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Abstract

Recently, application-level isolation was introduced as an
effective means of containing the damage that a suspicious
user could inflict on data. In most cases, only a subset of
the data items needs to be protected from damage due to
the criticality level or integrity requirements of the data
items. In such a case, complete isolation of a suspicious
user can consume more resources than necessary. This
paper proposes partitioning the data items into categories
based on their criticality levels and integrity requirements;
these categories determine the allowable data flows
between trustworthy and suspicious users. An algorithm,
that achieves good performance when the number of data
items is small, is also provided to detect inconsistencies
between suspicious versions of the data and the main
version.

1 Introduction

Recently, increasing emphasis has been placed on
supplementing protection of networks and information
systems with intrusion detection [Lun93, MHL 94, LM9g],
and numerous intrusion detection products have emerged
commercialy. When a suspicious thread of activity is
discovered, the intrusion detection system or the system
security officer must decide how to react and whether to
allow continued access to the associated user, process, or
host. Since the rate of detection (percentage of intrusions
that are detected) is directly proportional to the rate of
errors (percentage of reported intrusions that are not
intrusions), if our goal is to achieve a high rate of
detection, we must be prepared to tolerate a high rate of
errors.

In [JLM98, LIM99], isolation at the application level
was introduced as a means to achieve both a high rate of
detection and a low rate of errors. The basic idea is to
isolate a suspicious user S transparently into a separate
environment that appears to S as the actual system. This
approach allows S to be kept under surveillance without
risking further harm to the system.

Jajodia, et al. [JLM98], investigated isolation at the
database level, and considered the following attack
scenario: Suppose a user S of the database comes under
suspicion for some reason. To let S continue working and
at the same time to isolate the database from any further
damage from S, an on-the-fly “separate database version”
is created to accommodate accesses by S. All transactions
submitted by S are then directed to the separate database
version, while transactions from other trustworthy users
are applied to the main database version.

Advantages of using isolation at the database level
follow: It permits finer grained monitoring of the
suspicious user activities, the substitute host is not
sacrificed, and the suspicious user S can interact with the
system’s resources. Therefore, if S proves to be innocent,
S has not been subjected to denial of service and any valid
results produced by S do not have to be discarded. The
drawback of isolation at the database level is that in some
cases merging data modified by a suspicious user, after he
is found to be legitimate, can be time consuming [JLM98].

This paper’s contribution to the database isolation
scheme is in two areas. First, in most cases, only a subset
of the data items needs to be protected from damage due
to their criticality level or integrity requirements. In such
a case, complete isolation of a suspicious user can
consume more resources than necessary. Therefore, we
divide, or categorize, data according to their criticality and



integrity levels. Three categories are proposed:
unconstrained, constrained but noncritical, and constrained
and critical. These categories determine the allowable
data flows between trustworthy and suspicious users.

Second, if asuspicious user is eventually identified as
a legitimate user, an agorithm to detect mutua
inconsistency is presented. The proposed agorithm has
several advantages. First, the amount of work done by this
agorithm is a factor of the number of data items accessed.
By keeping the constrained but noncritical data items set
small, better performance can be achieved. Second, this
agorithm reports inconsistency in terms of data items
instead of transactions. This process makes it easier for
the database administrator to restore the integrity of
inconsistent data items by executing appropriate
compensating transactions [GMS87]. Third, this
agorithm simplifies the case involving multiple suspicious
users.

The remainder of the paper is organized as follows.
Section 2 describes the categories of data items based on
criticality and integrity requirements, and the resulting
data flows between the trustworthy and suspicious users.
Section 3 discusses the isolation architecture and provides
an isolation protocol that preserves the data flows and an
agorithm to implement the isolation. Section 4 describes
the inconsistency detection algorithm. Section 5 shows
examples of how the algorithm works. Section 6 shows
the correctness of the algorithm. Section 7 reviews related
work. Finally, Section 8 provides conclusions.

2 Categorizing Data and Resulting Data
Flows

Traditionally, security technology views each access
decision as Boolean: either the user request is granted or it
isdenied. When suspicious users are involved, the choice
is not so straightforward. Certain portions of the database
may be highly sensitive (e.g., data which, if revealed to
competitors or adversaries, may compromise vital interests
of the organization). Other portions of the database may
have high integrity requirements and, therefore, any
modifications by anyone not trustworthy should be
disallowed.

In this paper, we place data items into three separate
categories based on their criticality levels and integrity
requirements. As shown in Figure 1, data items can be
categorized based on their criticality and integrity ratings
and suspicious users are alowed/disallowed R/W
operations based on those ratings. For integrity reasons,

we partition the data items as being either constrained or

unconstrained. By definition, constrained data items are

those to which the integrity constraints must be applied. A

data item that is not constrained is said to be

unconstrained. Based on security considerations, we

partition the data items as being either critica or
noncritical. We combine the two ratings to obtain the
following three categories of dataitems:

¢ Unconstrained and noncritical data items — These data
items have low criticality and integrity ratings.

e Constrained but noncritical data items — These data
items have high integrity ratings; however, they have
low criticality ratings.

e Critical data items — All data items that are highly
sensitive are considered critical, regardless of their
integrity ratings.

In the normal course of events when all users are
believed to be trustworthy, each data item has only one
version, that is, the main version; any updates by a user
are seen by all other users of the database. Once a
suspicious user is identified, the above categories
determine the allowable data flows between trustworthy
and suspicious users.

In general, data flows can be one of the following two
types:
¢ Disclosing data flow, which permits data to flow from

trustworthy users to suspicious users, or

e Corrupting data flow, which allows flow of data from
suspicious users to trustworthy users
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Figure 1. Categories of Data and Resulting Data Flows



A data flow can aso be characterized according to its
mode:

e Full data flow, in which al updates are shared by
trustworthy and suspicious users

* Blocked data flow, in which updates from suspicious
users are not given to trustworthy users but all updates
from trustworthy users are given to suspicious users

e Sdective dataflow, in which some updates are shared
by trustworthy and suspicious users

On unconstrained and noncritical data items, we allow
full data flow that is both disclosing and corrupting.
Therefore, there is no isolation on these items (i.e., al
updates by trustworthy users are disclosed to suspicious
users, and vice versa), and each unconstrained and
noncritical dataitem has only one version.

On critical dataitems, we alow neither disclosing nor
corrupting data flow. This means that suspicious users
cannot read or write critical data items. We enforce a
selective data flow policy on constrained but noncritical
data items: We do not alow disclosing data flow; thus,
suspicious users are not given any updates by trustworthy
users to such items; suspicious users instead see the values
of these items before the isolation was initiated.
Trustworthy users, on the other hand, are given versions
created by suspicious users; they have the option to select
the version they would like to use.

3 Isolation Architectureand Algorithm

The architecture in this paper is smilar to the
architecture presented in [JLM98]. As shown in Figure 2,
the Intrusion Detector identifies suspicious users and
ultimately determines if a suspicious user is malicious or
legitimate. The Damage Recovery Manager deals with
handling data inconsistencies between the main database
and the suspicious versions of the database.

When auser Sisidentified as being suspicious, S can
read or write unconstrained data items and constrained but
noncritical data items only. Whenever S modifies a
constrained but noncritical data item d, the new value of d
is labeled as suspicious (d). However, when S modifies
an unconstrained and noncritical data item, no special
labeling is performed; only the old value of d is replaced
by the new value. Ciritical data items cannot be accessed
by S; whenever S tries to access these data items, an error
message is generated and givento S.

Only one version of unconstrained data items and
critical dataitemsis maintained. This is because changes
to unconstrained data items by user S are automatically
considered good, and user Sis given neither read nor write

access to data labeled critical. Only constrained but
noncritical items may have multiple versions; exactly how
these versions are created is explained in the isolation
algorithm below.
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Figure 2. Isolation Architecture
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The following list illustrates our isolation protocol,
which is adapted from [JLM98].
At the beginning of the main history, each constrained
but noncritical data item x is associated with the same
version number MAIN, denoted x| MAIN].
When constrained but noncritical data item X is read
or updated by atrustworthy transaction T, xfMAIN] is
given to T, and after xfMAIN] is updated by T, if the
version includes other version numbers, then a new
version X[MAIN] associated with only one version
number MAIN is generated which denotes the value
that has been updated by T, and the old value with the
same set of version numbers except that MAIN is
excluded remains.
When the first suspicious user S, is identified, We
attach the specific version number INIT to each
constrained but noncritical data item. As a result, a
version of x may be associated with several version
numbers, for example, XMAIN][INIT] denotes the
value of x which should be the original value of x for
each following suspicious database version, and it can
be updated by a trustworthy transaction.
Whenever there are no active suspicious histories in
the database, the value of a specific signa variable



RESETABLE is set to be TRUE if it has not been set
yet.

When a suspicious user S is identified (including the
first one), a unique version number, for example, the
time stamp t, is attached to the INIT version of x.
X[INIT][t] denotes the value of x which has not been
updated by S but can be updated by a suspicious
transaction submitted by S.

When x is read or updated by a suspicious transaction
submitted by S, the version of x which includes the
version number t will be givento S. If the version
includes the version number INIT, then a new version
x[t] is generated which denotes the value that has
been updated by S, and the old value with the same
set of version numbers except that t is excluded
remains.

When a suspicious user S is going to be isolated, if
the value RESETABLE is TRUE, then we first set the
value RESETABLE to FALSE, and then attach both
the INIT and the t, version number to the current main
database version, namely, data items associated with
the MAIN version number and remove the old INIT
database version.

When a trustworthy user G, attempts to read X, G, is
presented with the two copies of x, namely X[INIT]
and x[INIT][ t]. If G decidesto use x[INIT[t], then a
separate copy of x is no longer maintained. If G, on
the other hand, decides to use the original value of X,
then two copies of x are maintained.

The following terminology is used in the isolation
agorithm. A data item d precedes data item d if d, is
written by a transaction which precedes a transaction that
reads d and d or data item d, is read by the same
transaction which writesd and d. Dataitemsd and d, are
inconsistent if d precedes d and vice versa.  The
precedence-set of a data item is the set of al data items
which precede it. Thelink set of adataitem d, isthe set of
al data items that were written by the last transaction
which wrote d. Throughout we assume that the write-set
of each transaction is always contained in the read-set.

Procedure Isolation
begin
for each Constrained & Noncritical (C&N)
dataitem d do begin
[* initialize the precedence/link-sets */
link-set(d) ={ };
precedence-set(d) ={ };
end
for each transaction T do begin
if T isatrustworthy user transaction then
apply the following to trustworthy
user precedence/link-sets
ese
apply the following to the corresponding
suspicious user precedence/link-sets
if accessed dataitemis critical and user is suspicious
reject transaction
if accessed dataitem is unconstrained & noncritical
allow read/write w/o precedence/link-set updates
if read-set(T) n write-set(T) <> {} begin
for al C&N dinwrite-set(T) do begin
precedence-set(d) = precedence-set(d) O
read-set(T);
end
end
for al C&N din read-set(T) do begin
if link-set(d) n read-set(T) <> {}begin
for al C&N dataitemsf in read-set(T)

do begin
precedence-set(f) = precedence-set(f) O
link-set(d);
end
end

end
for al C&N dinwrite-set(T) do begin
link-set(d) = write-set(T);
end
end.

Figure 3. Isolation Algorithm

The algorithm maintains with each data item several
pairs of sets, one pair corresponding to the trustworthy
users and one pair corresponding to each suspicious user.
Each pair consists of a precedence-set and a link-set.
These sets are initialized to be empty. Whenever a
transaction T is executed by a user, the corresponding pair
is updated as follows: If the intersection of the read-set of



T and the write-set of T is nonempty, then append the
read-set of T to the precedence-set of each dataitem in the
write-set of T. For each dataitem d in the read-set of T, if
the intersection of the link-set of d with the read-set of T is
nonempty, then append the link-set of d to the precedence-
set of every dataitem in the read-set of T.

Copy the write-set of T to the link-set of each data
itemin the write-set of T.

In addition, the algorithm allows trustworthy users to
select between suspicious values of data and the origina
value. If a trustworthy user G attempts to access a data
item d which was modified by a suspicious user to the
value d. G will be prompted to select between d and d.
If G chooses d, then two versions of d will be maintained.
Otherwise, one version of d will be maintained.

When a suspicious user accesses unconstrained and
noncritical data items, the precedence/link-sets are not
updated with these items. This is because only one
version of unconstrained and noncritical data is
maintained. If the suspicious user attempts to access
critical data, the transaction will be rejected.

A more formal description of the isolation algorithm
isgivenin Figure 3.

4 Data Inconsistency Detection Algorithm

When a decision is reached and the suspicious user S
is found to be malicious, the corresponding suspicious
database version is simply discarded. However, if S is
found to be innocent, updates made by S must be merged
with the main database version; any conflicting updates
must be identified so that conflicts can be resolved.

Before we look for inconsistencies, we compute the
transitive closure of each precedence set using Warshall's
algorithm (e.g., see [Baa88]).

sets by computing the set unions.

Now we look for inconsistencies by performing the
following: For each cand d if dj is in precedence-setfd

AND d, is in precedence-sef(dthen we report that dnd

d are inconsistent. The system administrator must resolv
all data items that cause inconsistencies (based on th

algorithm).

A more formal description of the algorithm is given in
Conceptually, this algorithm utilizes a
precedence graph G consisting of data items as nodes,
instead of a precedence graph that consists of transactions

Figure 4.

Combine the trustworthy
user precedence-sets with the suspicious user precedence-

e

graph G based on the computed precedence-sets. For data
items dand ¢ we place a (directegty ecedence edge from

,di to qif d;precedes d Cycles in the graph G indicate data
inconsistency.

Note that in the event that multiple suspicious users
are present, detection of inconsistency can be performed
by computing the union of all the precedence-sets for each
data item [Ram89].

Procedure Check Inconsistencies

begin
apply Warshall’s algorithmto compute
transitive closure on precedence-sets;
for each dataitem d do
full-precedence-set(d) =
trustworthy-precedence-set(d) [
suspicious-precedence-set(d);
end
for each dataitem d do
for each f in precedence-set(d) do
if disin precedence-set(f) then
[* inconsistency detected! */
report d and f
end
end.

Figure 4. Algorithm for Detecting Inconsistencies

5 Examples

In this section, we give two examples to illustrate how
the algorithm works. For simplicity, we assume that all
data items that are being accessed are constrained but
noncritical.

Example 1.
below:
BEADSET(T,) = WRITESET(T,) ={ d, d, }

Consider the five transactions given

READSET(T,) ={ d, d.}, WRITESET(T_) ={ d.}
READSET(T,) ={ d, d, d,;}, WRITESET(T,) ={ d,}
READSET(T,) = WRITESET(T,) ={ d,}
READSET(T,) ={ d,d,}, WRITESET(T,) ={ }
Here the subscripts s and t are used to denote the
fransactions executed by the suspicious and trustworthy
users, respectively. Suppose the suspicious and
trustworthy users execute transactions in the following
order:

H = Tsl Ttl TSZ T53 TIZ
Our algorithm will generate two sets of precedence

as nodes (as in [JLM98]). We construct a precedence®tS one involving the suspicious transactions and the



other involving trustworthy transactions, as shown in
Table 1. Since the precedence set P(d,) in the first column
includes d, and P(d,) in the second column includes d,, we
conclude that both d, and d, are inconsistent.

Table 1. Precedence Setsfor Example 1

Suspicious Precedence Sets Trustworthy
Precedence Sets
P(d) ={d, d} P(d) ={ d}
P(d,) ={ d, d} P(d)={}
P(d)={d.d,d} Pdy) ={}
Pd)={dd,ddd} Pd) ={}
Pd)={dd,d} Pd)={d.}

Example 2. If we change the READSET(T,) to
{d,,d}, Table 2 shows the precedence sets for all the data
items involved in the transactions. Unlike the previous
example, no inconsistencies are indicated.

Table 2. Precedence Setsfor Example 2

Suspicious Precedence Sets Trustworthy
Precedence Sets
P(d)={d.d,} P(d) ={ d}
P(d)={d.d,} P(d)={}
P(d)={d.d,d} Pdy) ={}
Pd)={dd,d,d,} Pd) ={}
Pd)={} Pd)={}

6 Correctness of the Data Inconsistency
Detection Algorithm

Before we can give a proof of the correctness of the
algorithm, we need to define the necessary terms.
Definition 1 [Ram89]. For data items d and d, we
say that d immediately precedes d if one of the following
itemsistrue:
1) d isin the read-set and d is in the write-set of a
transaction
2) The following conditions hold in a schedule S: there
exist T,, T, pP<q, in S such that
a) T,updatesd
b) T,readsd,and
a) Thereisagin read-set(T,) intersection write-set(T,)
and there is no p<u<q such that g isin write-set(T, ).

Definition 2 [Ram89]. The relation precedes is
defined on the data items as the transitive closure of the
relation immediately precedes.

Definition 3. For each data item d, we define the
precedence-set P(d) as the set of all data items that
precede d.

Definition 4. For each dataitem d, we define the link-
set(d) as the set of data items in the write-set of the
transaction that has most recently updated d and
committed after isolation occurs.

The following theorem shows the correctness of the
algorithm:

Theorem 1. After each transaction T, procedure
Isolation updates the precedence-set of each data item
correctly. That is, al data items, which immediately
precede d, are in its precedence-set.

Proof. We provide a proof using induction on the
number of transactions. If T is the first transaction, it is
easy to see that the precedence-sets are up to date. Now
we assume that after the k" transaction, the precedence-
sets are up to date. We must show that after transaction
k+1, the precedence-sets remain up to date. Now, let d be
a data item. It easy to see from the definition that the
algorithm adds all data items which immediately precede
d which resulted from the k+1¥ transaction. Also, we
claim that the link-sets are kept up to date. This follows
from the definition of alink-set. QED

Given the correctness of the isolation algorithm and
the correctness of Warshall's transitive closure algorithm,
all data items, which precede data item ae in its
precedence-set. This ensures that the check
inconsistencies algorithm detects all data items in need of
correction.

7 Related Work

McDermott and Goldschlag [MG96a, MG96b]
initiated this line of research with their work on data
jamming. They identify several techniques to detect
suspicious users.

Two papers directly relate to this work. Jajodia, et al.
[JLM98], propose application-level isolation as a security
mechanism to increase the security of information systems
vulnerable to authorized malicious users. They develop an
isolation scheme in the database context that isolates
databases from any further damage caused by malicious
users.



The current paper is different from [JLM98] in two
respects. First, in this paper the database is partitioned
into different categories, and these categories influence the
data flows between suspicious and trustworthy users.
Second, the way conflicts are identified during the merge
of the suspicious versions and the main database version is
very different. In[JLM98], the merge agorithm identifies
al transactions that violate the seriaizability requirement.
In contrast, the merge agorithm in this paper identifies all
data items that may be inconsistent. We believe that it
much easier for database administrators to take some
compensating actions [GM S87] to restore the integrity of
inconsistent data items than to try to identify the
inconsistency by examining the cycles involving multiple
transactions.

In [LIM99], Liu, et a., develop a probabilistic model
to argue that intrusion confinement can be effectively used
to resolve the conflicting design goals of an intrusion
detection system by achieving both a high rate of detection
and a low rate of errors. It is also shown that as a second
level of protection in addition to access control intrusion
confinement can dramatically enhance the security
(especialy integrity and availability) of a system in many
situations. [LIM99] presents a concrete isolation scheme
for file systems.

8 Conclusions

This paper expands the research on the concept of
isolating suspicious users at the application level. First,
we proposed categorizing data based on criticality and
integrity requirements. Then we proposed an isolation
scheme, which operates on only one of the categories
proposed, namely constrained but noncritical data items.
Finally we presented an algorithm which can efficiently
detect inconsistencies in data items when suspicious users
are present. Based on this paper, the following three
conclusions apply: First, the complexity of the algorithm
we presented is a factor of the number of data items
accessed. Second, a small constrained but noncritical data
set can help keep the overhead of this algorithm small.
Finally, a potential disadvantage of this scheme is that
resolving inconsistencies in data requires manua
intervention.
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