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Abstract

In this paper we describe the theory, architecture, imple-
mentation, and performance of a multi-modal passive bio-
metric verification system that continually verifies the pres-
ence/participation of a logged-in user. We assume that
the user logged in using strong authentication prior to the
starting of the continuous verification process. While the
implementation described in the paper combines a digital
camera-based face verification with a mouse-based finger-
print reader, the architecture is generic enough to accom-
modate additional biometric devices with different accu-
racy of classifying a given user from an imposter. The main
thrust of our work is to build a multi-modal biometric feed-
back mechanism into the operating system so that verifica-
tion failure can automatically lock up the computer within
some estimate of the time it takes to subvert the computer.
This must be done with low false positives in order to real-
ize a usable system. We show through experimental results
that combining multiple suitably chosen modalities in our
theoretical framework can effectively do that with currently
available off-the-shelf components.

1. Introduction

By continuous verification we mean that the identity of the
human operating the computer is continually verified. Ver-
ification is computationally simpler than identification and
attempts to determine how “close” an observation is to a
known value, rather than finding the closest match in a set
of known values. Verification is a realistic operation in the
normal usage of a computer system because we can assume
that the user’s identity has been incontrovertibly established
by a preceding strong authentication mechanism. It is also
appealing because it can conceivably be offloaded to a hard-
ware device that is properly initialized with user specific
data upon successful login.

The sense in which we are using identity verification is

weaker than the ultimate aim of techniques such as intrusion
detection [4] which even attempt to detect misuse by the au-
thorized user who would clearly pass the biometric verifi-
cation test. However, host-based intrusion detection has not
quite been successful in practice, either because of the com-
putational requirements of handling voluminous amounts of
low level trace, or because of the large number of false posi-
tives that result from an attempt to sharply characterize user
behavior based on observed low-level traces. We believe
that continuous verification, if realized efficiently with low
false positives, can be important in high risk environments
where the cost of unauthorized use is high. This can be true
for computer driven airline cockpit control, computers in
banks, defense establishments, and other areas whose use
directly affects the security and safety of human lives.

Biometric verification is appealing because several of
them that are easy to incorporate in ordinary computer use
are passive, and they obviate the need to carry extra de-
vices for authentication. In a sense, they are always on
one’s “person”, and perhaps a little safer than using exter-
nal devices which can be separated from their carrier more
easily. However, biometric verification can be construed
as a matching problem and usually makes a probabilistic
judgment in its classification. This makes it error prone.
Furthermore, when used passively like we are attempting
to do, it can result in time periods with no samples or poor
quality samples; for example, when the user is not looking
directly into the camera, or when the surrounding light is
poor. To avoid both these pitfalls, researchers have used
multiple modalities, say, fingerprint and face images simul-
taneously. This makes classification more robust and is also
the approach that we have taken in this work. Even when
some modalities may be very accurate, they might be in-
herently limited in their sampling rate, so combining them
with faster (albeit less accurate) modalities helps to fill gaps
between successive samples of the better modality. How-
ever, the use of multiple modalities presupposes indepen-
dent sampling so that not all modalities fail to generate a



valid sample at the same time.1

Building an effective reactive biometric verification sys-
tem consists of many aspects. Not only must the verifica-
tion results be integrated into the operating system, it can
be critical to balance several conflicting metrics: namely,
accuracy of detection, system overhead incurred during the
verification, and reaction time i.e., the vulnerability window
within which the system must respond when it detects that
the authorized user is no longer present. This relationship is
especially important when all these aspects are performed in
software on the same machine that is being protected from
unauthorized use.

In the rest of the paper we describe the theoretical under-
pinnings of our multi-modal biometric verification system,
our implementation architecture, the OS kernel changes
needed to make the system reactive to verification failures,
and the performance impact of such a system on ordinary
computer use. The goal is to render a computer system in-
effective within a certain time period of verification failure.
This time should be a conservative estimate of the time it
would take someone to cause information loss (confiden-
tiality, integrity, or availability [11]) on the system.

2. Biometrics in Brief

We begin with a brief introduction of some of the important
concepts in biometrics and verification. Readers familiar
with these concepts may skip ahead; while readers wanting
more details can refer to [5].

2.1. Basic concepts

Biometrics is generally taken to mean the measurement of
some physical characteristic of the human body for the pur-
pose of identifying the person. Common types of biomet-
rics include fingerprint, face image, and iris/retina pattern.
A more inclusive notion of biometrics also includes the be-
havioral characteristics, such as gait, speech pattern, and
keyboard typing dynamics.

When a biometric is used to verify a person, the typi-
cal process is as shown in Figure 1. The user first presents
her biometric (e.g. the thumb) to the sensor device, which
captures it as raw biometric data (for example a fingerprint
image). This data is then preprocessed to reduce noise, en-
hance image contrast, etc. Features are then extracted from
the raw data. In the case of fingerprints, these would typ-
ically be minutiae and bifurcations in the ridge patterns.
These features are then used to match against the corre-
sponding user’s features taken from the database (retrieved
based on the claimed identity of the user). The result of the

1Face and fingerprint may not be totally uncorrelated in that sense.
However, that’s not the thrust of this paper; rather this paper focuses on
integrating multiple biometrics within an OS.
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Figure 1. A typical biometric verification pro-
cess.

match is called a Score, S, typically a real number between
0 and 1, where 0 means “most dissimilar” and 1 means
“most similar”. The final step is to compare S to a pre-
defined thresholdT , and output:
• a decision of “Accept” (when S ≥ T ), meaning the

Verifier considers the user as legitimate, or
• “Reject” (when S < T ), meaning the Verifier thinks

that the user is an imposter.
Some verification systems also output “Unsure”, to indicate
that the sample cannot be reliably classified one way or the
other. In this case, the user may be asked to re-present her
biometric.

Of course, the user’s biometric features must first be en-
tered into the database. This is done in an earlier one-off
phase called enrollment. The process of enrollment is usu-
ally similar, consisting also of biometric data capture, pre-
processing, and feature extraction. However, to increase ro-
bustness, multiple biometric samples are usually acquired
(e.g. multiple images of the same finger), so that the ver-
ifier can “learn” the natural variation present in the user’s
biometric.

How accurate is biometric verification? There are two
types of errors that a Verifier can make: aFalse Accept, or a
False Reject. The False Accept Rate (FAR) is the probability
that the Verifier incorrectly classifies an imposter as a legit-
imate user. This is a security breach. On the other hand, the
False Reject Rate (FRR) is the probability that the Verifier
incorrectly decides that the true user is an imposter. This
is an inconvenience to the user, since she must usually re-
sort to another means of verifying herself. In general, while
a small FRR can be accepted as an inconvenience, a large
FRR value can impact availability and may be construed as
indirectly impacting the security of the system [11].

In an ideal Verifier, both theFAR and FRR are zero. In
practice, there is usually a tradeoff between the FAR and
FRR : a lower rate for one type of error is achievable only
at the expense of a higher rate for the other. This tradeoff
is usually described using the Receiver Operating Charac-
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Figure 2. ROC Curves.

teristic (ROC) Curve (Figure 2), which plots (1 − FRR)
versus FAR. For any given Verifier, one can determine its
ROC simply by varying its decision threshold T , running
the Verifier on test data, and calculating theFAR and FRR
for that value of T . The Ideal Verifier has an inverted-L
shaped ROC curve, while an imperfect Verifier has a curve
lying somewhere between the Ideal curve and the 45◦ line.2

The Power of a Verifier is defined as the area under its ROC
curve, and that is a useful measure of the Verifier’s over-
all accuracy in a way that combines both its FAR and FRR.
The greater the area, the better the Verifier. In general, fin-
gerprint verification is considered morepowerful than face
verification.

When using multiple biometrics, individual classifica-
tion results must be combined into a composite result. Com-
putational overhead related to biometric processing must be
balanced to get the desired tradeoff between usability, secu-
rity and remaining computational power available for useful
work. We describe these issues next.

2.2. Operational issues

¬ Computational overhead. Generally speaking, for all
biometrics there is a tradeoff between computation and the
Verifier’sPower. For biometrics with weaker accuracy (less
Power), multiple samples can often be combined to yield
a more accurate composite assessment for that biometric3.
But this requires more computation for a single assessment
output, and for continuous verification it can add a factor
to the computational load. An effective system must strike

2If a Verifier has an ROC curve below the45◦ line, simply swap its
“Accept” and “Reject” decisions and the ROC curve will move above this
line.

3There are a plethora of techniques of combining them for e.g., using
the sum, product, minimum, median, and maximum rules [6]. Other
researchers have used decision trees and linear-discriminant based methods
[13].

a balance between load and accuracy, especially when all
biometric related computation is done in software on the
same machine that is used for computing needs.

For example, in one set of measurements that we took for
face verification, the CPU needed for our operating environ-
ment was nearly .2s per image, mostly incurred in locating
the face in the whole image. This figure could be reduced
to .1s by employing heuristics such as remembering the lo-
cation of the face in the image, and using that as the starting
point of face detection for the next image. The upshot is that
processing about 10 frames per second would saturate the
CPU. Adding multiple samples to increase accuracy of this
biometric would seriously impact performance (about 10%
for each extra frame rate). The alternative is to combine
face verification with another, different biometric which has
much higher accuracy.

­ Usability versus Security. We consider the FRR of a
biometric system as a measure of the system’s usability,
and its FAR as a measure of its security. With a higher
false reject rate, the verification system deduces more fre-
quently (but incorrectly) that the system is under attack and
reacts by freezing or delaying the currently logged-in user’s
processes. This would unnecessarily delay the user’s time-
to-completion of ordinary tasks and may make the system
frustrating to use. There is evidence that system response
time is correlated to user productivity [7].

False rejects can be reduced by adjusting the decision
threshold T of a biometric Verifier, but with a concomitant
increase in the false accept rate. This could be disastrous
from a security perspective. A usable system must balance
its FAR against its FRR. Using at least one biometric with
high accuracy can sharply distinguish a valid user from an
imposter and can strike a good balance between the two
choices. Higher accuracy can also be achieved at the cost
of more samples but that increases the computational over-
head, which impacts usability.

® Choice of biometrics. For our

Figure 3. Sec-
ureGen mou-
se.

design objective we need biomet-
rics that are both passive and ac-
curate. Passive biometrics do not
require active participation by the
user, (as opposed to active ones,
such as those that use speech) and
therefore do not intrude into the
normal activity of the user by re-
quiring them to periodically per-
form biometric related tasks that
are not part of their normal activ-
ity. Such a requirement can be
distracting and result in low system usability. Recently
available computer peripherals such as the Secugen mouse
[15] incorporates an optical fingerprint scanner at the place
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where a user would normally place their thumb (Figure 3).
This device effectively turns fingerprint, a normally active
biometric, into a passive one. Our other passive biometric is
the face image, which can be acquired at a distance without
the user’s active cooperation.

¯ Using multiple modalities. There is general agreement
in the biometric research community, also supported by the-
ory, see for example [13], that using multiple types (modal-
ities) of biometrics (with an appropriate combination rule)
can yield a higher classification accuracy than using only a
single modality. In the context of our work here, combining
face and fingerprint modalities is useful because there are
frequent situations in which one modality is missing, e.g.
when the user is looking away from the camera, or when the
user is not using the mouse. Finally, attempting to thwart a
multi-modal system is a much harder task than fooling a
single-modality system.

There are two general ways of combining biometric data
samples that are coming from different biometric modalities
at different times [1]:

1. (Time-first) Combining samples of each modality first
across time, and then combining them across modal-
ities. In Figure 4, this scheme would first combine
samples a, b, c (= u) for face, and d, e, f, g (= v) for
fingerprint, then combineu and v.

2. (Modality-first) Combinining across modality first,
then across time. This would first combine samples
in the order a, d at the end of t1, b, e at the end of t2
etc., and then combine across the different times.

Recently we proposed a technique that combines the two
approaches in whatever order the biometric data is made
available [19]. This paper presents performance results us-
ing that technique of multi-modal fusion. The technique is
based on Bayesian probability (see Section 3.3) and models
the computer system as being in one of two states: Safe or
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Figure 5. Integration scheme

Attacked. A Safe state implies that the logged-in user is still
present at the computer console, while Attacked means that
an imposter has taken over control.4 The result of the fusion
is the calculation of Psafe, the probability that the system is
still in the Safe state. This value can then be compared to a
pre-defined thresholdTsafe set by the security administrator,
below which appropriate action may be taken. A key fea-
ture of our method is that we can compute Psafe at any point
in time, whether or not there are biometric observations. In
the absence of observations, there is a built-in mechanism
to decay Psafe reflecting the increasing uncertainty that the
system is still Safe.

In the following section we describe our use of face and
fingerprint biometrics in detail, as well as our technique for
combining them.

3. Multimodal Biometrics

We use two modalities of observations: fingerprint and face
images. The challenge is to integrate these observations
across modality and over time. To do this, we devised the
integration scheme shown in Figure 5. Our system currently
uses the face verifier and a fingerprint verifier; other modal-
ities are possible in the future. Each verifier computes a
score from its input biometric data (fingerprint or face im-
ages), which is then integrated (fused) by the Integrator. In
the following sections, we describe in turn how we com-
pute the score for each modality and how we fuse them into
a single estimate.

3.1. Fingerprint Verifier

We acquire fingerprint images using the SecureGenTM

mouse (Figure 3). The mouse comes with a software de-
velopment kit (SDK) that matches fingerprints, i.e., given
two images, it computes a similarity score between 0 (very

4There is a possible Absent state, to model the situation in which the
user has left the console but has not logged out. Because we are assuming
a high-risk environment, it is justifiable to makeAbsent ≡ Attacked.



dissimilar) and 199 (identical). Unfortunately, the matching
algorithm is proprietary and is not disclosed by the vendor.
Nevertheless, we’ve obtained good results using the score
generated by this algorithm.

First we collect 1000 training fingerprint images from
each of four users. Then, for each user we divide the train-
ing images into two sets: those belonging to the user (intra-
class images), and those belonging to others (inter-class im-
ages). For each set, we calculate the pairwise image sim-
ilarity using the proprietary algorithm, and determine the
histogram of the resulting scores. That is, for each user,
we compute two probability density functions (pdf) – the
intra-class and inter-class pdfs (represented by histograms).
Figure 6(a) shows the pairwise pdfs for a typical user. If we
denote the similarity score by s, the intra-class set by ΩU ,
and the inter-class set by ΩI , then these pdfs are P (s | ΩU )
and P (s | ΩI). Note that the pdfs do not overlap much,
indicating that fingerprint verification is reliable (high veri-
fication accuracy).

Given a new fingerprint image and a claimed identity,
the image is matched against the claimed identity’s tem-
plate (captured at enrollment time) to produce a score s.
From this we compute P (s | ΩU ) and P (s | ΩI). These
values are then used by the Integrator to arrive at the overall
decision. Section 3.3 has more details.

3.2. Face Verification

To train the face Verifier, we first capture500 images of
each of the four users under different head poses using a
Canon VCC4 video camera and applying the Viola-Jones
face detector on the image [18]. About 1200 face images
are also collected of sundry students on campus to model as
imposters. For each user, we construct training images from
two sets: those belonging to the user, and those belonging
to the imposter. All face images are resized to 28 × 35 pix-
els. For each set we calculate the pairwise image distance
using the Lp norm (described below). This constitutes the
biometric feature that we extract from the image and is sim-
ilar to the ARENA method [14]. If we denote the similarity
score by s, the set of legitimate users by ΩU , and the set
of imposters by ΩI , then these pdfs are P (s | ΩU ) and
P (s | ΩI). We can now determine the histogram of the
resulting scores. Figure 6(b) shows a pair of pdfs for one
user.

The Lp norm is defined asLp(a) ≡ (
∑

|ai|
p)

1

p , where
the sum is taken over all pixels of the image a. Thus the dis-
tance between images u and v is Lp(u−v). As in ARENA,
we found that p = 0.5 works better than p = 2 (Euclidean).
Given a new face image and a claimed identity, we compute
the smallest Lp distance between the image and the intra-
class set of the claimed identity. This distance is then used
as a score s to compute P (s | ΩU ) and P (s | ΩI), which in
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turn is used in the holistic fusion step.

3.3. Holistic Fusion

The heart of our technique is in the integration of biometric
observations across modalities and time. This is done using
a Hidden Markov Model (HMM) (Figure 7 (a)), which is
a sequence of states xt that “emit” observations zt (face or
fingerprint), for timet = 1, 2, . . .Each state can assume one
of two values: {Safe, Attacked}. The goal is now to infer
the state from the observations.

Let Zt = {z1, . . . , zt} denote the history of obser-
vations up to time t. From a Bayesian perspective, we
want to determine the state xt that maximizes the poste-
rior probability P (xt | Zt). Our decision is the greater of
P (xt = Safe | Zt) and P (xt = Attacked | Zt). Using a
little algebra, we may write:

P (xt|Zt) ∝ P (zt|xt,Zt−1) · P (xt|Zt−1) (1)

and

P (xt|Zt−1) =
∑

xt−1

P (xt|xt−1,Zt−1)·P (xt−1|Zt−1) (2)

This is a recursive formulation that leads to efficient com-
putation. The base case is P (x0 = Safe) = 1, because
we know that the system is Safe immediately upon suc-
cessful login. Observe that the state variable xt has the ef-
fect of summarizing all previous observations. Because of
our Markov assumptions, we note that P (zt | xt,Zt−1) =



(a)

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

Lp distance (p=0.5)

F
re

q
u

e
n

c
y

Intra class

Inter calss

(b)

Figure 6. (a) Fingerprint intra-class and inter-class histograms for a typical user. (b) Face intra-class
and inter-class histograms for a typical user. There is greater overlap in these histograms than in
fingerprint, indicating that face verification is less reliable than fingerprint verification.

P (zt | xt), and that P (xt | xt−1,Zt−1) = P (xt | xt−1).
Also, P (zt | xt) is determined from the pdf-pair (Fig-
ure 6(b) for face, and an analogous one for fingerprint). As
for P (xt | xt−1), this is described by the state transition
model shown in Figure 7 (b). In the Safe state, the proba-
bility of staying put is p, while the probability of transition
to Attacked is (1− p). Once in the Attacked state, however,
the system remains there and never transitions back to Safe.
Finally, note that Eq. 1 is used to compute Psafe when there
is a biometric observation, while Eq. 2 is used when there
is no observation.

The value of p is governed by domain knowledge: if
there is no observation for a long period of time, we would
like p to be small, indicating that we are less certain that
the user is still safe (and thus more likely to have been at-
tacked). To achieve this effect, we definep = ek∆t, where
∆t is the time interval between the current time and the last
observation, and k is a free parameter that controls the rate
of decay, which the security administrator can define. In
general, any decay function may be used to specify p, with
a suitable rate of decay.

4. Integrating biometric feedback into the OS

Having considered some issues in the use of biometrics for
security, we now consider design issues relating to its in-
tegration into the operating system to make the whole sys-
tem reactive. We consider two mechanisms for reaction:
delaying processes when Psafe < Tsafe, or suspending them
entirely, as in Somayaji’s work [16].

Our model of protection is intended for single computer
use to which users login through a bitmapped display (usu-
ally the console) that is directly connected to it. We also

assume that biometric sensors feed data directly to the com-
puter thereby insuring the integrity of both capturing and
forwarding of the data for processing. Our current design
affords continuous authentication protection to the “interac-
tive” processes started by the user after logging in. This al-
lows processes started upon system boot to be exempt from
monitoring, and for privileged processes started after user
login (such as executing setuid programs) to remain within
the purview of continuous authentication.

We consider the following design choices.

¬ Identifying interactive sessions. For us, an interac-
tive session consists of all processes derived from the ini-
tial console login. In Unix-based operating systems, there
is usually a focal point in the form of a display manager
(akin to getty), such as the KDE kdm program, that col-
lects the user name and password for authentication before
starting the user’s X session. By tagging this process and
every process derived from it through a fork()-like inheri-
tance mechanism, we can tag all processes belonging to a
session.

However, it is possible for the same user to login more
than once (at different times, therefore different sessions)
and still have processes from an earlier session running, so
we must decide whether later logins also authenticate pro-
cesses started in earlier interactive sessions, or whether each
login session is considered as distinct. The former choice
can be easily implemented by using a user id-based mech-
anism for process monitoring. In such a mechanism, only
a process’s uid field is examined to determine whether it
is subject to continuous authentication. This would necessi-
tate that the same uid not be used for both login sessions and
for doing background activity because user logout would re-
sult in delaying or freezing such processes. An example of



a useful service that would be impacted is the use of cron
and at job processing which may happen at any time, even
when the user is not currently logged in.

A more general approach would be to identify the entire
process tree derived from the initial display manager as be-
longing to a session. This would enable daemons such as
cron and at to work without being subjected to continuous
authentication.

­ When to enforce verification on processes. A simple
way to implement this is to make the check upon system call
entry. However, for compute bound tasks that do not make
frequent system calls, it might be better to also check them
before starting their time slice. It is not immediately clear
whether the latter mechanism would be useful in practice,
and that the former would not suffice.

® Policies for controlling the monitored processes.
How should we penalize processes when Psafe<Tsafe? Do
we delay or freeze a process, and if we delay it, for how
long? Freezing a process may be considered as the extreme
form of penalty. In some sense, the penalty charged to a pro-
cess should depend on the “severity” of the action i.e., the
potential damage that can result if the action was permitted.
The study of Bernaschi et. al [2] is useful in that determina-
tion at the syscall level. They divide the Linux 2.2 system
call set into four threat levels with level one being the most
critical and level four being harmless. One possibility is to
use their classification to assign penalty to a system call.
Our implementation (Section 5) provides a mechanism that
permits this specification for individual system calls.

For non critical actions, we could delay processes. The
delay added to a system call ought to be a (inverse) func-
tion of the probability that the correct user is present at the
console. But this number is readily available: we can sim-
ply treat the Score S (see Section 2.1) as the required prob-
ability. Recall that in making a verification decision, the
Score S is compared against the threshold T (in our case,
S =Psafe, T =Tsafe). We can turn this into a formula for
calculating delay:

δ(S) =

{

0, S ≥ T

e(
1

S
−

1

T ) − 1, S < T

where e is the exponential function. δ imposes exponential
delay on the calling process as the probability of classifica-
tion is further away from the decision threshold T . Different
functions will result in different tradeoffs between security
and usability. A function that changes more rapidly as a
function of (T − S) will provide better security but likely
be less usable because FRR errors (incorrect classifications)
will impose heavy delays on processes.

In general, it is conceivable that process penalty is not
just a function of the system call but is rather a more general
function of the state of the system, the state and history of

the calling process, and the arguments of the system call.
Prior work on sandboxing, for example, that of Niels Provos
[12] is work in that direction. For our purpose, however,
the simpler mechanism of delaying or freezing processes at
system call entry suffices.

5. Implementation Architecture

Figure 8 depicts the various elements of our implementa-
tion and how they are integrated into the operating system.
We have implemented this architecture on the Linux 2.4.26
kernel [17] with the KDE graphical environment running on
the Redhat 9.0 distribution. For face image capture, we use
the Euresys Picolo capture card and the Canon VCC4 cam-
era. The captured images have a resolution of 768 × 576
pixels and are 24-bit deep. The fingerprint images are cap-
tured using the Secugen OptiMouse III. All experiments
were performed on an Intel Pentium 2.4 Ghz machine with
512MB RAM. The details of the various elements of the ar-
chitecture are described below under task-related groupings
for ease of understanding.

¬ Starting continuous verification. When a user logs in
at the console using the kdm session manager [3], kdm au-
thenticates the user using a password. Additionally, it starts
the face and fingerprint verifiers and initializes themonitor
with the user-id of the user that has logged in. We achieve
this non-invasively by using PAM [10] to realize the side
effect. To do this we added an entry in /etc/pam.d/kde of
the form

session optional pam_contauth.so

which is invoked during the kdm execution. kdm, being
PAM aware, calls the PAM login authentication routine.
This results in calling pam_contauth which starts the f-
ace, fingerprint and monitor components of Figure 8, and
sets the session number of the kdm process to be the value
of a kernel maintained integer ca_global_session. This is
done through a newly added system call. A “session” con-
ceptualizes an interactive login session, and in order to tag
all the processes started by the user in a given session, we
maintain an integer variable in every process’s task_struct
that denotes its session. Because all the components of the
K Desktop Environment are forked off kdm, the value of
this variable is automatically inherited across process forks
and remains intact across execs. The ca_global_sessio-
n is a counter in the kernel that is incremented after every
successful kdm login.

Once the monitor has the user-id of the logged in user, it
loads the biometric profile(the biometric features to be used
for verification) corresponding to the user and starts biomet-
ric data capture using the video and fingerprint boxes in
Figure 8. The arrows in the diagram denote the direction of
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Figure 8. Architecture of a face verification system integrated with the operating system.

data flow. The monitor is the central coordinating entity in
the architecture that performs the following tasks:

1. it controls the rate at which biometric data is cap-
tured by querying each biometric device and runs
the modality-specific verifier for that sample (Section
3.2).

2. it combines the verification results from different
modalities obtained at different times into Psafe, the
probability that the computer system is still Safe (Sec-
tion 3.3).

3. it periodically communicates Psafe (indirectly, it actu-
ally computes and communicates the delay value in
jiffies5) to the kernel so that the kernel can appropri-
ately freeze or delay processes.

­ Controlling processes. To support the controlling of
processes, we modified the Linux kernel as depicted in Fig-
ure 8. When a user process makes a system call, it traps
into the OS kernel and eventually executes the code that
implements the system call [8]. We introduced control pro-
cessing just before the system call is dispatched. To do this,
we add a kernel global variable (contauth_cb), which is
a function pointer to code that implements the processing.
This allows the processing code to be dynamically added to
a running kernel and also serves to localize kernel changes.
This function is invoked for every process on every system
call.

The total change in the Linux kernel amounts to three
lines of assembly code in arch/i386/kernel/entry.S, about

5A unit of kernel time used by many kernel functions in the Linux op-
erating system.

100 lines in a newly added C filecontauth.c and miscel-
laneous code including adding system calls to get and set
the kernel variable ca_global_session, and to set a pro-
cess’s session_id adding to another 50 lines. Currently we
have only one callback point in the kernel and that is where
a system call is dispatched. In the future we will proba-
bly add more callback points in the kernel for finer process
control, for example at the point where a process is con-
text switched. The performance impact of this change is
described in our micro benchmarks in Section 6.1.

The overall pseudo code of the kernel control processing
is as follows.

1 double x = current_biometric_classification;
2 boolean below_thresh = (x < threshold);
3

4 if(current->ca_sessid == 0)
5 do_nothing;
6 else if(current->ca_sessid == ca_global_session)
7 {
8 if(syscall is critical && below_thresh)
9 freeze yourself;

10 else if(syscall is !critical && below_thresh)
11 delay yourself by [e(1/S−1/T ) − 1] jiffies
12

13 //!below_thresh ⇒ do_nothing;
14 }
15 else if(current->ca_sessid < ca_global_session)
16 unconditionally freeze yourself;

As used in line 4, each process has a “session id” in its t-
ask_struct denoted by the field ca_sessid. A value of
0 means that the process is not rooted at any interactive
session. Such processes are not controlled in any way as
specified by the action in line5. In the kernel, the variable
ca_global_session identifies the session id of thecurrent



interactive session if it is in progress, or the session id of
the next interactive session if none is in progress. Line 6
tests whether the progress belongs to the current interac-
tive session and if it does, its activity is controlled. Other-
wise, it may belong to a prior interactive session (line 15)
in which case it is frozen. A utility program similar to ps
can conceivably be written that examines every task_stru-
ct and sends a signal to each process whose session id cor-
responds to a prior interactive session. This would clean out
frozen processes belonging to an earlier interactive session
that will never be executed.

Lines 8-11 specify that critical [2] system calls be
frozen, non-critical ones be left free while the remaining
ones be delayed. The delay value is an exponential function
of how far the current probability estimate of user presence
is from some suitable threshold.

(a) Micro benchmarks

Real User Sys
without contauth verification 276 258 16

with contauth verification 346 263 17
Overhead ≈ 25%

(b) Macro benchmarks

Figure 9. Performance benchmarks.

When Psafe exceeds Tsafe, all frozen processes in the cur-
rent interactive session are “unfrozen”, and delayed pro-
cesses are made runnable. This is practically important and
affects system usability because if the user looks away from
the camera and does not have his finger against the mouse,
the system may start delaying his processes. But as soon as

a good sample is obtained, the system ought not to penal-
ize processes that are currently being delayed and wait until
their duration of delay has ended. Because the exponential
function can produce very large delay values as Psafe → 0;
to ensure a rapid recovery once the monitor regains confi-
dence in user presence, the driver issues a wakeup call to
all processes that were delayed.

6. Performance

We describe results of both micro and macro benchmarks.

6.1. Micro benchmarks

To assess the performance impact of our Linux kernel
changes, we ran the lmbench [9] suite to determine the
overhead introduced in the system call path. The results
are shown in Figure 9.

The percent overhead on the y-axis is the percent in-
crease in time for executing a system call with our modifi-
cations for stopping and delaying processes when compared
with a standard 2.4.26 Linux kernel that can be downloaded
from www.kernel.org. The overhead is dependent on the
system call exercised. The overhead is as low as .4% for the
fork+execve combination to a 3.75% overhead for read. We
believe this to be acceptable.

6.2. Macro benchmarks

For macro benchmark tests we assessed the performance
impact on compiling the Linux (2.4.26) kernel. The com-
pilation generates about 1200 object files. We chose the
Linux kernel compilation because it pollutes the cache and
its processor utilization is significant. The face biometric is
sampled twice per second while the fingerprint biometric is
sampled once in two seconds. The numbers in Figure 9 are
averages over three runs. The overhead is about 25% for
our operating environment.

7. Usability

A standard metric for assessing the usability of a biomet-
ric is its FRR. In our system, false rejects result in process
delays, so one way to measure usability is the delay that or-
dinary tasks suffer in their time-to-completion. If the over-
head (reflected as delay) introduced by the normal use of
biometrics is x% (see Section 6), then we are interested in
determining how much further ordinary tasks are delayed
under normal use of the system. We ran some simple op-
erations that ordinary users might perform in their use of a
computer to assess this difference.

1. ls -R /usr/src/linux-2.4.26 results in a “real” time
overhead of 36%, about an 11% increase.



2. ls -R /usr/local results in a “real” time overhead of
37%.

3. grep -R <key> /usr/src/linux-2.4.26 results in a
“real” time overhead of 44%.

All times are averages of 5 runs. So the impact on usability
of using the system in practice is an extra 10-20% degra-
dation. While the biometric verification can conceivably be
offloaded to extra hardware, the delays resulting from FRR
errors cannot.

For our operating environment, our security goals seem
to be met although that is a qualitative judgment at this
point. We have tried to switch users suddenly and execute
rm /tmp/foo, but the system freezes before the command
is fully typed. A caveat is that key strokes by the imposter
may not be delivered to the application (shell) but only be-
cause it is not executing. When the correct user comes back,
these key strokes would be delivered and damaging action
performed. To be totally secure, the tty/pty driver or the
X server must somehow be made to discard all user input
when a process is delayed or frozen.

8. Conclusion and Future Work

We believe that the reactive system that we set out to build
works reasonably well at this point. Biometric verification
is the main bottleneck in the computation and we are look-
ing into how to offload that into an FPGA-based implemen-
tation. We are also investigating how to derive a mathemat-
ical basis for computing the “sweet spot” of the system that
maximizes a utility function, such as U(u)+S(s) given the
various parameters of the system. u is the raw fractional
delay overhead in using the system and U(·) maps it to a
utility value. Similarly s is a security metric, e.g., the FAR
of the system, and S(·) maps it to a utility value. u and s

in turn are functions of the biometric modalities, their ROC
curves, the number of samples used for each biometric de-
cision, and the multi-modality fusion method.

The thrust of this paper is less towards biometrics per se,
although our multi-modal combination technique is new;
rather it is about how to integrate biometrics as a useful
general abstraction into the operating system so that all pro-
cesses can gain from it, with the aim of enhancing the se-
curity of the system. Now that newer biometric devices are
commonly appearing that can permit passive biometrics to
be integrated into normal computer use, such abstractions
can be useful to investigate at a lower layer so that computer
response can be provided in a more general and encompass-
ing manner.
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