avoid the loss
of long-term information.

B. Representation learning methods

Several deep learning methods include objectives that
encourage reproduction of the input data, including autoen-
coders, Variational Autoencoders (VAE) [13] and Generative
Adversarial Networks (GAN) [14]. These approaches are
known to produce a latent space that has certain meaningful
structures. Nearby latent representations are similar in the
original data representation space. Thus, interpolation on
the latent space usually produces smooth transitions on
the original space, and clustering on the latent space of-
ten produces semantically meaningful groups. In particular,
successful distributional semantics models in NLP [15]–[17]
demonstrate the additive compositionality property, enabling
the word analogy task to be solvable using vector addition
on the latent space.

Previous works in human motion representation learning
such as [18], [19] show how the learned representation can
be used for various tasks such as fixing corrupted data or
performing action classification. However, to our knowledge,
none of them demonstrate performance comparable to the
current state of the art in human motion prediction.

III. METHOD

Our method consists of two steps: representation learning
and pattern completion. In the representation learning step,
we learn encoding and decoding functions E and D, which
map observations to corresponding latent representations,
and back. In our novel pattern completion step, we train
a pattern completion function G to map inputs to their most
sensible full patterns in the well-structured latent space. To
make overall predictions, we apply the function D ◦G ◦ E
to encode, complete and decode. Specifically, given an input
data pair (X,Y ), the function G aims to predict the latent
representation of XY from the latent representation of X .
This is in contrast to the common practice that predicts
Y directly from X . Below, we explain the details of our
method.

Let S = {(Xi, Yi)}Ni=1 be a given dataset of input and
ground truth pairs. For the motion prediction task, Xi is the
beginning of a motion that is observed in order to complete
the unseen portion Yi. Each Xi and each Yi are represented
as a sequence of joint angles. We wish to learn a prediction
function F such that

{Xi}Ni=1
F−→ {Ŷi}Ni=1 (1)

where the difference between Yi and Ŷi is minimized.
In the representation learning step, we construct S′ =

{Xi, XiYi}Ni=1 where XiYi denotes Xi concatenated with
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Figure 2: An illustration of our Hierarchical Sequence-to-Sequence Autoencoder (H-Seq2SeqsAE). We use common Seq2Seq encoder and decoder [20]
in our model. The Repeat unit in (b) takes input a sequence of length T/τ and outputs a sequence of length T , where each element from the input is
repeated consecutively τ times. The output dimensionalities are specified in parenthesis. When training for T = 60, we use 1500 dimensions for the gated
recurrent unit (GRU) in (a). In (b), d denotes the number of features. Note that in (a), the weights are shared across rows.

Yi. We learn an encoding and a decoding function, E and D,
respectively, such that E maps every element in S′ to a latent
representation in some lower-dimensional space Z ⊆ Rn,

S′
E−→ Z

D−→ Ŝ′. (2)

In the pattern completion step, we view E(Xi) as a partial
pattern and E(XiYi) as a complete pattern, respectively, and
use the pre-trained E and D to learn a pattern completion
function G on the representation space. Specifically, let P =
{pi = E(Xi)}Ni=1 be the set of partial patterns, and C =
{ci = E(XiYi)}Ni=1 be the set of complete patterns. Note
that P,C ⊆ Z. We learn a function G such that

P
G−→ Ĉ, (3)

where the difference between ci and ĉi is minimized. That
is, we wish to predict the complete pattern. Finally we obtain
F = D ◦G ◦ E. That is,

{Xi}Ni=1
E−→ P

G−→ Ĉ
D−→ {X̂iŶi} ⊆ Ŝ′. (4)

Note that this step reflects our choice to map Xi to X̂iŶi
as suggested by pattern completion in cognitive science [3],
rather than to map Xi to Ŷi directly as in standard learning
methods. While many tasks only require Ŷi, we show that
training for completion yields improved performance (see
Section IV-G). To distinguish between completing X with
XY and matching X to Y , we call the latter pattern
matching.

To this point, our discussion has treated the input motion
data as simple vectors, but it is crucial to capture their time
series nature. In order for E to encode sequences of different
lengths, we modify the standard autoencoding framework so
that subsequences of the input sequence can be mapped to

latent representations. Section III-A presents the details of
our autoencoder.

One crucial assumption in our method is that after learn-
ing E and D, G can be modeled with a much simpler
function than completing in raw space and can be learned
in a short amount of time. In our experiments, we model G
using either a single dense layer network or vector addition.
In Section III-B, we describe how G can be implemented
using vector addition.

A. Hierarchical Sequence-to-Sequences Autoencoder (H-
Seq2SeqsAE)

Our model takes a sequence as its input and outputs
multiple sequences, each corresponding to a reconstruction
of a subsequence from the original input. It is based on
Hierarchical Seq2Seq model [12] in order to avoid losing
long-term historical information [10], [11]. We name our au-
toencoder Hierarchical Sequence-to-Sequences Autoencoder
(H-Seq2SeqsAE).

More specifically, let T be the length of an input sequence
and τ be a divisor of T . Given a sequence of joint angles
X = [x1, x2, . . . , xT ], we partition X into T/τ subse-
quences [x1, . . . , xτ ], . . . , [xT−τ+1, . . . , xT ].

For the encoder, our model first obtains sub-encodings
for these subsequences using a standard Seq2Seq encoder
[20]. Next, the T/τ sub-encodings are fed into a higher-
level encoder which outputs T/τ encodings such that the
jth encoding, zj , corresponds to [x1, . . . , xjτ ]. See Fig. 2a.

For the decoder, we modify the Hierarchical Seq2Seq
decoder [12] using residual connections, which were shown
to improve the performance in [6], [7]. Given zj , we first
apply the standard Seq2Seq decoder to obtain a sequence of
length T/τ . Each element in the sequence is then passed to
two dense layers to obtain a pose. Another pathway leads the



entire sequence to two RNNs to obtain T residuals. Finally,
the decoder outputs the combined poses and residuals. See
Fig. 2b.

Since an important part of our decoder is based on
the residual angles, a natural output for our model when
autoencoding a subsequence of length jτ < T is zero motion
after the jτ th frame. Therefore, we use the following loss
function

1

T/τ

T/τ∑
j=1

l([x1, x2, . . . , xjτ , xjτ , . . . , xjτ ], [x̂j,1, . . . , x̂j,T ]),

(5)
in which [x1, x2, . . . , xjτ , xjτ , . . . , xjτ ] is also a sequence of
length T . We encode the moment when a motion stops rather
than the exact length of the sequence. We use mean absolute
error (MAE) for l as it does not pose specific assumptions or
constraints on the data format, and we find that it performs
better compared to MSE in our method.

Finally, we define our functions E and D as follows.
Given input sequence X of length jτ ≤ T , we construct
X ′ by appending X with placeholders to reach length T .
We feed X ′ to our H-Seq2SeqsAE encoder and take the jth

output from it as the output for E. Note this allows E to
take input of various lengths: τ, 2τ, . . . , jτ, . . . , T . For D,
we define it as the H-Seq2SeqsAE decoder.

B. Pattern completion using vector addition
The emerging structure in the latent representation space

allows for simple and intuitive vector addition to accurately
predict human motion. See Fig. 1 for an illustration of this
operation at work.

Given a set of input and ground truth pairs Sj = {(X,Y ) :
|X| = jτ, |XY | = T} for some j. We define

dj(X,Y ) = E(XY )− E(X). (6)

For an arbitrary input sequence X ′ such that |X ′| = jτ and
|X ′Y ′| = T , we simply use the following vector addition

E(X ′) + vj (7)

to approximate E(X ′Y ′), where

vj =
1

|Sj |
∑

(X,Y )∈Sj

dj(X,Y ). (8)

In other words, vj is the average difference between the
latent representations of all X and XY seen in Sj . As
we observe, the variance of dj(X,Y ) is low (see Section
IV-G), and each vj can be computed using a small sample
(e.g. using 1000 samples as in Fig. 3) to obtain high quality
results.

Such additive relationship between X and XY in our
latent representation space is analogous to the additive
compositionality defined by Mikolov et al. [16]. As our H-
Seq2SeqsAE captures the robust features of X and XY , we
find a stronger correlation between E(X) and E(XY ) than
between E(X) and E(Y ) (as shown in Section IV-G).

C. Action classification and label recovery
To include action label information, we concatenate a one-

hot encoded action type vector with each pose, similar to
recent literature [6], [8], [21]. With the action label and
human motion learned by our autoencoder, this knowledge
can be used to solve the action classification task. We apply
our pattern completion method to action classification in two
variations.

In the first variation, our H-Seq2SeqsAE learns to encode
both the supervised and unsupervised motion sequences, and
the action label itself. To achieve this, at each epoch of the
training, we randomly choose a third of the data and set the
label vector to zero. Another third is randomly chosen with
the poses set to zeros.

In the second variation, our H-Seq2SeqsAE learns to
encode the supervised motion sequences. Classification by
this variation is, therefore, more similar to fixing corrupted
data or filling missing information, thus we call it label
recovery.

IV. EXPERIMENTS

We trained our method on the Human3.6M dataset [1]
for each of the following three tasks: (1) short-term motion
prediction, (2) long-term motion prediction and motion
generation, and (3) action classification and label recovery.
For each, we perform pattern completion with both a for-
ward neural network with a single dense layer (FN) and
vector addition (ADD). We distinguish motion generation
from long-term motion prediction by requiring a generative
model to be able to output multiple different valid results.
We measure the performance of all short-term prediction
methods using the community standard metric: mean joint
angle error.

A. Baselines
We follow the same evaluation method for short-term

prediction as in [4]–[8], [10], [11], [21]. We cite the results
from the most relevant works to compare with our method,
which are Res-Seq2Seq [6], the model by Tang et al. [11],
VGRU-rl [21] and AGED [8] which is the current state of the
art. We also compare against the naive zero-velocity baseline
proposed by [6] and use their code to generate long-term
predictions.

B. Data preprocessing
Following the same settings as our baselines, we down-

sample the dataset from 50 to 25 frames per second (fps),
and use subject 5 for testing and the rest for training. Joint
angles with small standard deviation are ignored, resulting
in an input size of 54.

We use two normalization methods depending on the
baseline that we are comparing against: (1) subtract the mean
and normalized between -1 and 1, which is used in [11], and
(2) subtract the mean and divide by the standard deviation,
which is used by the other methods [6], [8], [21].



Table I: Comparison of mean angle error between our method and top performing baselines for short-term motion prediction. The “Average*” column is
the average error over all 15 actions.

(a) Short-term prediction with 30 input frames and normalized angles between -1 and 1.

Walking Eating Smoking Discussion Average*
miliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04 0.40 0.71 1.07 1.21
Tang et al. [11] 0.32 0.53 0.69 0.77 - - - - - - - - 0.31 0.66 0.97 1.04 0.39 0.68 1.01 1.13
Ours-ADD (T = 40) 0.37 0.51 0.77 0.90 0.32 0.44 0.70 0.82 0.36 0.54 1.02 0.96 0.40 0.72 1.09 1.21 0.50 0.74 1.09 1.21
Ours-FN (T = 40) 0.21 0.33 0.54 0.61 0.20 0.31 0.53 0.67 0.28 0.47 0.83 0.86 0.30 0.61 0.84 0.94 0.35 0.59 0.92 1.06

(b) Short-term prediction with 50 input frames and normalized angles by the standard deviation.

Walking Eating Smoking Discussion Average*
miliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04 0.40 0.71 1.07 1.21
Res-Seq2Seq (sup.) [6] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09 0.36 0.67 1.02 1.15
VGRU-rl [21] 0.34 0.47 0.64 0.72 0.27 0.40 0.64 0.79 0.36 0.61 0.85 0.92 0.46 0.82 0.95 1.21 - - - -
AGED (w/o adv) [8] 0.28 0.42 0.66 0.73 0.22 0.35 0.61 0.74 0.30 0.55 0.98 0.99 0.30 0.63 0.97 1.06 0.32 0.62 0.96 1.07
AGED [8] 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83 0.31 0.54 0.85 0.97
Ours-ADD (T = 60) 0.30 0.45 0.74 0.88 0.21 0.37 0.65 0.78 0.31 0.50 0.95 0.89 0.33 0.65 0.91 1.03 0.38 0.64 0.99 1.12
Ours-FN (T = 60) 0.29 0.36 0.57 0.64 0.24 0.32 0.52 0.67 0.36 0.51 0.85 0.83 0.33 0.60 0.84 0.95 0.41 0.62 0.92 1.03

C. Training Procedure

For the representation learning step, we use gated recur-
rent unit (GRU) for our H-Seq2SeqsAE. For the higher-level
encoder, we use tanh activation. For the rest, we use tanh
activation when the data is normalized between -1 and 1,
otherwise, we use linear activation. We train using Nadam
optimizer with a learning rate of 8e−4 and a decay rate of
4e−3. We use a batch size of 64, 5-fold cross-validation and
1e4 samples per epoch, for 300 epochs.

Except Tang et al. [11] which uses 30 input time-steps and
no label information, all compared methods have reported
results for short-term prediction using 50 input time-steps,
10 output time-steps and appended action label information.
Hence, we train two H-Seq2Seqs-AE, one with T = 40 and
1024 latent dimensions, the other with T = 60, 1500 latent
dimensions and label information. We use τ = 10 for both.
Fig. 3 shows an example of a training curve for the latter.
The latter model is also used for long-term prediction and
motion generation.

For the pattern completion step with a single dense layer
network, we train such network to map encodings of se-
quences of length 30 or 50 to their corresponding encodings
of sequences of length 40 or 60, respectively, for short-term
prediction. For long-term prediction and motion generation,
we train with 10 input time-steps and 50 output time-steps.
We use the same settings as for training H-Seq2SeqsAE,
except a faster step-decay with a rate of 0.5 and 50 epochs.

For action classification, we train a separate H-Seq2Seqs-
AE with T = 40, τ = 10, 1024 latent dimensions and
label information with only walking and sitting actions.
Our pattern completion function maps unlabeled to labeled
motions of length 40.

Figure 3: Convergence of autoencoding error and short-term prediction error
is observed when training H-Seq2SeqsAE with T = 60 and τ = 10. Vector
addition is used as the pattern completion function for this prediction task,
and it is computed using 1000 training samples. Note that the autoencoding
error includes the global rotations and transitions while the prediction error
does not.

D. Short-term motion prediction

Table I shows our results for short-term prediction com-
pared against baseline methods. We observe that our method
is better than all approaches that utilize stationary loss
functions. This includes the core approach of the AGED [8]
method. However, the unique addition of adversarial loss
within that method has led to boosted performance – a fea-
ture we have not yet implemented in our method, but which
could easily augment the core improvements demonstrated
here.

Our method sometimes has difficulty in the first few
output time-steps. This is expected since we are adding the
residual angle to reconstructed poses rather than the last



Table II: Short-term motion prediction for some notoriously challenging
aperiodic actions where our method outperforms all baselines.

(a) With 30 input frames and normalized angles between -1 and 1.

Greeting Sitting Taking Photo
miliseconds 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity 0.54 0.89 1.30 1.49 0.40 0.63 1.02 1.18 0.25 0.51 0.79 0.92
Tang et al. [11] 0.54 0.87 1.27 1.45 - - - - 0.27 0.54 0.84 0.96
Ours-ADD 0.57 0.85 1.26 1.44 0.49 0.67 1.01 1.16 0.29 0.49 0.74 0.87
Ours-FN 0.40 0.69 1.11 1.28 0.40 0.58 0.90 1.09 0.24 0.45 0.67 0.77

(b) With 50 input frames and normalized angles by the standard deviation.

Greeting Sitting Taking Photo
miliseconds 80 160 320 400 80 160 320 400 80 160 320 400
Zero-velocity 0.54 0.89 1.30 1.49 0.40 0.63 1.02 1.18 0.25 0.51 0.79 0.92
Res. [6] 0.75 1.17 1.74 1.83 0.41 1.05 1.49 1.63 0.24 0.51 0.90 1.05
AGED (w/o adv.) [8] 0.61 0.95 1.44 1.61 0.46 0.87 1.23 1.51 0.24 0.52 0.92 1.01
AGED [8] 0.56 0.81 1.30 1.46 0.41 0.76 1.05 1.19 0.23 0.48 0.81 0.95
Ours-ADD 0.47 0.78 1.21 1.40 0.37 0.58 0.94 1.10 0.23 0.46 0.69 0.80
Ours-FN 0.46 0.74 1.14 1.34 0.43 0.62 0.94 1.10 0.31 0.49 0.69 0.79

pose from the original input sequence as done in [6], [8].
However, our method excels for longer temporal horizons.
We also observe that ADD outperforms FN on the first few
predicted frames when the data is normalized by the standard
deviation.

One advantage of our model is that it can capture the
structure in several aperiodic motions better than our base-
lines. Prior works have difficulty in modeling complicated
and highly stochastic motions that even the zero-velocity
baseline can easily outperform them, as observed by Mar-
tinez et al. [6]. The adversarial loss in AGED [8] also
leads to a significant performance improvement in aperiodic
motions, but here we outperform them all, as can be seen in
the tasks greeting, sitting and taking photo (see Table II).

E. Long-term motion prediction and generation

Fig. 4 shows our qualitative results for long-term motion
prediction and motion generation with outputs of 50 time-
steps compared with the long-term predictions by [6]. For
these tasks, we use the same model that resulted Table Ib,
and the input sequence length is set to 10 time-steps rather
than 50 time-steps. Martinez et al. [6] propose the hypothesis
that using MSE as the loss function forces the prediction to
converge to a mean pose. Although our MAE loss has similar
theoretical properties to MSE, we observe that our method
can produce more plausible motions over a longer time
horizon, even for aperiodic actions like greeting. We also
observe that ADD often generates motionless sequences,
albeit it can preserve some general structure of the motions.

To obtain diverse generated solutions, we demonstrate that
we can generate different motion sequences by adding noise
to the output of our forward network. The amount of noise
is computed using the standard deviation of the distance d
(see Section III-B). This results in a slight variation for our
long-term prediction (see Fig. 4), but the latter is less smooth
and may contain unnatural poses.

Our method can also demonstrate motion generation using

interpolation on the latent representation space. In Fig. 5,
given a walking and a sitting motion, we generate 8 motion
sequences between the two, which can be combined to create
smooth and realistic motion of a person sitting down.

Animations and quantitative evaluations of our results are
available on our project webpage1.

F. Action classification and label recovery

To our knowledge, we are the first to perform action
classification using solely the Human3.6M dataset. Prior
works on skeleton-based action classification either use other
datasets entirely [19], [22] or combine Human3.6M with
additional data [23] for training. Human3.6M is a difficult
dataset for action classification due to the large variety of
poses and motions that overlap between the action cate-
gories. Therefore, we choose to select only two actions to
perform action classification and label recovery on: walking
and sitting.

Table III shows our results compared with three simple
baseline methods. Our results show that our method demon-
strates a high performance improvement compared to our
baselines. We also observe that our performance in label
recovery is slightly lower. This reflects the difference in
performance between seeing and not seeing the motions
without labels during training.

G. Ablation studies

The core idea in our method is that the latent represen-
tation of the input can be completed to get a solution to
a task. In Table IV, we compare pattern completion and
pattern matching for short-term prediction. Note that for
pattern matching, the distance measure from Section III-B
becomes

d′j(X,Y ) = E(Y )− E(X). (9)

We observe that the performance boosts when applying
pattern completion for both ADD and FN. The average
standard deviation of dj (used in pattern completion) is
also smaller than d′j . Our results also show that our pattern
completion approach outperforms a standard hierarchical
sequence-to-sequence (H-Seq2Seq) model with encoder and
decoder similar to the ones in our H-Seq2SeqsAE, while
our autoencoder combined with pattern matching cannot.
This demonstrates the advantage of pattern completion over
pattern matching in our method.

Furthermore, Table IV also compares our H-Seq2Seqs-
AE with a basic Hierarchical Seq2Seq autoencoder (Basic)
that pads input sequences with the last input frame to
input varying length sequences. Our results suggest that
our autoencoder results more effective latent representation
for pattern completion, since the basic autoencoder cannot
distinguish between long sequences with no motion towards
the end and their shorter counterparts.

1http://www.cim.mcgill.ca/∼yxu219/human-motion-prediction.html

http://www.cim.mcgill.ca/~yxu219/human-motion-prediction.html


(a) Greeting. (b) Walking.

Figure 4: Long-term motion prediction and generation of 50 time-steps for greeting and walking. Note that we skip every second frame.

Figure 5: Interpolation between walking (top row) and sitting (bottom row).
Each row represents a generated motion sequence using our model. Each
column appears to be a smooth and realistic motion of a person sitting
down.

V. DISCUSSION

We have presented our Hierarchical Sequence-to-
Sequences Autoencoder (H-Seq2SeqsAE), a new and
generic representation learning model for time-series data
of various lengths. Combined with our novel pattern com-
pletion approach, we have shown in the context of skeleton-
based human motion, that the learned representations enable
short-term and long-term motion prediction, motion gen-
eration, action classification and label recovery with high
quality. In particular, our performance in short-term predic-
tion is competitive with state of the arts and outperforms
in certain aperiodic actions. Why can our model attain such
performance without specialized architectures and external
knowledge that other state-of-the-art methods use?

One possible explanation is: for some complicated and
diverse data such as the Human3.6M dataset [1], represen-

Table III: Comparison of the average predicted probability between our
method and our baselines for classification of walking and sitting. Note
that our method outputs a valid probability vector for two classes. Our
baselines are Last+Dense: a single dense layer network trained to classify
based on the last pose of the input motion, Flatten+Dense: a single dense
layer network trained to classify based on all poses of the input motion,
and GRU+Dense: a GRU unit connected with a dense layer.

Walking Sitting
Last+Dense 0.61 0.61
Flatten+Dense 0.61 0.61
GRU+Dense 0.61 0.61

Label recovery Ours-ADD 0.55 0.52
Ours-FN 0.72 0.71

Action classification Ours-ADD 0.63 0.69
Ours-FN 0.73 0.74

tation learning can extract important and robust features
that are very suitable to the pattern completion approach.
Although the lower-dimensional latent space potentially pro-
vides less information to our forward network or to vector
addition during the pattern completion step, the structure
gain through the autoencoding process results in a simpler
learning problem from the completion perspective: given
input and ground truth pairs {(Xi, Yi)}Ni=1, robust features
in Xi are also present in XiYi. The pattern completion
approach on the latent space captures these cues, stabiliz-
ing learning and allowing stronger connections across the
implied sequence.

The impact of the hyperparameter τ can be further stud-
ied. Aside from understanding the properties of our latent
representation space, future works also include improving H-
Seq2SeqsAE, finding more effective representation learning
models suitable for pattern completion and applications in
other domains.



Table IV: Ablation analysis on the performance difference between pattern
completion and pattern matching, and our H-Seq2Seqs-AE and a basic
Seq2Seq autoencoder (Basic). X30 denotes an input sequence of length
30, and Y10, an output sequence of length 10.

(a) With T = 40 and normalized angles between -1 and 1.

Average Mean STD STD STDmiliseconds 80 160 320 400
X30 −→ Y10 H-Seq2Seq 0.47 0.68 0.95 1.06 - -
X30 −→ X30Y10 0.57 0.73 0.97 1.07

X30 −→ X30Y10
Basic-ADD 0.39 0.66 0.98 1.11 0.003 0.003Basic-FN 0.38 0.62 0.93 1.04

X40 −→ Y10
Ours-ADD 1.90 1.84 1.76 1.72 0.017 0.006Ours-FN 0.59 0.78 1.08 1.18

X30 −→ Y10
Ours-ADD 1.75 1.72 1.59 1.50 0.015 0.005Ours-FN 0.41 0.65 0.99 1.11

X30 −→ X30Y10
Ours-ADD 0.50 0.74 1.09 1.21 0.003 0.006Ours-FN 0.35 0.59 0.92 1.06

(b) With T = 60 and normalized angles by the standard deviation.

Average Mean STD STD STDmiliseconds 80 160 320 400
X50 −→ Y10 H-Seq2Seq 0.51 0.70 0.98 1.09 - -
X50 −→ X50Y10 0.66 0.79 1.01 1.10

X50 −→ X50Y10
Basic-ADD 0.41 0.67 0.99 1.12 0.015 0.007Basic-FN 0.45 0.67 0.95 1.07

X50 −→ Y10
Our-ADD 1.73 1.79 1.88 1.91 0.027 0.051Our-FN 0.54 0.72 0.98 1.10

X50 −→ X50Y10
Our-ADD 0.38 0.64 0.99 1.12 0.018 0.007Our-FN 0.41 0.62 0.92 1.03
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