
Code Security Analysis

of a Biometric Authentication System
Using Automated Theorem Provers

Jan Jürjens
Software & Systems Engineering, Dep. of Informatics, TU Munich, Germany

http://www4.in.tum.de/̃ juerjens

Abstract
Understanding the security goals provided
by cryptographic protocol implementations is
known to be difficult, since security require-
ments such as secrecy, integrity and authentic-
ity of data are notoriously hard to establish, es-
pecially in the context of cryptographic interac-
tions. A lot of research has been devoted to de-
veloping formal techniques to analyze abstract
specifications of cryptographic protocols. Less
attention has been paid to the analysis of cryp-
toprotocol implementations, for which a formal
link to specifications is often not available. In
this paper, we apply an approach to determine
security goals provided by a C implementation
to a industrially-strength biometric authentica-
tion system. Our approach is based on control
flow graphs and automated theorem provers for
first-order logic.

1 Introduction

While a significant amount of research has
been directed to develop formal techniques
to analyze abstract specifications of crypto-
graphic protocols, few attempts have been
made to apply the results developed in that
setting to the analysis of cryptoprotocol im-
plementations. Even if specifications exist for
these implementations, and even if these had
been analyzed formally, there is usually no
guarantee that the implementation actually
conforms to the specification. An example for a
protocol whose design had been formally veri-
fied for security and whose implementation was
later found to contain a weakness with respect
to its use of cryptographic algorithms can be

found in [RS98]. Even in software projects
where specification techniques are used, often
changes in the code that become necessary dur-
ing the implementation phase because of dy-
namically changing requirements are not re-
flected in the specifications. In this paper, we
therefore propose an approach to determine se-
curity goals provided by a protocol implemen-
tation on the source-code level.

Our approach uses automated theorem
provers (ATPs) for first-order logic. These are
not only automatic, but also quite efficient and
powerful, because of the efficient proof pro-
cedures implemented in these tools and be-
cause security requirements can be formalized
straightforwardly in first-order logic (FOL).
The C code gives rise to a control flow graph in
which the cryptographic operations are repre-
sented as abstract functions. The control flow
graph is translated to formulas in first-order
logic with equality. Together with a logical for-
malization of the security requirements, they
are then given as input into any ATP (such
as e-SETHEO [SW00]) supporting the TPTP
input notation, which is a standard input nota-
tion for automated theorem provers (ATPs). If
the analysis reveals that there could be an at-
tack against the protocol, an attack generation
script written in Prolog is generated from the
C code. A tool for our approach is available
over a web-interface and as open-source [sec].

The contribution of the current paper
consists in applying our approach to an
industrially-strength biometric authentication
protocol. This work is motivated by an ap-
plication of our verification tools in an indus-
trial research and development project. In that
project, we gathered some valuable experiences

1

with the secure design of biometric authenti-
cation protocols and possible pitfalls involved,
as well as experiences with applying our veri-
fication tools to industrial systems. Since we
would like to share these experiences without
compromising our confidentiality agreements,
we decided to define our own biometric authen-
tication protocol, based solely on openly acces-
sible information such as [VB03], and demon-
strate which kind of problems may arise, and
how one can detect them on the implementa-
tion level using our tools. We would like to
stress that any resemblances between the pro-
tocol presented here and actually existing pro-
tocols in industrial use are purely coincidental,
and that we make no implication that there
may have been any security concern with re-
spect to any present or past system of any of
our present or past industrial partners, of the
kind presented here or any other kind.

Note that this work is not just a matter
of using well-understood concepts and exist-
ing components, and of applying these to a
particular problem: Although there is a lot
of work on verifying abstract specifications of
cryptographic protocol using formal methods,
the verification of implementations of crypto-
graphic protocols using first-order logic is a
new research topic. Because of the security
problems which may be created at the transi-
tion from an abstract specification to an im-
plementation, as mentioned above, one cannot
naively apply the specification-based verifica-
tion techniques to the source-code level. Also,
in the case of biometric authentication proto-
cols, problems may arise which are not present
in usual authentication protocols.

It is not our goal to provide an automated
full formal verification of C code. Instead, our
goal is to increase understanding of the secu-
rity properties of cryptoprotocol implementa-
tions in a way as automated as possible to fa-
cilitate use in an industrial environment. Be-
cause of the abstractions used, the approach
may produce false alarms (which however have
not surfaced yet in practical examples). Also,
for space restrictions we cannot consider fea-
tures such as pointer arithmetic in our presen-
tation here (we essentially follow the approach
in [CKY03] there). We do not consider casts,
and expressions are assumed to be well-typed.
Loops are only investigated through a bounded
number of rounds (which is a classical approach

generator
Formula

Control
flow
graph

Analyzer

ATP
result

Theorem Prover
Automated

formula
FOL

ANSI C editor data flow

Annota−C
code

"uses"

prepro−
cessed

annotated
code

tions Report
Text

seCse Suite

Figure 1. Tool-flow of the seCse analy-
sis suite

in automated software verification). Also, our
focus here is on high-level security properties
such as secrecy and authenticity, and not on de-
tecting low-level security flaws such as buffer-
overflow attacks.

2 Code Analysis

The analysis approach presented here works
with the well-known Dolev-Yao adversary
model for security analysis [DY83, Mea91,
Gol03]. The adversary can read messages sent
over the network and collect them in his knowl-
edge set, merge and extract messages in the
knowledge set, and delete or insert messages on
the communication links. The security require-
ments can then be formalized relative to this
adversary model. For example, a data value
remains secret from the adversary if it never
appears in the knowledge set of the adversary.

We explain the transformation from the con-
trol flow graph generated from the C program
to first-order logic, which is given as input
to the automated theorem prover. The cor-
responding tool-flow is shown in Fig. 1. For
space restrictions, we restrict our explanation
to the analysis for secrecy of data. We use
a predicate knows which defines a bound on
the knowledge set defined above. Precisely,

2

• enc(E, E′) (encryption)
• dec(E, E′) (decryption)
• hash(E) (hashing)
• sign(E, E′) (signing)
• ver(E, E′, E′′) (verification of signature)
• kgen(E) (key generation)
• inv(E) (inverse key)
• conc(E, E′) (concatenation)
• head(E) and tail(E) (head and tail of concat.)

Figure 2. Crypto Operations

knows(E) means that the adversary may get
to know E during the execution of the proto-
col. For any data value s supposed to remain
confidential, one thus has to check whether one
can derive knows(s).

Formally, one considers a term algebra gen-
erated from ground data such as variables,
keys, nonces and other data using symbolic op-
erations including the ones in Fig. 2. There,
the symbols E, E′, and E′′ denote terms in-
ducticely constructed in this way. These sym-
bolic operations are the abstract versions of
the cryptographic algorithms used in the code.
Generating keys and random values is formal-
ized by introducing new variables represent-
ing the keys and random values. For keys
and random values that are supposed to be
freshly generated for each round of the proto-
col, one thus has a formula parameterized over
these variables, which is then closed by forall-
quantification. In that term algebra, one de-
fines the equations dec(enc(E, K), inv(K)) = E
and ver(sign(E, inv(K)), K, E) = true for all
terms E, K, and the usual laws regarding con-
catenation, head(), and tail().

The set of predicates defined to hold for a
given program is defined as follows. For each
publicly known expression E, the statement
knows(E) is derived. To model the fact that the
adversary may enlarge his set of knowledge by
constructing new expressions from the ones he
knows, including the use of cryptographic op-
erations, formulas are generated for these op-
erations for which some examples are given in
Fig. 3. We use the TPTP notation for the first-
order logic formulas [SS01], which is the input
notation for many automated theorem provers
including the one we use, e-SETHEO [SW00].
Here & means logical conjunction and ![E1, E2]
forall-quantification over E1, E2.

We now define how a control flow graph gen-
erated from a C program (for example, using
the aiCall tool [Abs04]) gives rise to a logical
formula characterizing the interaction between
the adversary and the protocol participants.

Step 1 We observe that the graph can
be transformed to consist of transitions of
the form trans(state, inpattern, condition, action,
truestate), where inpattern is empty and
condition equals true where they are not
needed, and where action is a logical ex-
pression of the form localvar = value respec-
tively outpattern in case of a local assignment
resp. output command (leaving it empty if not
needed). There may also be another transition
with the negation of the given condition.

Step 2 Now assume that the
source code gives rise to a transition
TR1 = trans(s1, i1, c1, a1, t1) such that
there is a second transition TR2 =
trans(s2, i2, c2, a2, t2) where s2 = t1. If
there is no such transition TR2, we define
TR2 = trans(t1, [], true, [], t1) to simplify our
presentation, where [] is the empty input
or output pattern and trueis the boolean
condition. Suppose that c1 is of the form
cond(arg1, . . . , argn). For i1, we define
ī1 = knows(i1) in case i1 is non-empty and
otherwise ī1 = true. For a1, we define ā1 = a1
in case a1 is of the form localvar = value and
ā1 = knows(outpattern) in case a1 = outpattern
(and ā1 = true in case a1 is empty). Then for
TR1 we define the following predicate:

PRED(TR1) ≡ ī1&c1 ⇒ā1&PRED(TR2) (1)

The formula formalizes the fact that, if the
adversary knows an expression he can assign
to the variable i1 such that the condition c1
holds, then this implies that ā1 will hold ac-
cording to the protocol, which means that ei-
ther the equation localvar = value holds in case
of an assignment, or the adversary gets to know
outpattern, in case it is sent out in a1. Also
then the predicate for the succeeding transi-
tion TR2 will hold.

To construct the recursive definition above,
we assume that the control flow graph is finite
and cycle-free. Since in general there may be
unbounded loops in the C program (although
in the case of cryptographic protocols, these
are not so prevalent because the emphasis is

3

input_formula(construct_message_1,axiom,(

! [E1,E2] :

((knows(E1)

& knows(E2))

=> (knows(conc(E1, E2))

& knows(enc(E1, E2))

& knows(sign(E1, E2)))))).

input_formula(construct_message_2,axiom,(

! [E1,E2] :

(knows(conc(E1, E2))

=> (knows(E1)

& knows(E2))))).

Figure 3. Some general crypto axioms

on interaction rather than computation), this
is achieved in an approximate way by fixing a
natural number n (supplied by the user of the
approach) and unfolding all cycles up to the
transition path length n. The resulting logical
formula is closed by forall-quantification over
all free variables contained.

Step 3 The formulas defined above are writ-
ten into the TPTP file as axioms. This means
that the theorem prover will take these for-
mulas as given. The security requirement
to be checked is written into the TPTP file
as a conjecture. For example, this could be
knows(secret) in case the secrecy of the value
secret is to be checked. For authenticity prop-
erties, one needs to insert additional corre-
spondence assertions in the formulas defined
above at places which are bound by the gener-
ation and verification of an authentication cer-
tificate. The theorem prover will then check
whether the conjecture is derivable from the
axioms. In the case of secrecy, the result is
interpreted as follows: If knows(secret) can be
derived from the axioms, this means that the
adversary may potentially get to know secret.
If the theorem prover returns that it is not
possible to derive knows(secret) from the ax-
ioms, this means that the adversary will not
get secret.

Note that the adversary knowledge set is ap-
proximated from above (because one abstracts
away for example from the message sender and
receiver identities). This means that one will
find all possible attacks, but one may also en-
counter “false alarms”. However, this has not
so far happened with practical examples, and
the treatment turns out to be rather efficient.
Note also that due to the undecidability of
first-order logic, one may not always be able
to establish automatically that the adversary
does not get to know a certain data value, but
the theorem prover may execute without ter-
mination or may break up because resources

are exceeded. In our practical applications of
our method, this limitation has, however, not
yet become observable.

Step 4 In case the result is that there may
be an attack, in order to fix the flaw in the
code, it would be helpful to retrieve the at-
tack trace. Since theorem provers such as e-
SETHEO are highly optimized for performance
by using abstract derivations, it is not trivial
to extract this information. Therefore, we also
implemented a tool which transforms the log-
ical formulas explained above to Prolog. The
translation from the logical formulas to Pro-
tolog is quite direct, so that no discrepancies
can be expected. While the analysis in Prolog
is not useful to establish whether there is an
attack in the first place (because it is in order
of magnitudes slower than using e-SETHEO
and in general there are termination problems
with its depth-first search algorithm), Prolog
works fine in the case where one already knows
that there is an attack, and it only needs to be
shown explicitly (because it explicitly assigned
values to variables during its search, which can
then be queried).

3 Case-Study

In this section, we would like to report on
experiences gained when applying our verifi-
cation tools in an industrial research and de-
velopment project. Our goal is to demonstrate
that our method is applicable to industrial-size
systems. Additionally, we would like to point
out some pitfalls one could face when design-
ing biometric authentication systems. As ex-
plained in the introduction, for confidentiality
reasons we choose not to present the actual sys-
tem developed in the project, but a protocol we
defined ourselves on the basis of openly avail-
able information such as [VB03].

Following [VB03], the goal is the correct de-
velopment of a security-critical biometric au-

4

thentication system which is supposed to con-
trol access to a protected resource, for example
by opening a door or letting someone log into
a computer system. In the system proposed
in [VB03], a user carries his biometric refer-
ence data on a personal smart-card. To gain
access, he inserts the smart-card in the card
reader and delivers a fresh biometric sample
at the biometric sensor, for example a finger-
print reader. Since the communication links
between the host system (containing the bio-
sensor), the card reader, and the smart-card
are physically vulnerable, the system needs to
make use of a cryptographic protocol to pro-
tect this communication. Because the correct
design of such protocols and the correct use
within the surrounding system is very difficult,
we used our method to support the develop-
ment of the biometric authentication system.

To generate a FOL formula to be analyzed,
one needs to consider the level of security pro-
vided by the physical layer of the system, and
formulate security goals on the execution of the
system and on the protection of particular data
values. Then the security of the protocol is an-
alyzed using the automated tool support de-
scribed in the previous section. This is done
with respect to the threat model which is de-
rived from the information about the physical
security of the system and the security goals,
as explained in the previous section.

Inspired by [VB03], our authentication pro-
tocol, is based on a variant of the SSL authen-
tication protocol. A high-level specification of
the control flow in the biometric authentication
system is given in Fig. 4. The system com-
ponents are the smart-card, the host system
and the biosensor. The smart-card is personal-
ized for each user. To prevent an attack where
an attacker simply repeatedly tries to match a
forged biometric sample, for example, using an
artificial finger, with a forged or stolen smart-
card, the protocol contains a misuse counter
which is decreased from an initial value of 3 to
0, when the card will be disabled. The data
stored on the card includes the card identi-
fier, the misuse counter, the biometric refer-
ence data, a corresponding signature and a key
shared with the host system. The host system
determines whether the identity of the user can
be verified given the biometric reference data
on the card and he should thus be granted ac-
cess.

Smart card

Authenticate
host

Start protocol

Create key

User

Present
biodata

Retrieve
card

Insert card
sensor

Biometry

Scan biodata

Host system

card
Authenticate

Request biodata

Compare

Verify signature

Extract template

Create key

Access decision

Biometric data

Reference
template

Signature

Template

Figure 4. Biometric authentication

To adapt the handshake part of the SSL au-
thentication protocol to the present setting, we
firstly need to account for the fact that com-
munication with a smart-card generally hap-
pens in the way that the host system sends
a message to the smart-card which is an-
swered by a message back from the smart-
card. Thus in the first messages, based on
the SSL ClientHello, the card is reset and
asked for its ID which the host stores in a
variable. Then, following the SSL protocol,
the host and smart-card exchange the ran-
dom numbers ClientHello.random and Server-
Hello.random and their certificates with which
they perform a bidirectional authentication.
The biometric authentication is then started
with the exchange of the next messages. First,
the session key is generated at the smart-card
and sent to the host. The confidentiality and
integrity of the communication is protected
using encryption and MAC using a shared
key. Next, the current value of the misuse
counter is retrieved from the smart-card. If
it is larger than 0, it is decremented at the
host and the decremented value is sent back
to the smart-card. The smart-card is then
queried again for the new value of its mis-
use counter to see whether it actually stored
the decremented value. The integrity of the
last messages starting with the retrieval of the
misuse counter from the card (including the
message names) is protected using MACs us-
ing the session key. Then, the biometric ref-

5

erence data is retrieved from the smart-card
which is signed with the private administrator
key that was created when personalizing the
smart-card. After that, the current data is re-
quested from the biosensor and compared with
the reference data. The user has up to three
attempts to present a biometric sample which
is accepted as valid (defined as the degree of
coincidence between sample and reference be-
ing above the given threshold). If the biometric
match is successful, the misuse counter is sent
to the default value and the session closed.

For space restrictions, we can only show the
main call graph node of the code abstraction
from the smart-card side of the protocol in
Fig. 5 and one of the message exchanges in
Fig. 6.

4 Security Analysis

The threat scenario which we consider here
is that the adversary somehow obtains posses-
sion of a legitimate smart-card and can ma-
nipulate the communication link between the
smart-card reader and the host system, since
it is not assumed to be physically secure.

We have to assume that the adversary can
use different (sequential or parallel) executions
of the protocol in his attack (with the same
or different smart-cards or hosts). This can
be achieved by parameterizing the FOL for-
mula generated from the protcol description
using a session parameter, using variables for
the smart-card, biosensor, and host names, and
closing the open formula obtained with a for-all
quantification over these parameters.

We have to verify that the protocol provides
the intended security guarantees, in particu-
lar, that the misuse counter indeed registers
any failed attempt to present a false biometric
sample to the biosensor. Here we focus on this
security requirement, which turned out to be
particularly interesting in the case of the given
protocol.

We note that each possible instantiation of
the message argument variables in the formula
corresponds to one execution of the protocol,
assuming that each protocol participant ac-
cepts only one copy of a given protocol message
per protocol execution (and ignores a second
message with the same message name).

Note that an automated theorem prover
such as SPASS or E-SETHEO considers every

Figure 5. Main graph node

possible model satisfying the given axioms to
see whether it satisfies the given conjecture,
not only the quotients of the free algebra un-
der the formula (as Prolog does). This means
that in the models considered, additional prop-
erties not following from the given axioms may
hold. In the case of cryptographic protocols,
this may mean that a secret key coincides with
a public value and therefore becomes known
to the adversary. This is of course something
which one would assume an implementation of
the protocol to avoid, and therefore one would
like to analyze the protocol under the assump-
tion that this does not happen. Therefore, we
formulate the conjecture in a negated way so
that a proof of the conjecture corresponds to
an attack, and the absence of a proof (equiva-
lently, by soundness and completeness of FOL,
a counter-example to the formula) corresponds
to the security of the protocol. This makes
sure that, when considering a given protocol
execution (i.e., a given instantiation of the mes-
sage variables), all models of the formulas have

6

Figure 6. sc h xchk 6 message (abstraction)

to fulfill the attack conjecture in order for an
attack to be detected, in particular also any
model of the formula which does not satisfy any
equalities that would be assumed not to hold in
an implementation of the protocol (for exam-
ple, between a secret key and a public value).
That way, false positives arising in this way can
be avoided.

We would like to ensure that in each ex-
ecution of the protocol in which the biomet-
ric match is performed, the misuse counter
is decremented. The security conjecture
is formulated by inserting the predicate
match performed in the protocol where the
biometric match is performed and predicate
fbz2written where the decremented misuse
counter has been written to the smart-card.
To formulate the security conjecture (where ˜
represents logical negation), we assume that in
the protocol session between the card and the
host which is uniquely determined by the value
of the session counters and the messages ex-
changed in that session (which are given as ar-
guments to the predicates but left out here for
readability), the misuse counter is not decre-
mented, but the biometric match is still per-
formed:

~fbz2written&& match_performed

If this conjecture is found to be provable
from the axioms, that means that in any pos-
sible run of the protocol, the adversary can
make the host system perform the biomet-
ric match without decrementing the misuse
counter. This would break the security func-
tion of the misuse counter.

When applying this analysis to our imple-
mentation, this turned out to be in fact true.
This means, in all models satisfying the set af
axioms generated from the protocol description
(or equivalently, in the quotient model which
satisies only those formulas which follow from
the axioms and which is therefore not “degen-
erated”), there exists a protocol execution in
which the adversary sends certain messages to
the protocol participants, so that the biomet-
ric match is performed, although the misuse
counter is not decremented. Thus, the mis-
use counter does not fulfill its purpose and the
protocol implementation has to be seen as in-
secure (since an adversary can run arbitrary
many tests with fake biometric samples until
she succeeds in getting access with the stolen
card). The result was obtained with SPASS
within less than a minute computing time on

7

an AMD Athlon processor with 1533 MHz.
clock frequency and 1024 MB RAM.

One should note that thus finding does not
constitute a flaw in the scheme proposed in
[VB03], since we extended that scheme in ways
based on previous experiences.

After receiving this result from the ATP, we
ran the attack generator implemented in Pro-
log to actually exhibit the attack (by deter-
mining the valuations of the message variables,
possibly of different protocol sessions). We now
explain the result. It turns out that in our im-
plementation, the authentication phase of the
protocol is not sufficiently bound to the part
where firstly the session key is exchanged and
then the misuse counter decremented and the
biometric match performed.

The attack proceeds as follows: First, the
attacker runs one execution of the protocol us-
ing the stolen smart-card and breaks up be-
fore the biometric match is performed, e.g. by
pulling the smart-card out of the card-reader.
Note that at this point, the misuse counter is
decremented, since the biometric authentica-
tion has not been successfully completed. The
first misuse counter is unchanged, since the
smart-card is legimate and was therefore suc-
cessfully authenticated at the host.

One should note that when the smart-card
is pulled out (and thus the power cut off), the
smart-card returns to its initial state (except
that the misuse counter is saved) and is again
ready to start another execution of the proto-
col. Thus, the attacker can now start another
execution of the protocol with the same card.
When the authentication phase is finished, the
attacker now manipulates the communication
between the host system and the smart card
reader so that the smart-card is cut off from
the further communication, and she directly
communicates with the host system. This way,
she aims to make sure that she can now per-
form tests in order to get to a positive match
of the biosensor using fake biometric samples.
For that, she now has to perform the inter-
action with the host system in the messages
responsible to the secure update of the misuse
counter herself in order to convince the host
system that it still communicates with the le-
gitimate card and that the card in fact decre-
ments its misuse counter. However, this can
now be done by replaying the messages from
the previous protocol execution.

This is due to the fact that in the proto-
col, the host requests the session key from the
smart-card. Although the session key returned
by the smart-card is supposed to be protected
with a MAC using the private key shared be-
tween the host system and the card, and al-
though it is correctly checked by the host that
this is actually the case, replay of the session
key from the previous session is not prevented.
And although the host performs the decremen-
tation of the session key itself, and later checks
correctly that the smart-card actually stored
the decremented key, the host has to request
the current state of the misuse counter from
the smart-card to start with. At that point,
the attacker can again replay the correspond-
ing message from the smart-card in the previ-
ous protocol run, which again sends the default
value of the misuse counter to the host. As in
the previous run, this value is decremented and
sent to the smart-card to be stored. The smart-
card is then queried whether it actually stored
this decremented value. Again, this check is
protected by a MAC which is actually correctly
verified, but again the exact message from the
smart-card in the previous protocol run can be
reused. Then, the biometric reference data is
requested from the smart-card, and again the
response from the previous run is reused here.
That way, the attacker proceeds to the point
where the biometric match is performed, al-
though the misuse counter was not again decre-
mented on the card.

The second part of the attack can be iter-
ated arbitrarily many times without decremen-
tation of the misuse counter. That way, the
biometric match can eventually be tricked with
an inacceptable probability of success.

Note that we do not assume that the at-
tacker somehow obtains the session key from a
previous protocol run. In fact, after the suc-
cessful attack against the protocol, the attacker
still does not know the session key. Thus, this
attack is different from previous session key re-
play attacks and specific to the way the mis-
use counter mechanism is implemented which
is necessary in biometric authentication proto-
col, due to the inherent failure rates in biomet-
ric matching.

When examining the specifications, it
turned out that the security flaw found in our
implementation was made possible since the
specification were not sufficiently detailed with

8

respect to the generation of the MACs used.
When the specification was specialized to pre-
scribe that the random numbers exchanged in
the authentication phase are used in the gen-
eration of the MACs, and our implementa-
tion changed accordingly, the attack described
above was not any more possible. We could
in fact show that the protocol is secure in
the sense of the security conjecture formulated
above. Again, this result was obtained with
SPASS within less than a minute computing
time on an AMD Athlon processor with 1533
MHz. clock frequency and 1024 MB RAM.

5 Lessons Learned

We discuss some of the experiences gained
during the application of our approach pre-
sented in this paper.

One of the lessons learned was that the
amount of work one has to invest in order to
apply our method is dependent on how the
code was constructed. Our method needs the
least amount when it is applied by the soft-
ware developers in the course of programming
the code. It is more effort to apply our ap-
proach to legacy systems, since performing the
abstractions that are necessary requires some
understanding of the software.

With respect to the preciseness of our anal-
ysis, we already mentioned that our method
does not suffer from false negatives in the sense
that it finds all attacks which exist relative to
our adversary model, provided that the an-
notations introduced by the user are correct.
The method does admit the existence of false
positives in the sense that attack possibilities
found may not have a counter-part in reality,
because of the abstrations introduced for effi-
ciency. False positives would have to be ex-
pected for example in a situation where an
adversary can construct a secret out of two
pieces of data which he can gain in two mutu-
ally exclusive conditional branches in the pro-
tocol, which in the most abstract application
of our approach would both be taken into ac-
count. However, during several application
case-studies so far, including the one presented
here, this problem has not become apparent.
Also, the fact that a false positive does not
constitute a realistic attack becomes apparent
by using the Prolog attack generator.

6 Related Work

[CDW04] reports on the usage of the model-
checker MOPS on security-critical Unix-based
applications with respect to low-level security
properties such as the proper dropping of priv-
ileges, the avoidance of race conditions when
accessing files, and the secure creation of tem-
porary files. The approach is applied to ap-
plications with over one million lines of code
where more than a dozen new security weak-
nesses in widely-deployed applications were
found. Compared to our work, that approach
is focussed on low-level implementation details,
while we aim to analyze specifically the se-
cure usage of cryptographic operations in im-
plementations.

[DDMP03] presents a tool which automates
the detection of high-risk security-critical func-
tions based on the observation validated in an
experiment in the paper that functions near
a source of input are most likely to contain a
security vulnerability. The tool is applied to
three open source applications with known vul-
nerabilities and the privilege separation code
in the OpenSSH server daemon. Compared to
this approach, our approach is directed more
specifically to attacks against certain security
requirements such as secrecy of data, against
which the code is analyzed in depth.

[DM03] uses a tool which repositions stack
allocated arrays at compile time by preserv-
ing the semantics of the program with a small
performance penalty. The paper considers the
semantics-preserving transformation of stack
allocated arrays to heap allocated ”pointers to
arrays”. Compared to that work, ours is not
concerned with the buffer-overflow type of er-
rors, but with security flaws arising from design
errors in the security protocol logic.

There are other approaches to using FOL
automated theorem provers for cryptoprotocol
analysis, so far applied mainly on the spec-
ification level. [Sch97] formalizes the well-
known BAN logic in first-order logic and uses
the atp SETHEO to proof statements in the
BAN logic. It is different from our approach
which is based on the knowledge of the ad-
versary, instead of the beliefs of the protocol
participants. [Wei99] analyzes the Neuman-
Stubblebine key exchange protocol using first-
order monadic Horn formulas and the atp
Spass. This approach differs from ours for ex-

9

ample in that in general we also admit non-
monadic Horn formulas (and even non-Horn
formulas), to be able to consider unbounded
state when necessary to express a security
property. [Coh03] uses first-order invariants
to verify cryptographic protocols against safety
properties. The approach is supported by the
atp TAPS. Compared to our approach, the
method does not generate counter-examples
(that is, attacks) in case a protocol is found
to be insecure.

7 Conclusion

We presented an approach using automated
theorem provers for first order logic to under-
stand the security requirements provided by C
code implementations of cryptographic proto-
cols. Our approach constructs a logical ab-
straction of the code which can be used to
analyze the code for security properties (such
as confidentiality) with automated theorem
provers. One should note that it is not our
goal to provide an automated full formal ver-
ification of C code using formal logic but to
increase understanding of cryptoprotocol im-
plementations in an approach which is as au-
tomated as possible. Note also that our focus
here is on high-level security properties such as
secrecy and authenticity, and not on detecting
low-level security flaws such as buffer overflows.
We demonstrated our approach at the hand
of an industrial-strength biometric authentica-
tion protocol based on experiences from an in-
dustrial research and development project. In
all, although our approach is not completely
automatic, it turned out to be applicable with
reasonable effort in industrial practice.

Acknowledgements Many thanks go to
Mark Yampolskiy for help with constructing
the control flow graphs used for this work.

References

[Abs04] AbsInt. aicall. http://www.aicall.de/,
2004.

[CDW04] Hao Chen, Drew Dean, and David Wagner.
Model checking one million lines of c code.
In NDSS. The Internet Society, 2004.

[CKY03] E. Clarke, D. Kroening, and K. Yorav.
Behavioral consistency of C and Verilog
programs using bounded model checking.
Technical Report CMU-CS-03-126, School

of Computer Science, Carnegie Mellon Uni-
versity, 2003.

[Coh03] E. Cohen. First-order verification of cryp-
tographic protocols. Journal of Computer
Security, 11(2):189–216, 2003.

[DDMP03] D. DaCosta, C. Dahn, S. Mancoridis, and
V. Prevelakis. Characterizing the ’security
vulnerability likelihood’ of software func-
tions. In ICSM, pages 266–. IEEE Com-
puter Society, 2003.

[DM03] Christopher Dahn and Spiros Mancoridis.
Using program transformation to secure C
programs against buffer overflows. In A.v.
Deursen, E. Stroulia, and M.D. Storey, ed-
itors, WCRE, pages 323–333. IEEE Com-
puter Society, 2003.

[DY83] D. Dolev and A. Yao. On the security of
public key protocols. IEEE Transactions
on Information Theory, IT-29(2):198–208,
1983.

[Gol03] D. Gollmann. Facets of security. In
C. Priami, editor, Global Computing (GC
2003), volume 2874 of LNCS, pages 192–
202. Springer, 2003.

[Mea91] C. Meadows. A system for the specification
and analysis of key management protocols.
In IEEE Symposium on Security and Pri-
vacy, pages 182–195, 1991.

[RS98] P. Ryan and S. Schneider. An attack on
a recursive authentication protocol. Infor-
mation Processing Letters, 65:7–10, 1998.

[Sch97] J. Schumann. Automatic verification of
cryptographic protocols with SETHEO.
In W. McCune, editor, 14th Interna-
tional Conference on Automated Deduc-
tion (CADE-14), volume 1249 of LNCS,
pages 87–100. Springer, 1997.

[sec] seCse tool (webinterface and download).
http://www4.in.tum.de/̃ secse.

[SS01] G. Sutcliffe and C. Suttner. The
TPTP problem library for automated
theorem proving, 2001. Available at
http://www.tptp.org.

[SW00] G. Stenz and A. Wolf. E-SETHEO:
An automated3 theorem prover. In
R. Dyckhoff, editor, Automated Reasoning
with Analytic Tableaux and Related Meth-
ods (TABLEAUX 2000), volume 1847 of
LNCS, pages 436–440. Springer, 2000.

[VB03] C. Viti and S. Bistarelli. Study and
development of a remote biometric au-
thentication protocol. Technical Report
IIT B4-04/2003, Consiglio Nazionale
delle Ricerche, Istituto di Informatica e
Telematica, September 2003. Available at
http://dienst.isti.cnr.it/Dienst/UI/2.0/
Describe/ercim.cnr.iit/2003-B4-
04?tiposearch=ercim&langver=.

[Wei99] C. Weidenbach. Towards an automatic
analysis of security protocols in first-order
logic. In H. Ganzinger, editor, 16th Inter-
national Conference on Automated Deduc-
tion (CADE-16), volume 1632 of LNCS,
pages 314–328, 1999.

10

