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Abstract—The ATLAS detector at CERN records particle
collision “events” delivered by the Large Hadron Collider. Its
data-acquisition system identifies, selects, and stores interesting
events in near real-time, with an aggregate throughput of several
10 GB/s. It is a distributed software system executed on a farm
of roughly 2000 commodity worker nodes communicating via
TCP/IP on an Ethernet network. Event data fragments are
received from the many detector readout channels and are
buffered, collected together, analyzed and either stored perma-
nently or discarded. This system, and data-acquisition systems in
general, are sensitive to the latency of the data transfer from the
readout buffers to the worker nodes. Challenges affecting this
transfer include the many-to-one communication pattern and the
inherently bursty nature of the traffic. In this paper we introduce
the main performance issues brought about by this workload,
focusing in particular on the so-called TCP incast pathology.
Since performing systematic studies of these issues is often
impeded by operational constraints related to the mission-critical
nature of these systems, we focus instead on the development
of a simulation model of the ATLAS data-acquisition system,
used as a case study. The simulation is based on the well-
established OMNeT++ framework. Its results are compared with
existing measurements of the system’s behavior. The successful
reproduction of the measurements by the simulations validates
the modeling approach. We share some of the preliminary
findings obtained from the simulation, as an example of the
additional possibilities it enables, and outline the planned future
investigations.

I. INTRODUCTION

ATLAS [1] is a high-energy physics experiment installed
at CERN, Geneva, Switzerland. Its scientific program is
mainly focused on the discovery and study of rare parti-
cle physics phenomena. The experiment’s detectors observe
proton-proton collision events delivered by the the Large
Hadron Collider (LHC) at a design frequency of 40 MHz.
Each event corresponds to 1-2 MB of data, which are used to
reconstruct the physical processes produced by the collisions.
If all collision events were to be read out and acquired,
ATLAS would produce 80 TB/s.

The sheer amount of data produced by ATLAS cannot
be all stored for later analysis. Instead, as with many other
large scale experiments, a real-time data-acquisition and data-
selection system is necessary. These systems are usually
implemented with a mix of custom hardware and software
running on commercial off-the-shelf (COTS) hardware, and
their performance and reliability have a strong impact on the
experiment as a whole. Failures and poor performance result

in the permanent loss of extremely valuable experimental
data.

Due to the mission-critical nature of these systems, a
systematic study of their performance envelope is often im-
peded by operational constraints, such as system availability
requirements or limited opportunities of performing hardware
or system software modifications. A simulation model can
thus be a worthwhile alternative, assuming that it is accurate
enough to reliably reproduce the key traits of the system.

This publication reports on the development of a simulation
of the ATLAS data-acquisition system, used as a case study.
The most significant source of performance degradation in
data-acquisition networks is described and measurements
showing its significance are presented. The paper introduces
the basic assumptions underlying the simulation model and
presents the validation tests undertaken to ensure that the
model can reliably reproduce the behavior of the real sys-
tem. Finally, some preliminary insights gained through the
simulation are reported and the future investigations enabled
by the simulation are outlined.

II. BACKGROUND: THE ATLAS TRIGGER AND
DATA-ACQUISITION SYSTEM

The ATLAS Trigger and Data-Acquisition (TDAQ) system
[2] is responsible for the selection of interesting collision
events (triggering, in high-energy physics jargon) reducing
the initial frequency of 40 MHz to ~1 kHz of stored events.
This requires an overall trigger rejection factor of the order
of 10* against unremarkable events, while retaining potential
candidates containing new physics processes, such as Higgs
boson decays. The TDAQ system, outlined in Figure 1, is
based on the combination of a hardware-based first stage and
a software-based second stage.

The first stage, called Level-1 trigger, is a synchronous
pipelined electronics system, with a guaranteed maximum
latency of 2.5 ps. It selects events using coarse-grained data
from a subset of the experiment’s detectors. It triggers the
readout at a maximum rate of 100 kHz. As part of the
selection process, it identifies regions-of-interest (Rol): parts
of the detector that recorded interesting signals that are used
as a seed for the second stage.

When an event is accepted by the Level-1, its data frag-
ments (1860 fragments of variable sizes around 1 kB, corre-
sponding to different regions of the experiment) are readout
by the detector electronics. Each fragment is pushed via a
custom point-to-point optical link into a specific hardware
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Figure 1. Logical message flow in the ATLAS Trigger and Data-Acquisition
system (the experiment is the input of the Readout Drivers and the Level-1).

buffer in one of the ~100 “readout system” nodes, which act
as the coupling between the first stage’s custom electronics
and the second stage’s COTS hardware.

The second stage, called High-Level Trigger (HLT), is a
distributed software system running on around 2000 Linux
PCs interconnected by an Ethernet network. Each HLT worker
node hosts one HLT “processing unit” per CPU core and a
single “data-collection manager”, which handles communi-
cations with the rest of the system on behalf of the node’s
processing units. A central scheduler, the HLT “supervisor”,
receives regions-of-interest information from the Level-1, and
assigns it to one of the available HLT processing units. Using
the regions-of-interest as starting points, the processing unit
incrementally retrieves and analyses event fragments, until a
decision can be taken. The event can be rejected even without
analyzing all its fragments, thus limiting the fraction of data
to be retrieved. Fragments of rejected events are deleted
from the readout systems buffers, while accepted events are
transferred to one of the Data Logger nodes for storage. The
rate of events that can be accepted is mostly determined
by the availability of computing and storage resources for
subsequent data analysis, and is foreseen to be around 1 kHz
for the 2015-2018 data taking period.

The physical layout of the Data-Acquisition and High-
Level Trigger system is represented in Figure 2. The core
of the system consists of two large network routers with a
maximum capacity of several hundred 10GbE ports. Readout
systems are directly connected to both core routers with 4
10GbE links. HLT worker nodes are organized in racks of
at most 40 nodes. Each node in a rack is connected to an
aggregation switch with a GbE link. The rack switches have
10 GbE links to both core routers. For the rationale behind
this design, please refer to [3].

III. PERFORMANCE ISSUES IN DATA-ACQUISITION
NETWORKS
A. Traffic pattern

Data-acquisition networks have to deal with a particularly
problematic traffic pattern:
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Figure 2. Network architecture of the ATLAS Data-Acquisition and High-
Level Trigger system.
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Figure 3. Visualization of the potential network congestion issues.

e The communication pattern is many-to-one.
o Data are transmitted in multiple bursts, rather than a
smooth flow.

These two characteristics do not reflect a design error, but
rather the nature of data acquisition itself. The goal is to
gather together data fragments from different components of
the experiment, hence the many-to-one communication. The
data are transferred right after the experiment has generated
them, hence the burstiness.

In the case of ATLAS, event data are striped over all
the readout systems, since each node buffers data from a
specific region of a detector. A single HLT processing unit
usually requests fragments from multiple readout systems at
the same time. As the fragments are already available in the
readout systems’ buffers and are sent as soon as the request
reaches the readout systems, many nodes will start sending
fragments at the same time to the same destination, thus
creating instantaneous network congestion (see Figure 3).

B. The TCP incast pathology

As mentioned in Section I, the ATLAS data-acquisition sys-
tem is based on Ethernet. The messaging among applications
relies on the TCP protocol. The combination of TCP, a lossy
link layer such as Ethernet, and the traffic pattern described
above is subject to a well-known TCP pathology called
incast [4]: first observed in data-center storage networks, it
occurs “when a client simultaneously receives a short burst
of data from multiple sources, overloading the switch buffers



associated with its network link such that all original packets
from some sources are dropped”.

TCP has both an active packet-drop detection mechanism,
in which the receiver detects the lost packet and causes the
sender to react very quickly, and a passive mechanism, which
is based on retransmission timeouts (R70O) on the sender side
[5]. The RTO value is calculated starting from the estimated
round-trip time [6]. However, to protect against spurious
retransmissions and interference with other TCP features such
as delayed acknowledgments, the RTO has a fixed minimum,
specified as 1 s in [6], with lower values used in actual
implementations (200 ms in Linux, 30 ms in FreeBSD). These
values are orders of magnitude larger than the round-trip
time of a data-center network, which is usually in the sub-
millisecond range. In addition, the active mechanism requires
at least some of the original packets to reach the destination
for the packet loss to be detected. When this is not the case,
the delivery of packets incurs the large delay caused by the
RTO.

C. Impact and mitigation

The data-collection latency (i.e., the latency of the data
transfer between the data sources and the processing nodes)
is critical to the performance of a data-acquisition system as
a whole. In the case of ATLAS, each of the HLT processing
units operates exclusively on the single event assigned to it,
with the HLT selection proceeding iteratively starting from
the region-of-interest identified by the Level-1, collecting
data fragments incrementally as needed. A processing unit is
blocked while it waits for the data fragments to be collected,
which means that the data-collection latency effectively trans-
lates into lost CPU time. With average event processing times
of the order of 100 ms, waiting for a TCP RTO is very
wasteful.

The TCP incast problem is well studied in literature, with
many solutions being proposed. In general the solutions point
in the direction of either specialized hardware (i.e. switches
with huge buffers), or alterations of the TCP implementation.
Due to the operational constraints mentioned in Section I,
none of these can be readily deployed in the ATLAS data-
acquisition system, as they would require significant modifi-
cations to the existing hardware or to core system software
(specifically the kernel TCP implementation).

A less invasive, but less general, solution is application-
level traffic shaping. In ATLAS, smoothing the rate of data
requests generated by a HLT node can alleviate the network
congestion by controlling the maximum size of the traffic
burst from the readout systems [7]. Obviously such a smooth-
ing mechanism imposes a trade-off: excessive smoothing can
increase the data-collection time by unnecessarily delaying
the requests for data, whereas insufficient smoothing will not
eliminate packet drops.

The ATLAS data-acquisition software currently uses a
credit-based traffic-shaping algorithm, implemented in the
Data-Collection Manager running on every HLT node. Its
basic rules are as follows.

e Each HLT worker node has a fixed number of credits
available. All the HLT processing units on a node share
these credits.

o Each data request from a processing unit to a readout
system uses as many credits as the number of fragments
it asks for.

« Each response returns the credits used by the correspond-
ing request.

o If all available credits are used, further requests are
blocked until the necessary credits become available.

The number of fragments in a request gives a rough estimation
of the size of the corresponding response. Therefore, this
algorithm effectively limits the maximum burst size of data
transfers directed to the same HLT node. However, it relies on
the assumptions that all event fragments are similar in size,
and that this size is known beforehand. These assumptions are
reasonable for ATLAS under normal operating conditions, but
not necessarily for other systems or scenarios.

IV. MEASUREMENTS

Detecting buffer overflows in an Ethernet network is a
relatively simple task: the Linux kernel provides the total
number of packet retransmissions that have occurred in a
TCP connection, and some commercial switch models report
cumulative counts of dropped packets per port via SNMP. In-
depth analysis of the root causes is not as straightforward:
important metrics, such as switch buffer occupancies, are
either not available at all or too coarse-grained to be useful.
This, combined with a protocol with sophisticated conges-
tion control algorithms, such as TCP, leads to an extremely
intricate landscape. On the other hand, generating synthetic
traffic patterns, which can be tightly controlled and are known
in advance, proves instrumental in reducing the complexity
down to a manageable level. The tests described in the
following paragraphs employ this approach.

A. Test set-up

The measurements were performed using some of the
hardware available in the ATLAS data-acquisition system.
At the time of these tests, the infrastructure was still under
consolidation, so the test set-up is slightly different from the
one described in Section I. In particular, readout systems
were not directly connected with 10GbE links to the core
routers. They were instead connected with GbE links to an
intermediate aggregation switch with a 10GbE uplink to each
core. The intermediate switch was kept under-subscribed so
that no congestion could appear there.

Given these constraints, the following test set-up, shown in
Figure 4, was chosen:

o 10 readout system groups:

— Each group consists of 16 nodes connected to one
switch (160 total).

— 12 event fragments of 1.1 kB are served by each
node (1920 total fragments, 2112 kB full event
size).

e 1 HLT rack:

— It consists of 39 PCs connected to one switch.
— Each PC hosts 24 HLT processing units (936 total).

This configuration was chosen because it provides a realistic
model of the expected network buffer usage in the final
system topology. In particular, the congestion at the rack-level
switch is well represented. The small amount of HLT nodes in
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Figure 4. Test set-up.

use with respect to the complete system does not prejudice the
usefulness of this set-up: the network congestion phenomena
individually affect the output buffers of the network ports that
are actually in use. The obtained results should scale reliably
with the higher number of HLT racks in the complete system.

The core routers use input-buffering with a peculiar imple-
mentation of switch-level virtual output queuing: input ports
are grouped in modules of 8 ports at most and each module
maintains multiple, distinct queues to every output port on
the router. The routers are equipped with deep buffers: each
module has a packet memory of 1.5 GB.

The top-of-rack switches use output-buffering. Different
models were tested. This paper focuses on two representative
models:

o Switch 1: a switch with per-port dedicated buffers of 750
kB, of which ~600 kB are available for standard-priority
packets

o Switch 2: a switch with two buffers of 12 MB each,
shared by 32 ports each, with a per-port limit of 8 MB

Among the synthetic traffic pattern tested, this paper reports
on the so-called full event building pattern:

o Events are assigned by the HLT supervisor to HLT
processing units at a constant rate.

e The processing units immediately collect all fragments
of assigned events, process them for a fixed amount of
time, and ask for a new assignment.

It should be noted that this pattern is the harshest in terms
of generated traffic bursts: since the data corresponding to
an event are collected all at once, the maximum burst size
corresponds to the event size. On the other hand, the fixed-
size fragments enable the simple traffic-shaping algorithm to
operate most efficiently.

The assignment rate parameter for the presented tests
was selected with the goal of utilizing a sizable portion
of the available bandwidth of the HLT rack uplinks, while
maintaining a comfortable margin to avoid the effects of link
saturation. The chosen 750 Hz assignment rate corresponds
to a total throughput of ~ 13 Gb/s. Due to performance
constraints, the only policy that the supervisor can use when
choosing the processing unit to which an event is assigned
is first-come first-served (FCFS), i.e. events are assigned
to processing units in order of arrival of their assignment
requests.

B. Results

The results of the measurements are shown in Figure 5.
The total data-collection time per event is influenced both by
the network conditions and by the traffic-shaping mechanism.
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Figure 5. Data-collection latency as a function of the number of traffic-
shaping credits, for (a) switch 1 and (b) switch 2. The test conditions are
detailed in Section IV-A. The bullets represent the average values. The
horizontal box lines represent the first quartile, the median, and the third
quartile. The box whiskers represent the first and the 99th percentile.

With too few traffic-shaping credits available, the large data-
collection time is due to collection inefficiency because
the HLT nodes cannot fully utilize the network bandwidth.
This is analogous to a TCP connection with a congestion
window smaller than the bandwidth-delay product. With too
many traffic-shaping credits the top-of-rack switch buffers are
overflowed, triggering the TCP incast pathology. Packet drops
are not an issue in the core router due to the deep buffers it
offers.

In the following sections, these measurements are used
as the baseline for verifying that the simulation models
developed correctly reproduce the system behavior. For a
more in-depth look at similar tests on the ATLAS data-
acquisition system, please refer to [7]. One key consideration
is worth reporting: it is possible to estimate the minimum
possible value for the data-collection latency to use as a
reference point. For this purpose, the time it takes for data
requests to reach the readout systems and the time it takes
for the readout systems to prepare the data can be neglected':
the dominant component is the time it takes to transmit the
data fragments on the slowest link in the path. In this set-up,
this corresponds to the amount of time it takes to transmit a
full event on the GbE link from the rack-level switch to the
HLT node, which is ~18 ms. It is worth noting that while the
credit-based traffic-shaping algorithm is successful in keeping
the data-collection latencies under control when configured
correctly, it also prevents the average data-collection latency

"'Measurements show that both time intervals are smaller than 0.5 ms.



from reaching that minimum, as evidenced by the latency
distributions shown in the figures.

V. SIMULATION MODEL DEVELOPMENT
A. Simulation framework

The simulation presented in this paper uses the OMNeT++
discrete event simulation® framework [8]. OMNeT++ is free
for non-commercial use and its source code is available. It
was chosen for two main reasons: its wide acceptance in the
academic community and its ease of use for the purposes of
modeling computer networks. In OMNeT++ simulations are
composed of modules, defined in the declarative NED lan-
guage, which communicate exchanging messages via module-
to-module channels. So-called simple modules are the active
components of the simulation and are implemented in C++,
leveraging the class hierarchy provided by the simulation
framework. Modules can be grouped together to form com-
pound modules and networks. The development of network
simulations is aided by built-in support for physical channels,
with latency, transmission delay, and message loss properties.

The simulation model described here is based on the INET
Framework of OMNeT++. INET is a protocol model library
which includes detailed implementations of all network lay-
ers, from the MAC layer onwards. In particular, the Ethernet,
IP, and TCP implementations are used.

B. Hosts and applications

Data-acquisition applications are implemented on top of the
standard INET host model, as shown in Figure 6. Applica-
tions interact only with the TCP module. A useful feature
of INET’s TCP module is that it supports a data transfer
mode that preserves application-level message boundaries:
e.g. if an application sends a 1 MB message the receiver
application will receive the same message, after TCP has
completely finished simulating the transmission of 1 MB
over the connection. This greatly simplifies the modeling of
message-based applications, like those in the ATLAS data-
acquisition software.

In order to simulate the test system presented in Section
IV-A, four applications need to be modeled: the readout
systems, the HLT supervisor, the data-collection manager, and
the HLT processing units.

In the real system, the HLT supervisor, which assigns
events to processing units, and the readout systems, which
serve event data fragments, are data-driven applications: their
behavior is dependent on that of the experiment and the Level-
1 trigger. In principle, this would require models of those
applications to follow traces recorded on the real system.
However, this is not necessary when trying to reproduce the
synthetic traffic patterns described in Section IV-A. The read-
out systems become trivial server applications, responding to
fragment requests with a configurable delay and response size.
The supervisor instead is reduced to a periodic scheduler.
The processing units send a message to the supervisor when
they are available, i.e. when they are ready to start processing
another event. The supervisor stores this information and uses

2In this particular sentence, the word “event” refers to simulation events.
To avoid confusion, throughout the rest of the paper, “event” will only be
used in its high-energy physics meaning, i.e. “collision event”.
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it to assign events to processing units at a configurable global
rate, by sending assignment messages.

As already mentioned, OMNeT++ simple models are im-
plemented using the C++ programming language. Since the
same language is used throughout the ATLAS data-acquisition
software, the application-level code that is relevant to the
simulation model can be ported to the simulation environment
with minimal changes. This ensures a bug-for-bug compatible
reproduction of the applications’ behavior within the model.
This approach is used for modeling the processing units,
which generate the data requests for an event, and the per-
node data-collection managers, which act as proxies between
the node’s processing units and the readout systems. In
particular, a processing unit can simulate per-event iterative
collection and processing of data: after it receives an event
assignment, it can request data from the readout systems
with a configurable pattern, emulate processing by waiting
for a configurable amount of time, and repeat this process
several times before considering the event fully processed
and asking for another one from the supervisor. Just like in
the real system, the processing units of a worker node do not
interface directly with the TCP module: their communications
are mediated by the per-node data-collection manager. Its
most relevant functions in the context of this model are the
mapping of each data request from the processing units to
messages to multiple readout systems the enforcement of the
traffic-shaping algorithm described in Section III-C.

C. Network switches

For the purposes of this simulation, the most relevant aspect
of the network hardware is packet buffering. The internal
architecture of the switches is not modeled in detail. It is
assumed that the switch speedup is high enough to prevent
input head-of-line blocking, and to make the packetization
delay of the switch cells negligible. With these assumptions,
switches are modeled as follows. For each switch port, an
INET Ethernet MAC module acts as the interface between
the physical transmission channel and the switch. It sends
incoming frames to an ideal frame relay unit, which maintains
the switch’s MAC address table and instantaneously forwards
frames towards their destination port (or broadcasts them if
the destination is not yet present in the address table). One
or more ‘“packet droppers” intercept frames between the relay
unit and the switch output queues. These modules selectively
drop frames, depending on the total buffer space available
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Figure 7. Models of output buffered switches with (a) dedicated per-port
buffers and (b) shared buffers.

in the queues that are connected to their outputs, effectively
defining the switch buffering scheme. Frames that were not
dropped are stored in the switch’s output queues, waiting for
the Ethernet MAC to pull them from the queue when the
transmission channel is ready.

Two basic buffering schemes are considered: dedicated and
shared. In the dedicated buffers model, shown in Figure 7a,
there is a dropper for every output port, effectively modeling
tail-drop queues. In the shared buffer model, shown in Figure
7(b), a single dropper guards all the output ports. The two
basic schemes can naturally be integrated to model more
complex architectures, e.g. with buffer space limits both on
a per-switch basis and on a per-port basis.

D. Complete model

The components described in the previous sections are
assembled to create a model of the test system described
in Section IV-A. The observed simulation run-time depends
on the rate of events scheduled by the supervisor. The
relation between simulated time ¢ and simulation runtime 7" is
approximately given by: T' = t-r/ R, where r is the supervisor
assignment rate, and R is a constant which is roughly equal
to 5 Hz when running the simulation on a modern CPU.
As an example, this gives a runtime of ca. 100 minutes for
simulating 30 s of a system running at 1 kHz.

VI. ANALYSIS AND COMPARISON OF MEASURED AND
SIMULATED RESULTS

A. Validation

The model outlined in Section V has some obvious approx-
imations, the most important one being the simplified switch
architecture. This is not only a design choice: details on the
architecture of commercial network equipment are extremely
scarce and, when available, are geared towards marketing

N
o
S

«
é —&— Measurement
o —®—  Sim, Supervisor policy: FCFS
E —a—  sim, Supervisor policy: random
=
§ 300
=
S
2
©
S
8
© i
8 200

100] 2

\*7A~~A—A7 E—¢
0 1 1
100 1000
Traffic shaping credits
(@)

% 400 T 7
E —&— Measurement ‘//
@ ®—  Sim, Supervisor policy: FCFS, Buffer: 10 MB 4
E —e—  Sim, Supervisor policy: FCFS, Buffer: 12 MB /
= A—  Sim, Supervisor policy: random, Buffer: 10 MB /
_S 300F| —¥— Sim, Supervisor policy: random, Buffer: 12 MB 1/ 4
©
2
©
S
]
® L
= 200

100

Il
100 1000
Traffic shaping credits

(b)

Figure 8. Comparison of measured and simulated data-collection latencies
for different settings of the traffic-shaping algorithm, using (a) switch 1 and
(b) switch 2.

rather than engineering. Another potential source of inac-
curacies in the simulation is the TCP congestion avoidance
algorithm. The most commonly used protocol model libraries
only provide the “traditional” TCP variants: Tahoe, Reno,
Vegas and New Reno. Support for more recent variants such
as TCP CUBIC (the algorithm currently in use in Linux) relies
on models built by adapting the Linux kernel TCP stack for
use in the simulation. To avoid this extra complexity, for the
results presented here New Reno was selected. While none
of the mentioned algorithms can effectively prevent the incast
problem, their impact on other facets of the simulation might
render it unreliable. For these reasons, it is crucial to validate
the model against the measured behavior of the system, before
it is used to draw conclusions on scenarios that cannot easily
be tested in practice.

As explained in Section III-C, the key application perfor-
mance metric is the average data-collection latency per event.
Therefore, the focus here is on comparing the measured data
presented in Section IV-B with the simulated latencies, as
shown in Figure 8. As a significant example of the additional
investigations enabled by the simulation, two settings for
the HLT supervisor event assignment policy are considered.
The first one, FCFS, more closely corresponds to the actual
implementation. The second policy consists in choosing a
random processing unit out of all of those that requested an
assignment, without regard for the order in which they did
SO.
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The most important feature to reproduce is the onset of
the TCP incast pathology, evidenced by the abrupt increase
in data-collection latency as the traffic-shaping algorithm
allows an excessive number of data requests to be in-flight.
The model is successful in this. When simulating Switch
1, the onset point is identical at 480 traffic-shaping credits,
corresponding to a maximum per-node burst size of ~550 kB.
This is expected, as the switch has 600 kB per-port output
buffers. When simulating Switch 2, the incast onset points of
measurement and simulations are close, but not identical, with
the simulation being more forgiving. This can be explained
by an overly optimistic choice of buffering parameters in
the simulation. Taking the manufacturer’s parameters at face
value, the switch’s shared buffer memory is 12 MB. However,
some of that memory is reserved for quality-of-service pur-
poses and cannot be used by standard-priority packets. Indeed,
with a simulated buffer size of 10 MB, the incast onset point
coincides in simulation and measurement.

The model of the traffic-shaping algorithm benefits from
the code sharing with its actual implementation. As a conse-
quence, the simulation is particularly accurate in the region of
the parameter space where the latency is heavily influenced by
the shaping, i.e. where the algorithm is effective in preventing
packet drops. Further confirmation of the accuracy of the
simulation comes from comparing the distributions of the
data-collection times, rather than just their mean values. As an
example, the two superimposed histograms in Figure 9 show
the measured and simulated distributions for Switch 1 at 480
traffic-shaping credits, i.e. the highest setting not suffering
from incast. The histograms are in very good agreement and
demonstrate the effect of the traffic-shaping algorithm. A
sizable portion of the events are fully collected within 20 ms,
which is compatible with the minimum latency estimated in
Section IV-B (18 ms), presumably because all their fragments
were collected when no other events were competing for the
same credits. The other events need to wait for enough credits
to become available, hence the long tail of the distribution.

B. Preliminary findings

With the consistency of the simulation model with the real
system measurements reasonably established, the focus can
shift to more simulated scenarios that could not easily be
enacted in practice.

One such scenario is applying a different event-scheduling
policy in the HLT supervisor. As mentioned in Section IV-A
performance limitations currently prevent event-scheduling
policies more complex than FCFS from being implemented

in the supervisor. The simulation is not affected by such
issues, so an alternative policy, such as randomly choosing
a processing unit out of the available ones, can be modeled.

The results are shown in Figure 8. The change in policy
from FCFS to random leads to a very significant reduction
of the data-collection latency, especially in the region of the
parameter space where the traffic-shaping algorithm prevails.
The explanation for this difference lies in the mapping of
processing units to nodes. While the traffic-shaping credits
limit is applied on a per-node basis, the event scheduling
(and associated data collection) happens on a per-processing-
unit basis. In the particular set-up used, there are 24 units
per node (see Section IV-A). The random policy reduces the
probability that two or more events will be assigned in a short
interval to units hosted by the same node. Units on different
nodes do not compete for the same credit pool, ultimately
resulting in lower average data-collection latency.

The simulation also enables studying the effects of hard-
ware parameters that cannot so easily be modified in practice.
One of these is the size of the packet buffers in the top-
of-rack switches. The simulation can be used to determine
the relation between the amount of memory and the data-
collection latency, with the workload described in Section
IV-A and with the traffic-shaping algorithm disabled.

The results for a switch with dedicated per-port memory are
shown in Figure 10a. When employing the FCFS assignment
policy, buffers of at least 4.8 MB effectively prevent packet
drops and the latency can reach its lowest value (slightly lower
than 20 ms, compatible with the minimum latency estimated
in Section IV-B). However, with the random assignment
policy, the lowest latency is only reached with 8 MB buffers.
This discrepancy, and in general the better performance of
FCFS in this scenario, can be explained. If two events are
consecutively assigned to two processing units on the same
worker node, the data for the second event incurs a larger
delay, since the buffer of the worker node’s switch port still
contains data from the first event, leading to queuing delays
or overflow. This effect changes the order of the supervisor’s
FCFS queue: over time, entries in the queue referring to
different units on the same worker node distance themselves.
The available switch buffer memory is therefore used more
efficiently, and less of it is necessary to prevent packet drops.

The results for a switch with shared memory are shown
in 10b. In this scenario, both with the FCFS and random
assignment policies, packet drops are prevented with a buffer
size of at least 26 MB. However, for smaller buffer sizes,
the random assignment policy performs better than FCFS.
This is explained by the fact that, in a switch with fully
shared memory, packet drops are not directly related to the
occupancy of their output queue. Therefore, the beneficial
effect described in the above paragraph does not apply, and
the random assignment policy ensures a more uniform usage
of the switch outputs, thus reducing packet drops.

VII. RELATED WORK

Characteristics of other large-scale data-acquisition systems
can be found for example in [9] for the LHCb experiment
and [10] for the ALICE experiment. Details of the CMS
experiment’s InfiniBand-based system are in [11].
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Figure 10.  Average data-collection latency (with no traffic-shaping) as a
function of the top-of-rack switch buffer size, using (a) dedicated per-port
buffers and (b) shared buffers.

Alternative general-purpose network simulation frame-
works include the open-source ns-3 [12] and the commercial
SteelCentral NetModeler (formerly OPNET Modeler). Ns-3
includes a good-quality port of the Linux TCP implementa-
tion, which could improve the accuracy of the simulation in
reproducing TCP behavior.

The TCP incast pathology received a considerable amount
of attention in the academic community. See [13] for a review.
The application of some of the proposed solutions to a small
prototype of the ATLAS data-acquisition network is reported
on in [14].

VIII. CONCLUSION AND FUTURE DIRECTIONS

The simulation model presented in this paper was proven
capable of reproducing the key performance traits of a
complex data-acquisition system such as the ATLAS TDAQ
system. Already at this verification stage, comparing the
simulated and measured results yields useful indications
that can drive optimizations and further development of the
system. The approach employed in the development of the
model, aiming at keeping complexity at a minimum without
sacrificing accuracy, can be extended to systems with similar
traffic patterns.

Using this work as a starting point, more speculative trials
can be undertaken. In particular, three categories of solutions
to the incast pathology can be modeled: more sophisticated
application-level traffic shaping, alterations of the transport
protocol itself (requiring kernel modifications in the real

system) and of the link layer (requiring hardware changes).
The second category includes solutions such as reducing
TCP’s minimum RTO limit or experimental incast-aware TCP
variants. The third category mainly refers to alternative link-
layer technologies such as Infiniband or recent additions
to the Ethernet standards such as IEEE 802.1Q Congestion
Notification.
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