
Java for Mobile Devices: A Security Study

Mourad debbabi, Mohamed Saleh, Chamseddine Talhi and Sami Zhioua
Computer Security Laboratory

Concordia Institute for Information Systems Engineering
Concordia University, Montreal, Canada

{debbabi, msaleh, talhi, zhioua}@ciise.concordia.ca

Abstract

Java 2 Micro-Edition Connected Limited Device Con-
figuration (J2ME CLDC) is the platform of choice when
it comes to running mobile applications on resource-
constrained devices (cell phones, set-top boxes, etc.). The
large deployment of this platform makes it a target for se-
curity attacks. The intent of this paper is twofold: First,
we study the security architecture of J2ME CLDC. Second,
we provide a vulnerability analysis of this Java platform.
The analyzed components are: Virtual machine, CLDC API
and MIDP (Mobile Information Device Profile) API. The
analysis covers the specifications, the reference implemen-
tation (RI) as well as several other widely-deployed imple-
mentations of this platform. The aspects targeted by this
security analysis encompass: Networking, record manage-
ment system, virtual machine, multi-threading and digital
right management. This work identifies security weaknesses
in J2ME CLDC that may represent sources of security ex-
ploits. Moreover, the results reported in this paper are valu-
able for any attempt to test or harden the security of this
platform.

1 Introduction

With the proliferation of mobile, wireless and internet-
enabled devices (e.g. PDAs, cell phones, pagers, etc.), Java
is emerging as a standard execution environment due to
its security, portability, mobility and network support fea-
tures. The platform of choice in this setting is J2ME CLDC
[14, 20]. It is an enabling technology for a plethora of
services and applications: games, messaging, presence and
availability, web-services, mobile commerce, etc.

This platform has been deployed now by more than
20 telecommunication operators. The total number of de-
ployed Java mobile devices in the market exceeds 250 mil-
lion units worldwide. According to IDC, a prestigious mar-
ket research firm, there will be more than 1.2 billion de-
ployed Java-based mobile devices by 2006.

The typical most widely deployed J2ME CLDC plat-

form consists of several components that can be classi-
fied into virtual machine, APIs and tools. The virtual ma-
chine is the KVM [15, 21]. The APIs are CLDC [14]
and MIDP[18, 20]. The tools are the pre-verifier and the
Java Code Compacter (JCC). KVM (Kilobyte Virtual Ma-
chine) is an implementation of the Java Virtual Machine
(JVM) [9]. It lies on top of the host operating system and
its main goal is to execute compiled program units (class
files). CLDC provides the most basic set of libraries and
virtual-machine features for resource-constrained, network-
connected devices. MIDP is a layer on top of CLDC con-
figuration. It extends the latter with more specific capa-
bilities, namely, networking, graphics, security, application
management, and persistent storage. The preverifier checks
all the Java classes to enforce object, stack and control-flow
safety. This is done off-line and the result is stored as at-
tributes in the compiled program units. The Java code com-
pactor (JCC) is in charge of the romizing process. The latter
is a feature of KVM that allows to load and link Java classes
at startup. The idea is to link these classes off-line, then cre-
ate an image of these classes in a file and finally to link the
image with KVM.

With the large number of applications that could be avail-
able for Java-enabled devices, security is of paramount im-
portance. Applications can handle user-sensitive data such
as phonebook data or bank account information. Moreover,
Java-enabled devices support networking, which means that
applications can also create network connections and send
or receive data. Security in all of these cases should be a
major concern. Malicious code has caused a lot of harm
in the computer world, and with phones having the ability
to download and run applications there is an actual risk of
facing this same threat. Currently, viruses for phones start
to emerge (e.g. Cabir), a number of model specific attacks
has been reported (e.g Nokia 6210 DoS, Siemens S55 SMS,
etc.), and mobile attacks and exploits are starting to get at-
tention in the hacker community (e.g. www.defcon.org).

This paper represents a careful study of J2ME CLDC
security aspects with the purpose of providing a security
evaluation for this Java platform. In this regard, we fol-
lowed two main paths. One is related to the specifications



and the other to implementations. In the case of the spec-
ifications, we intend to provide a comprehensive study of
the J2ME CLDC security architecture, pointing out possi-
ble shortcomings and aspects open for improvement. As
for implementations, our aim is to look into several imple-
mentations of the platform like Sun’s Reference Implemen-
tation (RI), phone emulators, and actual phones. This is
carried out with the purpose of analyzing code vulnerabil-
ities leading to security holes. The usefulness of such an
investigation is to find out areas of common vulnerabilities
and relate them either to the specifications or to common
programming mistakes.

By identifying weaknesses that may represents sources
of security breaches, our security evaluation gives a start
point to a process that aims to improve the security of J2ME
CLDC. This paper is organized into four sections beginning
with the introduction. In section 2, we present the main
security architecture of J2ME CLDC. In section 3, we list
the results of the vulnerability analysis by starting with the
previously reported flaws. Finally, section 4 concludes the
paper.

2 J2ME CLDC Security Architecture

The high-level J2ME CLDC architecture defines 3 layers
on top of the device’s operating system (Figure 1): Thevir-
tual machine(KVM) [12], the Configuration(CLDC) which
is a minimal set of class libraries that provide the basic func-
tionalities for a particular range of devices, and theProfile
(MIDP) which is an extension of theConfigurationthat ad-
dresses the specific demands of a device family. At the im-
plementation level, MIDP also consists of a set of Applica-
tion Program Interfaces (APIs). J2ME CLDC platform can
be further extended by combining various optional pack-
ages with the configurations and the associated profiles.

Applications developed for the J2ME CLDC platform
are calledMIDlets. They are downloaded to the device in
the form of two files: the Java Archive (JAR), and the Java
Application Descriptor (JAD). The JAR is an archive file
that contains the following files: TheJAR manifest, class
files, and supporting files. The JAR manifest is a text file
that contains various attributes like the MIDlet name and
the vendor name. Class files are the preverified classes, and
supporting files could be graphic files for instance.

One JAR file can contain more than one MIDlet and the
set of MIDlets in a JAR file is calledMIDlet suite.
The JAD on the other hand, is a text file that contains
several attributes like the MIDlet name and MIDP version
needed to run the MIDlet. Some of these attributes are
mandatory while others are optional. The software entity
on the device that is responsible for MIDlet management
such as downloading, installing, running, etc. is called the
Application Management System (AMS), or the
Java Application Manager (JAM).

When presenting the security architecture of J2ME
CLDC, we make distinction between CLDC and MIDP. The

Profile


Configuration


Virtual Machine


Host Operating System


Figure 1. High-Level J2ME CLDC Architecture

reason behind this distinction is that security concerns are
distributed between the two. The security of J2ME CLDC
platform can be categorized intolow-levelsecurity,appli-
cationsecurity, andend-to-endsecurity:

• Low-levelsecurity deals with safety issues related to
the virtual machine. In general, the role of the low-
level security mechanisms is to ensure that class files
loaded into the virtual machine do not execute in any
way that is not allowed by the Java virtual machine
specification [12].

• By application-levelsecurity, we mean that “Java ap-
plication can access only those libraries, system re-
sources and other components that the device and the
Java application environment allows it to access” [14].

• End-to-endsecurity has a larger scope involving se-
cure networking. The main objective ofend-to-endse-
curity is to ensure safe delivery of data and code be-
tween server machines and client devices.

In J2ME CLDC platform, low-level and application se-
curity are addressed in CLDC, while MIDP addressesap-
plicationandend-to-endsecurity.

2.1 CLDC Security

To understand the security model of CLDC, it is im-
portant to notice that the security of CLDC is affected by
the absence of some general Java features - that are usually
present in Java platforms - and that have been dropped be-
cause of performance and security issues. Those dropped
Java features are the following:

• No Java Native Interface (JNI): Mainly for security
and performance reasons, JNI [11] is not implemented
in CLDC. Although, a Kilo Native Interface (KNI)
[25] is provided for J2ME CLDC, KNI has not the abil-
ity to dynamically load and call arbitrary native func-
tions from Java programs (which could pose signifi-
cant security problems in the absence of the full Java 2
security model).



• No user-defined class loaders: Mainly for security rea-
sons, the class loader in CLDC is a built-in “bootstrap”
class loader that cannot be overridden, replaced, or re-
configured. The elimination of user-defined class load-
ers is part of the “Sandbox” security model restrictions.

• No thread groups or daemon threads: While support-
ing multithreading, CLDC has no support for thread
groups or daemon threads.

• No support for reflection: No reflection features are
supported, and therefore there is no support for remote
method invocation (RMI) or object serialization.

2.1.1 Low-Level Security

Low level security in CLDC is mainly based on type safety
mechanisms. The class file verifier is the module in charge
of type safety checking. The class file verifier ensures that
the bytecodes and other items stored in class files cannot
contain illegal instructions, cannot be executed in an ille-
gal order, and cannot contain references to invalid memory
locations or memory areas that are outside the Java object
memory (the object heap) [14].

Since conventional class file verification is too demand-
ing for resource-constrained devices, class files are firstpre-
verifiedon the development platform before being saved on
the device. The verifier performs only a linear scan of the
bytecode, without the need of a costly iterative dataflow al-
gorithm like the one used by the conventional verifier. The
details of the J2ME CLDC verification process can be found
in [5].

2.1.2 Application-level Security

The CLDC application security is mainly ensured by adopt-
ing asandbox model, by protecting system classes, and by
restricting dynamic class loading:

• Sandbox Model: In the CLDC Sandbox model, an ap-
plication must run in a closed environment in which
the application can access only those libraries that have
been defined by the configuration, profiles, and other
classes supported by the device. More specifically, the
CLDC sandbox model requires that:

1. Java class files are properly verified and are valid
Java classes.

2. Only a closed predefined set of Java APIs is avail-
able to the application programmer, as defined
by CLDC, profiles and manufacturer-specific
classes.

3. Downloading, installing, and managing MIDlets
on the devices takes place at the native level in-
side the virtual machine. Therefore, the appli-
cation programmer cannot modify or bypass the
standard class loading mechanisms of the virtual
machine.

4. The set of functions accessible to the virtual ma-
chine is closed. Thus, developers cannot down-
load any new libraries containing native func-
tionality or access any native functions that are
not part of the Java libraries provided by CLDC,
MIDP, or the manufacturer.

• Protecting System Classes: In CLDC, the applica-
tion programmer cannot override, modify, or add any
classes to the protected system packages, i.e. pack-
ages belonging to configuration, profile, or manufac-
turer. Thus, the system classes are protected from the
downloaded applications. Also, the application pro-
grammer is not able to manipulate the class file lookup
order in any way.

• Restrictions on dynamic class loading: One important
restriction is made on dynamically loading class files:
a Java application can load application classes only
from its own Java Archive (JAR) file. This restriction
ensures that:

1. Java applications on a device cannot interfere
with each other or steal data from each other.

2. Third-party applications cannot gain access to
the private or protected components of the Java
classes that the device manufacturer or a service
provider may have provided as part of the system
applications.

2.2 MIDP Security

In the following, we present the security architecture of
MIDP 1.0 and MIDP 2.0. Although, security models in
both MIDP 1.0 and MIDP 2.0 are limited security models
(compared to J2SE/EE), MIDP 2.0 provides more security
mechanisms than those provided by MIDP 1.0. MIDP 2.0
exposes to MIDlets more capabilities of the device, and pro-
vides the security mechanisms needed to control the use of
these capabilities.

2.2.1 MIDP 1.0 Security

Application security in MIDP 1.0 is based on the Java sand-
box model. The sandbox security model provided by MIDP
1.0 (and CLDC) is different from the conventional Java
sandbox model. In fact, noSecurity Managernor Security
Policies(as for J2SE/EE) are used for access control.

It is also important to note that in MIDP 1.0, MIDlet
suites are allowed to save data in persistent storage files
(called record stores). However, sharing record stores be-
tween MIDlet suites is not allowed, which means that a
MIDlet has no way to access a record store belonging to
another MIDlet. This offers a good protection of MIDlet
persistent storage.

With respect to end-to-end security, MIDP 1.0 specifica-
tion does not include any cryptographic functionality. The



only network protocol provided in MIDP 1.0 is the HTTP
protocol. MIDlet suites are usually downloaded from the
Internet to the device without almost any protection using
HTTP or WAP. The HTTP Basic Authentication Scheme
is the only mandatory security mechanism, which is not a
strong security mechanism. Since MIDlets in MIDP 1.0
cannot be signed, the integrity or authenticity of down-
loaded applications cannot be verified.

2.2.2 MIDP 2.0 Security

The difference between MIDP 1.0 security and MIDP 2.0
security is that, in MIDP 2.0, accessing sensitive resources
(APIs and functions) is not totally prohibited. Instead,
MIDP 2.0 controls access to protected APIs by granting
permissions to protection domains and binding each MIDlet
on the device to one protection domain. Thus one MIDlet
will be granted all permissions provided to the protection
domain that has been bound to it. A MIDlet is bound to
one protection domain according to a well defined proce-
dure that allows the AMS to authenticate the origin of a
MIDlet and identify the protection domain to be bound to
this MIDlet. If one MIDlet can be authenticated, then it is
qualified astrusted, otherwise, it will be qualified asun-
trusted. MIDP 2.0 introduces the ability to share record
stores between MIDlet suites. The protection of record
stores is discussed later in this section. An important dif-
ference between the security of MIDP 1.0 and MIDP 2.0
is that MIDP 2.0 provides end-to-end security by allowing
secure networking using HTTPS protocol.
• Sensitive APIs

IN MIDP 2.0, some capabilities of the device are ex-
posed to MIDlets and are protected by permissions. Thus
a set of APIs are defined to be used as interface between
MIDlets and the exposed capabilities of the device. The set
of these APIs is identified assensitive. The sensitive APIs in
MIDP 2.0 are the ones related to networking in addition to
the PushRegistryclass that allows for autimatic launching
of MIDlets.
• Permissions and Protection Domains

Access to sensitive APIs is protected by permissions. A
protection domain defines a set of permissions, and for each
permission, the protection domain defines the level of ac-
cess to the API protected by the permission. The level of
access can be eitherAllowedor User. The “Allowed” per-
mission means that the MIDlet can access the sensitive API
directly, whereas the “User” permission means that the user
has to approve this access. This can be with one of the fol-
lowing interaction mode [18]:

• BlanketThe permission is valid for every invocation of
the protected API until the MIDlet suite is uninstalled
or the permission is changed by the user.

• Session:The permission is valid during one execu-
tion of the MIDlet (any MIDlet in the MIDlet suite).
For each execution of the MIDlet, the user must be

prompted on or before the first invocation of the pro-
tected API.

• Oneshot:The user must be prompted for each invoca-
tion of the protected API.

In [26] which is an addendum to the MIDP 2.0 specifica-
tion, protection domains are categorized into four classes,
namely,Manufacturer,Operator,Trusted third party, and
Untrusteddomain.
• Granting permissions to MIDlets

A MIDlet suite (each MIDlet in the MIDlet suite) is
granted permissions by applying the following principles:

• Each MIDlet suite is bound to a protection domain.
This association depends on the degree of trust the de-
vice has for the MIDlet suite. A MIDlet suite can be
eithertrustedor untrusted. AnuntrustedMIDlet suite
is one for which the origin and the integrity of its JAR
file cannot be reliably determined by the device. MI-
Dlet suites compliant with MIDP 1.0 are considered as
untrustedin MIDP 2.0. A trustedMIDlet suite is one
for which the device can authenticate the origin and
verify that the JAR file has not been tampered with.

• A MIDlet suite can require a set of permissions by list-
ing them in two attributes of the JAD file:

1. The MIDlet-Permissions attribute lists
permissions that are vital (critical) to the execu-
tion of the MIDlet.

2. The MIDlet-Permissions-Opt attribute
lists permissions that may be needed during the
execution but the MIDlet can still run if those
permissions are not granted to it (non-critical).

The presence of these two attributes in the JAD file
allows the AMS to verify that the associated MIDlet
suite is suitable for the device before loading the full
JAR file.

• If the MIDlet-Permissions attribute is defined
and the corresponding permissions set is CP, then the
set of permissions granted to the MIDlet suite is equal
to CP if CP is included in the permissions set granted
to the protection domain.

• If the MIDlet-Permissions attribute is not de-
fined, then the set of permissions granted to the MI-
Dlet suite is equal to the set of permissions granted to
the protection domain.

• Trusting MIDlet Suites
The procedure for determining whether a MIDlet suite is

trusted or untrusted is device-specific. Some devices might
trust only MIDlet suites obtained from certain servers.
Other devices might support only untrusted MIDlet suites.



Others authenticate MIDlet suites using the Public Key In-
frastructure (PKI).
• Persistent Storage Security

In MIDP 2.0 a MIDlet suite can save data in a persistent
storage area. The storage unit in J2ME CLDC is therecord
store. Each MIDlet suite can have one or more record
stores, these are stored on the persistent storage of the de-
vice. Record stores are identified by a unique full name,
which is a concatenation of the vendor name, the MIDlet
suite name, and the record store name. Within the same MI-
Dlet, two record stores can not have the same name. How-
ever, if they belong to two different MIDlet suites, they can
have the same name since their full names will be unique.
The actual structure of the record store on the device stor-
age consists of a header and a body. The header contains
information about the record store while the body consists
of a number of byte arrays called records, these contain the
actual data to be stored. The part of the Java platform re-
sponsible for manipulating the storage is called the Record
Management System (RMS).

For MIDP 1.0, record stores were not allowed to be
shared among MIDlet suites. In MIDP 2.0, sharing of
record stores is allowed; the MIDlet suite that created the
record store can choose to make it shared or not. More-
over, the sharing mode can be set toread-only or
read/write. Sharing information is stored in the header
of each record store, and the default mode of sharing is pri-
vate (no sharing).
• End-to-end Security

MIDP 2.0 specification mandates that HTTPS be
implemented to allow secure connection with remote sites.
HTTPS implementations must provide server authentica-
tion. The Certificate authorities present in the device are
used to authenticate sites by verifying certificate chain
provided by a server.

3 Vulnerability Analysis

In this section, we present our vulnerability analysis of
the J2ME CLDC security. We start by listing the most im-
portant previously reported flaws. After that, we present
the vulnerabilities discovered by our team using mainly two
principle tools. The first relies on inspecting the reference
implementation source code, looking for possible security
related flaws. The second consisted of executing black
box tests on the code (using phone emulators and actual
phones), with the purpose of finding possible attacks on the
platform.

3.1 Previously Reported Flaws

Few security flaws about J2ME CLDC have been re-
ported. The most serious one is the Siemens S55 SMS flaw.
Besides, several problems about the Sun’s MIDP RI have
been reported.

3.1.1 Siemens S55 SMS

In late 2003, the Phenoelit hackers group [19] has discov-
ered that the Siemens S55 phone has a vulnerability that
makes the device send SMS messages without the autho-
rization of the user. This attack can be carried out by a
malicious MIDlet that when loaded by the target user, will
send an SMS message from the target user’s system without
asking for permission. This is due to a race condition dur-
ing which the Java code can overlay the normal permission
request with an arbitrary screen display.

3.1.2 Problems on Sun’s MIDP RI

The Bug Database of Sun Microsystems contains hundreds
of problems about J2ME CLDC. However, few are related
to security. In the following we describe the problems that
we deem relevant from the security standpoint.

Permissions are necessary needed to establish a socket
connection (socket://hostname:portnumber).
But if one runs the RI on PC whereportnumber is
already occupied, the application does not check for
permission [24]. Instead, it throws anIOException.
This is not correct because there is no need to access
native sockets if application has not enough permissions.
We investigated this problem on MIDP 2.0 RI and it
generated a ConnectionNotFoundException which means
that permission checking were bypassed.

A problem has been reported on RSA algorithm imple-
mentation claiming that the big number division function
checks the numerator instead of the divisor for zero [23].
On the available MIDP 2.0 RI, we could not check this prob-
lem because the RSA algorithm implementation is provided
only in object files.

The return value ofmidpInitializeMemory()
method called inmain() is never checked [22]. When
memory allocation fails, system will crash without any way
to figure out the reason of that crash.

In the sequel, we present the approach we followed to
discover vulnerabilities in J2ME CLDC, then we list the
vulnerabilities we were able to find. They are organized
according to the components in which they were discovered
(e.g. storage system, KVM, etc.).

3.2 Our Approach

Efforts in software security analysis, (i.e., developing
techniques to assess security of software and to avoid se-
curity flaws) fall into: Vulnerability analysis, static code
analysis, security testing, formal verification, and security
evaluation standard methodologies. Vulnerability analysis
mainly refers to efforts directed towards classification of se-
curity bugs. A good example for this is the work done by
Krsul [10] and Bishop [1]. The ultimate goal is to develop
tools that would detect vulnerabilities in software based on



the characteristics of the various “types” of vulnerabilities.
The term “vulnerability analysis” is also sometimes used
meaning the analysis of a software system (using various
techniques) to detect security flaws.

Static code analysis can be used to find security-related
errors. Several methods exist that could be manual as in
code inspection or automated using tools. The main idea
is to look for coding errors based on a compiled list of
common security-related errors or known unsafe function
calls (e.g., functionstrcpy() in C/C++ is vulnerable to
buffer overflow). In [29], static analysis for Java is pre-
sented together with a tool for the same purpose, whereas
[28] presents a tool for C/C++ code.

In security testing, techniques of property-based testing
[4] are mostly used. Attention is focussed on proving that
the software under test satisfies a certain property extracted
from the specifications. This property could, for instance,
be that users should be authenticated before they are al-
lowed to do any action. In this case, the software entity
responsible for authentication is tested. However, research
in security testing also investigates other techniques such as
in [27], where fault injection and stress testing are consid-
ered. It is important to note here that also formal verification
methods can be used for the verification of security proper-
ties (e.g., using model checking), many examples exist for
security protocols.

Several standard methodologies exist that aim to provide
guidelines for IT systems security evaluators. The idea is to
propose a number of security mechanisms the system can
implement, and a number of checks the system has to go
through to provide a certain level of assurance that the se-
curity mechanisms were correctly implemented. The most
prominent is the Common Criteria (CC) methodology [2]
that was selected as an ISO standard (ISO 15408). It is
meant to be a replacement for some other methods that pre-
ceded it; namely, the Trusted Computer System Evaluation
Criteria (TCSEC), and the Information Technology Security
Evaluation Criteria (ITSEC).

• Our Methodology The methodology used to do the vul-
nerability analysis is depicted in Figure 2 and consists of the
following five phases:

• Phase 1: Study of platform components.

• Phase 2: Reverse engineering.

• Phase 3: Static code analysis.

• Phase 4: Security testing.

• Phase 5: Risk analysis.

We explain hereafter the details of each phase of this
methodology.

Phase 1aims to identify the major system software
components. We consider those component APIs that are

recommended as mandatory in the latest revision of the
Java Technology for the Wireless Industry (JTWI) i.e., JSR
185. Besides KVM, the mandatory components are CLDC,
MIDP and Wireless Messaging API (WMA). Available
specification documents from the Java Community Process
(JCP) and related publications are studied.

Phase 2aims to reverse engineer the platform. The ana-
lyzed source code is that of Sun’s reference implementation
(RI) for KVM, CLDC, MIDP, and WMA. The languages
used in the RI are C (for KVM and CLDC), and Java (for
CLDC, MIDP and WMA). In order to achieve a better un-
derstanding of the code, we resort to reverse engineering
tools (e.g., Understand for C++, Understand for Java, and
Rational Rose). Using these tools, we are able to compute
abstractions and recover the underlying architecture and de-
sign of the platform.

Phase 3aims to carry out a security analysis of the code
for the purpose of discovering vulnerabilities. To this end,
we use two techniques: Security code inspection and auto-
matic security analysis. Security code inspection is carried
out according to the “checklist approach” listed in [3]. For
this purpose, we compile two lists of common security er-
rors; one for Java, and the other for C, to be used as a guide
in the inspection process. The automatic code security anal-
ysis is carried out by tools such as FlawFinder and ITS4
[28] for C, and Jlint [29] for Java. Tools are applied toall
the source files. The result of this phase is a list ofprobable
security flaws. This list is used to feed the next phase.

Phase 4aims to discover more vulnerabilities by means
of security testing. To this end, we design test cases in the
form of security attacks. The design of these attack scenar-
ios is based on: (1) The list of probable weaknesses that
we compiled during code inspection, (2) the known types
of vulnerabilities that are presented in several papers such
as [10] and (3) the security properties that are extracted
from the specification documents according to property-
based testing principles [4]. These test cases are run on:

• Sun’s reference implementation.

• Phone emulators: Sun’s Wireless Tool Kit (WTK),
Siemens, Motorola and Nokia.

• Actual phones: Motorola V600 and Nokia 3600.

To be more focused, each test case is designed to attack a
certain functional component of the system. These compo-
nents are: The virtual machine, the networking components,
the threading system, the storage system (for user data, and
JAR files), and the display.

Phase 5aims to structure the discovered vulnerabili-
ties and assess the underlying risks according to a well-
established and standard framework. The MEHARI method
[13] is used to achieve this objective. The criteria of
MEHARI are used to structure the discovered vulnerabili-
ties into an appropriate classification. Afterwards, the se-
riousness of each vulnerability is assessed based on the



System Components Study

(JTWI Mandatory APIs)


Reverse Engineering


Static Code Analysis


Security Testing


Risk Analysis


Study of Specification Documents


Study of Related Publications


Code Reading for Comprehension


Use of Reverse Engineering Tools


Security Code Inspection


Code Security Analysis Tools


Test Case Generation based on:

List of Flaws, Specifications,


Common Types of Vulnerabilities.


Methodology to Classify

Vulnerabilities and Assess their


Risks (MEHARI)


Imagix, Understand for C++/Java,

Rational Rose, etc.


Compiled List of Security

Vulnerabilities Patterns


FlawFinder, ITS4, Jlint


Figure 2. Methodology to Discover Vulnerabilities

guidelines of the MEHARI risk analysis methodology. As a
downstream result of this phase, a reasonable and efficient
set of security requirements is elaborated in order to harden
the security of J2ME CLDC platform implementations.

The results presented in the following sections are the
ones we obtained from phases 1 to 4.

3.3 Networking Vulnerabilities

3.3.1 MIDP SSL Vulnerability

In order to establish a secure connection with remote sites
(HTTPS), the reference implementation of MIDP uses SSL
v3.0 protocol. The implementation is based on KSSL [7]
from Sun Labs. During the SSL handshake, the protocol
has to generate random values to be used to compute the
master secret. The master secret is then used to generate the
set of symmetric keys for encryption. Hence, generating
random values that are unpredictable is an important secu-
rity aspect of SSL. It is well known that the challenge in
producing good random values is how to update the seed.
The seed is an initial value on which you apply a certain
algorithm in order to generate random values. Generating a
set of random values occurs in the following way: the cur-
rent seed value is used to generate a random value, then, the
seed is updated and a second random value can be generated
and so on. By inspecting the Reference Implementation
of SSL, we noticed that the seed update depends only on
the system time (System.currentTimeMillis). In
order to obtain a concrete proof of this insight, we fixed

the system time value in theupdateSeed method. Then,
by executing the SSL handshake, we noticed that the first
random value generated is always the same. Similarly, the
next random values are perfectly predictable. Hence, in or-
der to obtain the random value generated by the client, all
what the attacker has to do is to guess the precise system
time (in milliseconds) at the moment of the random value
computation. To this end, popular Ethernet sniffing tools
can be used. These tools (e.g. tcpdump) record the pre-
cise time they see each packet. This allows the attacker to
guess a very close interval of the correct system time. At
that moment, it remains to try all possible values in that in-
terval. For example, the attack that was carried out against
the Netscape browser implementation of SSL in 1996 [6]
used sniffing tools to determine the seconds variable of the
system time. Then, to find the microseconds variable, every
possible value of the 1 million possibilities is tried.

3.3.2 Unauthorized SMS Sending Vulnerability

As every security-sensitive API, Wireless Message API (W-
MA), allowing the exchange of SMS messages, requires ap-
propriate permissions to be used. This is due to charges that
may result in the connection. Usually, user permission is
obtained through an on-screen dialog. That is, when a pro-
gram needs to send an SMS message, the device displays a
dialog asking the user whether he accepts to send the SMS
message and hence to assume charges. Consequently, send-
ing an SMS message without the authorization of the user is



considered as a security flaw. As mentioned earlier, the Phe-
noelit hackers group [19] has discovered that the Siemens
S55 phone has a vulnerability that makes the device send
SMS messages without the authorization of the user. The
idea was to fill the screen with different items when the de-
vice is asking the user for SMS permission. In this way,
the user unwittingly will approve sending SMS messages
because he thinks that he is answering a different question.

In order to prove this vulnerability, we developed a MI-
Dlet that tries to take advantage of this flaw. The MIDlet
uses two threads. The first sends an SMS message and the
second fills the screen with other items but without chang-
ing the buttons of the screen. The key point in this attack
is that only the screen is overwritten. The buttons (soft but-
tons) behavior is not changed and it is still about the SMS
message permission. We run the MIDlet on Siemens S55
emulator using Sun One Studio 4. The result was as we
expected: the SMS authorization dialog was obscured by a
different item. This makes the user think that he is answer-
ing an invitation to play a game! Since its publication and
in the few documents where it is published, this flaw was al-
ways bound to Siemens S55 phones. However, nothing was
said about its applicability on other phones. We run the pre-
vious MIDlet on other Siemens phones emulators, namely,
2128, CF62, and MC60. We found that all these phones
are vulnerable to SMS authorization attack. By checking
the APIs of all these phones, we found that the SMS APIs
are almost the same, which explains our findings. Unlike
Siemens phones, Sun RI of MIDP is not vulnerable to this
attack. The reason is that it blocks any modifications to the
screen before an answer is received from the user. Similarly,
Motorola V600 phone is not vulnerable to this attack.

3.4 Storage System Vulnerabilities

3.4.1 Managing the Available Free Persistent Storage
Vulnerability

When a MIDlet needs storing information in the persistent
storage, it can create new records. Since the persistent stor-
age is shared by all Midlets installed on the device, restric-
tions must be made on the amount of storage attributed to
each MIDlet. This is motivated by the fact that embed-
ded devices have limited memory resources. As we can see
from the MIDP specification, there is no restriction on the
size of storage granted to a given MIDlet.

If no restrictions are made on the persistent storage
granted to one MIDlet, we can not prevent any MIDlet from
getting all the available free space on the persistent storage
for its record stores. By allowing this, all other MIDlets will
be prevented from getting additional persistent storage (that
can be vital for their life cycle).

The previous vulnerability was discovered in the MIDP
RI as well as the Wireless Toolkits. However, it was not
present in the real phones we tested (Motorola V600 and
Nokia 3360).

Low level API

Java and Native


code


Developer


e.g. read(), write, ...


Security

checks


Class
 RecordStoreFile


Direct

Access


High level

MIDP API


Class
 RecordStore


Bypass security checks


Device

Hardware


Figure 3. Storage System Vulnerabilities: By-
passing Internal APIs protection.

3.4.2 Unprotected Internal APIs Vulnerability

MIDP APIs were designed in several levels of abstraction
(Figure 3). The highest level contains all what a developer
needs in order to develop MIDlets. The low level APIs are
closer to the device hardware, and therefore are more dif-
ficult to program, but they have more privileges and less
restrictions. This should not affect the system security, pro-
vided that access to these APIs is restricted to the higher
level APIs. In other words, developers should not have ac-
cess to these low level APIs.

In order to exhibit the danger of having the programmer
access to internal APIs, we give the example of deleting a
record store belonging to another MIDlet.

One of the high level APIs in MIDP is the class
RecordStore. It provides the functionalities needed by
the developer to manipulate record stores such as opening,
closing, deleting, etc. This class also checks for access
rights before doing such actions, this is to protect data se-
curity and integrity. For instance no MIDlet is allowed to
delete a record store of another MIDlet. There is another
low level class, which isRecordStoreFile, this class
is closer to the device hardware, it calls native methods and
provides services to theRecordStore class. This class
should not be available for direct use by developers, be-
cause it has more access rights and bypasses the security
checks. In Sun’s RI, this class can be used directly by pro-
grammers, which can compromise data security. We were
able to use this vulnerability to have a MIDlet that deleted
a record store belonging to another MIDlet.

3.4.3 Retrieving and Transferring JAR Files from a
Device

Once a MIDlet is installed on a device the user should be
able to perform two kinds of operations, namely, executing
and uninstalling the MIDlet. If, in addition, the user has the
capability to transfer the MIDlet and make it run on another
device, it becomes a problem for the provider of the MIDlet.
Indeed, this allows for illegal redistribution of MIDlets and



consequently for financial losses. In our experiments, we
succeeded to transfer MIDlets from one device to another.
This was possible thanks to a free software for Series 60
phones [16]. The FExplorer software [8] makes it possible
to navigate through the files and MIDlets installed on the
device just like navigating on a desktop file system. We
installed FExplorer software on Nokia 3600 phone. In order
to transfer MIDlet JAD and JAR files into a second device,
all we had to do is to go to the location where these files are
stored. In Series 60 phones JAD and JAR files are typically
stored in:

\midp\<vendor>\<domain>\<midlet_name>\

directory. For example, in our case JAR and JAD files of
SunSmsAttack MIDlet which is installed on the device
can be found in:

\midp\CSA\untrusted\SunSmsAttack\

directory. Then, all what remains to do is to choose “Op-
tions” and “send via Bluetooth”, “SMS” or “Infrared.” This
operation is also possible in all Series 60 devices. These in-
clude Samsung, Siemens, Panasonic and mainly Nokia de-
vices [16]. Finally, it is important to note that transferring
is not possible for DRM (Digital Right Management) pro-
tected MIDlets (protection should be at least by the forward
lock mode [17]).

3.4.4 Retrieving and Transferring MIDlet Persistent
Data

In addition to JAR and JAD files, using FExplorer software,
it is possible to transfer MIDlet persistent data from a de-
vice to another. Indeed,rms.db file that holds all MIDlet
persistent data is located in the same location as JAD and
JAR files and can be transferred following the same steps.
Moreover, the DRM issue is no more valid forrms.db.
That is, even if the MIDlet is DRM protected therms.db
can be transferred because the DRM protection holds only
for JAR files [17]. This may have a serious impact on the
privacy of the MIDlet since it is possible to tamper with its
persistent data.

3.5 KVM Vulnerabilities

3.5.1 Memory Overflow Vulnerability

Memory overflow is a well-known problem and may result
in many security breaches. A program suffers from memory
overflow vulnerability if, somewhere in the program code, it
allows the copy of data to a memory location without check-
ing the size of the saved data. Thus, memory overflow may
happen if the size of the data to save is greater than the size
of the memory location.

By inspecting the source code of KVM, we identified a
memory overflow vulnerability. The vulnerable code is the
following statement innative.c file:

sprintf(str_buffer," Method %s :: %s
not found", className,

methodName(thisMethod));

sprintf is a C function that does not check the size of
the data to format in a memory location. Thus, the statement
will not check the size of the message that will be formatted
in str buffer. Knowing thatstr buffer is a global
variable declared as:

char str_buffer[512];

In our analysis, we arranged to build a MIDlet that takes
advantage of this vulnerability and make MIDP crash. This
MIDlet is tested for some real phones making MIDP crash.

3.6 Threading System Vulnerabilities

J2ME CLDC supports multithreading, the threading sys-
tem was analyzed and vulnerabilities were discovered.

3.6.1 Threading and Storage System Vulnerability

Although multi-threading is supported, no measures were
taken to synchronize access to the storage system. When
two or more threads attempt to read or write data to/from the
storage system, data integrity can not be guaranteed. Syn-
chronization is left as the programmer’s responsibility. A
malicious MIDlet could make use of this fact to corrupt the
data belonging to another MIDlet (in case of shared data).
Moreover, integrity of the data stored by a MIDlet in its
own storage can be compromised in case of several threads
trying to read and write data.

3.6.2 Threading and Display Vulnerability

The methodsetCurrent of the classDisplay is re-
sponsible for setting the display of a certain MIDlet to a
certainDisplayable object such as aTextBox. For
instance, the code:

Display.getDisplay(this).setCurrent(tb);

will display the TextBox object tb on the device
screen. This method, however, is not synchronized, which
makes it up to the programmer to synchronize the display
for use between different threads. This can cause problems
and unlessall threads use synchronized access to the dis-
play, some threads may not get access to the display.

4 Conclusion and Future Work

In this paper, we presented the security architecture of
J2ME CLDC and provided a vulnerability analysis of this
Java platform. In our analysis, we investigated both, specifi-
cations and implementations (the reference implementation
as well as several other widely-deployed implementations
of this platform). The J2ME CLDC components covered
by the analysis are mainly: Virtual machine, CLDC API
and MIDP API. We performed the vulnerability analysis by
using mainly code inspection and black box testing of the
reference implementation. To have a reliable analysis, we



studied vulnerabilities that are already reported in the liter-
ature. In our study, we investigated the existing implemen-
tations of the platform in order to look for vulnerabilities.
Also, we designed an important set of attack scenarios and
tested the resulting test suite on reference implementation
and actual phone models.

After the study that we carried out, The following two
points were made clear through the analysis of J2ME CLDC
security:

• Serious vulnerabilities exist in the reference imple-
mentation of MIDP 2.0 (e.g. SSL implementation).

• Some phones could be vulnerable to serious secu-
rity attacks like the Siemens SMS attack, while other
phones followed a restrictive approach in implement-
ing the J2ME CLDC platform.

With this study in hand, modifications can be done to im-
prove J2ME CLDC security. The security hardening can be
performed by following two main paths: (1) Fixing the dis-
covered vulnerabilities by suggesting modifications to the
current security architecture, (2) Extending the security ar-
chitecture by new security functions.

References

[1] M. Bishop. Vulnerabilty Analysis. InProceedings of of
the Second International Symposium on Recent Advances in
Intrusion Detection, pages 125–136, Sptember 1999.

[2] C. Criteria. Common Criteria for Information Technology
Security Evaluation (Parts 1, 2 and 3). Technical report, The
Common Criteria Project, August 1999.

[3] A. Dunsmore, M. Roper, and M. Wood. The Development
and Evaluation of Three Diverse Techniques for Object-
Oriented Code Inspection.IEEE transactions on software
engineering, 29(8), 2003.

[4] G. Fink and M. Bishop. Property Based Testing: A New
Approach to Testing for Assurance. InACM SIGSOFT Soft-
ware Engineering Notes, pages 74–80, July 1997.

[5] G. Bracha, T. Lindholm, W. Tao and F. Yellin.
CLDC Byte Code Typechecker Specification.http:
//jcp.org/aboutJava/communityprocess/
final/jsr139/index.html, January 2003.

[6] I. Goldberg and D. Wagner. Randomness and the Netscape
Browser. Dr. Dobb’s Journal of Software Tools, 21(1):66,
68–70, Jan. 1996.

[7] V. Gupta and S. Gupta. KSSL: Experiments in Wireless In-
ternet Security. Technical Report TR-2001-103, Sun Mi-
crosystems, Inc, Santa Clara, California, USA, November
2001.

[8] D. Hugo. FExplorer Web Site. http://users.
skynet.be/domi/fexplorer.htm.

[9] G. S. J. Gosling, B. Joy and G. Bracha.The Java Language
Specification Second Edition. The Java Series. Addison-
Wesley, Boston, Mass., 2000.

[10] I. Krsul. Software Vulnerability Analysis. PhD thesis, Pur-
due University, 1998.

[11] S. Liang. Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley, Reading, MA, USA, 1999.

[12] T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication (Second Edition). Addison Wesley, April 1999.

[13] MEHARI. MEHARI. Technical report, Club de la Securite
des Systemes d’information Francais, August 2000.

[14] S. MicroSystems. Connected, Limited Device Configura-
tion. Specification Version 1.0, Java 2 Platform Micro Edi-
tion. Technical report, Sun MicroSystems, California, USA,
May 2000.

[15] S. MicroSystems. KVM Porting Guide. Technical report,
Sun MicroSystems, California, USA, September 2001.

[16] Nokia. Series 60 Platform.http://www.nokia.com/
nokia/0,8764,46827,00.html.

[17] OMA. Implementation Best Practices for OMA DRM v1.0
Protected MIDlets, May 2004.

[18] J. V. Peursem. JSR 118 Mobile Information Device Profile
2.0, November 2002.

[19] Phenoelit Hackers Group.http://www.phenoelit.
de/, 2003.

[20] R. Riggs, A. Taivalsaari, M. VandenBrink, and J. Holliday.
Programming wireless devices with the Java 2 platform, mi-
cro edition: J2ME Connected Limited Device Configuration
(CLDC), Mobile Information Device Profile (MIDP). Addi-
son-Wesley, Reading, MA, USA, 2001.

[21] T. Sayeed, A. Taivalsaari, and F. Yellin. Inside The K
Virtual Machine.http://java.sun.com/javaone/
javaone2001/pdfs/1113.pdf, Jan 2001.

[22] Bug 4824821: Return value of midpInitializeMemory is not
checked. http://bugs.sun.com/bugdatabase/
view bug.do?bug id=4824821, February 2003.

[23] Bug 4959337: RSA Division by Zero. http:
//bugs.sun.com/bugdatabase/view bug.
do?bug id=4959337, November 2003.

[24] Bug 4802893: RI checks sockets before checking per-
missions. http://bugs.sun.com/bugdatabase/
view bug.do?bug id=4802893, January 2004.

[25] Sun Microsystems. KNI Specification K Native Inter-
face (KNI) 1.0. http://www.carfield.com.hk/
java store/j2me/j2me cldc/doc/kni/html/
index.html, October 2002.

[26] Sun Microsystems. The Recommended Security Policy for
GSM/UMTS Compliant Devices, Addendum to the Mobile
Information Device Profile version 2.0, 2002.

[27] H. H. Thompson, J. A. Whittaker, and F. E. Mottay. Soft-
ware Security Vulnerability Testing in Hostile Environ-
ments. InSAC ’02: Proceedings of the 2002 ACM sym-
posium on Applied computing, pages 260–264, New York,
NY, USA, 2002. ACM Press.

[28] J. Viega, J. Bloch, Y. Kohno, and G. McGraw. ITS4: A Static
Vulnerability Scanner for C and C++ Code. InACSAC 2000,
2000.

[29] J. Viega, G. McGraw, T. Mutdosch, and E. Felten. Statically
Scanning Java Code: Finding Security Vulnerabilties.IEEE
Software, September/October 2000.


