
Distributed Semantic Web Data Management in HBase and MySQL Cluster

Craig Franke, Samuel Morin, Artem Chebotko †, John Abraham, and Pearl Brazier
Department of Computer Science

University of Texas - Pan American
1201 West University Drive, Edinburg, TX 78539-2999, USA

† Corresponding author. Email: artem@cs.panam.edu

Abstract—Various computing and data resources on the Web
are being enhanced with machine-interpretable semantic de-
scriptions to facilitate better search, discovery and integration.
This interconnected metadata constitutes the Semantic Web,
whose volume can potentially grow the scale of the Web.
Efficient management of Semantic Web data, expressed using
the W3C’s Resource Description Framework (RDF), is crucial
for supporting new data-intensive, semantics-enabled applica-
tions. In this work, we study and compare two approaches to
distributed RDF data management based on emerging cloud
computing technologies and traditional relational database
clustering technologies. In particular, we design distributed
RDF data storage and querying schemes for HBase and
MySQL Cluster and conduct an empirical comparison of these
approaches on a cluster of commodity machines using datasets
and queries from the Third Provenance Challenge and Lehigh
University Benchmark. Our study reveals interesting patterns
in query evaluation, shows that our algorithms are promising,
and suggests that cloud computing has a great potential for
scalable Semantic Web data management.

Keywords-Semantic Web; cloud computing; distributed
database; SPARQL; SQL; RDF; query; performance; scala-
bility; HBase; MySQL Cluster

I. INTRODUCTION

The World Wide Web Consortium (W3C) has recom-
mended and standardized a number of principles, languages,
frameworks and best practices to interconnect various meta-
data into a next-generation web – the Semantic Web. The
W3C’s metadata acquisition languages include Resource
Description Framework (RDF), RDF in attributes (RDFa),
RDF Schema (RDFS), and Web Ontology Language (OWL).
Government, academia, and industry actively embrace these
technologies for capturing and sharing metadata on the
Semantic Web. Just to name a few examples, oeGOV is
making and publishing OWL ontologies for e-Government,
U.S. census data is being published in RDF, bioinformati-
cians maintain the Universal Protein Resource (UniProt)
in RDF, geoscientists publish worldwide geographical RDF
database GeoNames, the largest electronics retailer in the
U.S., BestBuy, publishes its full catalog in RDF, the largest
social networking provider in the U.S., Facebook, embeds
metadata in its webpages using RDFa, and the services
computing community enhances existing Web services with
semantic annotations using vocabularies, such as Semantic

Markup for Web Services (OWL-S), Web Service Semantics
(WSDL-S), and Semantic Web Services Ontology (SWSO).

The RDF data model is a directed, labeled graph that can
also be serialized and viewed as a set of triples. A running
example in this paper includes 10 triples that describe the
authors using the Lehigh University Benchmark (LUBM)
vocabulary [1] as shown in Fig. 1. Each triple consists of
a subject, predicate, and object and defines a relationship
between a subject and an object. In the figure, <> and “”
denote resource identifiers and literals of some data type,
respectively. For example, the first three triples state that a
resource with identifier C is a Student, has name Craig and is
a member of IEEE. This sample dataset can be queried using
SPARQL – a standard query language for RDF. SPARQL
uses triple patterns and graph patterns that are matched over
RDF data. For example, query Q14 from LUBM contains
one triple pattern ?X <type> <UndergraduateStudent> that
returns all undergraduate student identifiers as bindings of
variable ?X. More details on SPARQL features and seman-
tics can be found in the W3C’s SPARQL specification.

With the rapid growth of the Semantic Web and
widespread use of RDF as the primary language for meta-
data, efficient management of RDF data will become cru-
cial for supporting new semantics-enabled applications in
various domains. Many researchers have proposed using
relational databases to store and query large RDF datasets.
Such systems, called relational RDF databases or relational
RDF stores [2], are now frequently in production. More
recently, distributed technologies that are often used in cloud
computing, such as Hadoop1 and HBase2, are being explored
for distributed and scalable RDF data management [3],
[4]. To our best knowledge, this work provides the first
performance comparison of the two worlds using our design
and algorithmic solutions for storing and querying RDF data
in HBase and MySQL Cluster.

The main contributions of this paper are: (i) a novel
database schema design for storing RDF data in HBase,
(ii) efficient algorithms for SPARQL triple and basic graph
pattern matching in HBase according to our schema, (iii) ef-
ficient SPARQL-to-SQL translation algorithm that results

1Apache Hadoop, http://hadoop.apache.org
2Apache HBase, http://hbase.apache.org



<C> <type> <Student>
<C> <name> "Craig"
<C> <memberOf> <IEEE>
<S> <type> <Student>
<S> <name> "Sam"
<S> <memberOf> <ACM>
<A> <type> <Faculty>
<A> <name> "Artem"
<A> <memberOf> <IEEE>
<A> <memberOf> <ACM>

Figure 1. Sample RDF triples.

in flat SQL queries over our schema in MySQL Cluster,
and (iv) empirical comparison of the proposed HBase and
MySQL Cluster approaches for efficient and scalable storing
and querying of Semantic Web data. Our work reveals
interesting patterns in query evaluation, shows that our
algorithms are promising, and suggests that cloud comput-
ing has a great potential for scalable Semantic Web data
management.

The organization of this paper is as follows. Related work
is discussed in Section II. Our design and algorithms for
distributed RDF data storage and querying in HBase and
MySQL Cluster are presented in Sections III and IV, respec-
tively. The performance study of the two approaches using
datasets and queries from the Third Provenance Challenge
and Lehigh University Benchmark is reported in Section V.
Finally, our concluding remarks are given in Section VI.

II. RELATED WORK

Besides HBase, which is an open-source implementation
of Google’s Bigtable [5], there are multiple projects under
the Apache umbrella that focus on distributed computing,
including Hadoop, Cassandra, Hive, Pig, and CouchDB.
Hadoop implements a MapReduce software framework and
a distributed file system. Cassandra blends a fully distributed
design with a column-oriented storage model and supports
MapReduce as one of its features. Hive deals with data
warehousing on top of Hadoop and provides its own Hive
QL query language. Pig is geared towards analyzing large
datasets through use of its high-level Pig Latin language for
expressing data analysis programs, which are then turned
into MapReduce jobs. CouchDB is a distributed, document-
oriented, non-relational database that supports incremental
MapReduce queries written in JavaScript. Along the same
lines, other projects in academia and industry include Chee-
tah, Hadoop++, G-Store, and HadoopDB.

Several related works on distributed RDF data manage-
ment are briefly discussed in the following. Techniques for
evaluating SPARQL basic graph patterns using MapReduce
are presented in [3] and [6]. Efficient approaches to ana-
lytical query processing and distributed reasoning on RDF
graphs in MapReduce-based systems are proposed in [7]
and [8], respectively. RDF query processing in peer-to-peer
environments is studied in [9] and [10], and mediation
techniques for federated querying of distributed RDF sources
are reported in [11] and [12]. Use of HBase for text indexing

is described in [13]. While the SPIDER system [14] that uses
HBase for RDF query processing and the HBase extension
for Jena3 are announced, no details are reported. Finally,
our previous work [4] presents our initial findings on RDF
data management in HBase. This paper, when compared to
[4], proposes new, more effective HBase database schema
design, more efficient algorithms for SPARQL triple and
basic graph pattern matching, and an empirical comparison
with a distributed relational RDF database. Our experimental
comparison with [4] (not reported in the paper) showed
several orders of magnitude speedup for some queries and
substantial improvements in scalability. To our best knowl-
edge, this paper and our previous paper [4] are the first
published research works on Semantic Web data manage-
ment in HBase. Our comparison of RDF data management
techniques in HBase and MySQL Cluster is also unique.

III. DISTRIBUTED RDF DATA STORAGE AND QUERYING

IN HBASE

HBase stores data in tables that can be described as sparse
multidimensional sorted maps and are structurally different
from relations found in conventional relational databases. An
HBase table (hereafter “table” for short) stores data rows that
are sorted based on the row keys. Each row has a unique row
key and an arbitrary number of columns, such that columns
in two distinct rows do not have to be the same. A full
column name (hereafter “column” for short) consists of a
column family and a column qualifier (e.g., family:qualifier),
where column families are usually specified at the time of
table creation and their number does not change and column
qualifiers are dynamically added or deleted as needed. A
column of a given row, which we denote as table cell, can
store a list of timestamp-value pairs, where timestamps are
unique in the cell scope and values may contain duplicates.
Rows in a table can be distributed over different machines in
an HBase cluster and searched using two basic operations:
(1) table scan and (2) retrieval of row data based on a given
row key and, if available, columns and timestamps. Given
that the table scan access path is inefficient for large datasets,
the row key-based retrieval is the best feasible choice.

The sparse nature of tables makes them an attractive stor-
age alternative for RDF data. RDF graphs are usually sparse
as well: different resources are annotated with different
properties and some annotations may not be stated explicitly
due to inference. To support efficient retrieval of RDF data
from tables in HBase, the basic querying constructs of
SPARQL, such as triple patterns, should be considered. At
the very minimum, the database should support retrieval of
RDF triples based on values of their subjects, predicates,
objects, and their arbitrary combination.

We propose to use a database schema with two tables to
store RDF triples as shown in Fig. 2. Table 𝑇𝑠𝑝 stores triple

3HBase Graph for Jena, http://cs.utdallas.edu/semanticweb/
HBase-Extension/hbase-extension.html



𝑇𝑠𝑝

s p:type p:name p:memberOf ...
<C> {<Student>} {"Craig"} {<IEEE>} ...
<S> {<Student>} {"Sam"} {<ACM>} ...
<A> {<Faculty>} {"Artem"} {<IEEE>,<ACM>} ...

𝑇𝑜𝑝

o p:type p:name p:memberOf ...
<Student> {<C>,<S>} ...
<Faculty> {<A>} ...
"Craig" {<C>} ...
"Sam" {<S>} ...

"Artem" {<A>} ...
<IEEE> {<C>,<A>} ...
<ACM> {<S>,<A>} ...

Figure 2. Storage schema and sample instance in HBase.

subjects as row keys, triple predicates as column names and
triple objects as cell values. Table 𝑇𝑜𝑝 stores triple objects
as row keys, triple predicates as column names and triple
subjects as cell values. Fig. 2 shows a two-dimensional
graphical representation of these tables with our sample RDF
triples (see Fig. 1) stored. In the figure, 𝑠 and 𝑜 denote row
keys rather than columns; type, name, and memberOf are
column qualifiers that belong to the same column family
p; { } denote sets of cell values with timestamps omitted.
More precisely, the structure of the rows can be shown using
JavaScript Object Notation (JSON):

//the first row of 𝑇𝑠𝑝

<C>: {
p: {

type: { t1: <Student> },
name: { t2: "Craig" },
memberOf: { t3: <IEEE> }

}
}
//the first row of 𝑇𝑜𝑝

<Student>: {
p: {

type: { t4: <C>,
t5: <S> }

}
}

In the first row of 𝑇𝑠𝑝, <C> is a row key, p is a column
family, type, name, and memberOf are column qualifiers,
t1, t2, and t3 are timestamps, and the rest are values. The
structure of the first row of 𝑇𝑜𝑝 can be interpreted in a
similar way but it should be noted that, while the graphical
representation in Fig. 2 shows blank values for some table
cells, the row contains no information about such values or
the respective columns. This illustrates the sparse storage
nature of HBase tables and shows that no space is wasted.

The proposed schema requires that RDF data is stored
twice - replication that contributes to the robustness of
the system. Tables 𝑇𝑠𝑝 and 𝑇𝑜𝑝 can be used to efficiently
retrieve triples with known subjects and objects, respectively.
Retrieval of triples based on a predicate value requires a scan
of one of the tables, which may not be efficient. To try to
remedy this problem, we could have created a table, i.e., 𝑇𝑝𝑠

or 𝑇𝑝𝑜, with predicates as row keys and subjects or objects
as columns. However, such a solution can only provide
marginal improvements, since the number of predicates in an

ontology is usually fixed and relatively small, which implies
that this new table can contains only a small number of
large rows (one per distinct predicate) and retrieval of any
individual row is still expensive.

For HBase to be able to evaluate SPARQL queries, we
design three functions that deal with triple patterns and basic
graph patterns.

Our first function, matchTP-T, is a general-purpose func-
tion that depends on neither our storage schema nor HBase.
matchTP-T takes a triple pattern 𝑡𝑝 and a triple 𝑡 and returns
true if they match or false otherwise. Its pseudocode is
outlined in [4].

Function matchTP-DB as outlined in Algorithm 1 is
used to match a triple pattern 𝑡𝑝 in an HBase database
𝐷𝐵 according to our storage schema with two tables. The
output of this function is a bag (multi-set) 𝐵 that holds all
matching triples in the database. The algorithm deals with
three disjoint cases. First, if 𝑡𝑝’s subject pattern is not a
variable, the function retrieves matching triples from table
𝑇𝑠𝑝, such that a row with key 𝑡𝑝.𝑠𝑝 is accessed. If 𝑡𝑝.𝑝𝑝 is
not a variable, only values in the column with qualifier 𝑡𝑝.𝑝𝑝
are retrieved for this row; otherwise, all columns must be
retrieved. Triples are reconstructed from row keys, column
qualifiers, and cell values and are placed into 𝐵. Since 𝑡𝑝.𝑜𝑝
may not be a variable or it may be a variable that occurs
twice in the triple pattern, matchTP-T is applied on all the
triples to eliminate non-matching ones. After this filtering,
triples in 𝐵 are returned. Second, if 𝑡𝑝’s object pattern is
not a variable, the function retrieves matching triples from
table 𝑇𝑜𝑝 using a similar strategy. Finally, when both 𝑡𝑝.𝑠𝑝
and 𝑡𝑝.𝑜𝑝 are variables, one of the tables must be scanned
to retrieve all rows. If 𝑡𝑝.𝑝𝑝 is not a variable, non-matching
columns are discarded; otherwise, values in all columns are
used.

Our last function matchBGP-DB is outlined in Algo-
rithm 2. It matches a SPARQL basic graph pattern 𝑏𝑔𝑝 that
consists of a set of triple patterns 𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛 over
an HBase database and returns a relation with a bag 𝐵 of
graphs constituted by matching triples. The algorithm starts
by ordering triple patterns in 𝑏𝑔𝑝 using two criteria: (1) triple
patterns that yield a smaller result should be evaluated first
to decrease a number of iterations and (2) triple patterns that
have a shared variable with preceding triple patterns should
be given a preference over triple patterns with no shared
variables to avoid unnecessary Cartesian products. As an
example, consider the following query from LUBM [1] and
its reordered version:

//original query Q7 from LUBM
𝑡𝑝1: ?X <type> <Student> .
𝑡𝑝2: ?Y <type> <Course> .
𝑡𝑝3: <http://...Professor0> <teacherOf> ?Y .
𝑡𝑝4: ?X <takesCourse> ?Y .

//reordered basic graph pattern
𝑡𝑝3: <http://...Professor0> <teacherOf> ?Y .
𝑡𝑝2: ?Y <type> <Course> .
𝑡𝑝4: ?X <takesCourse> ?Y .
𝑡𝑝1: ?X <type> <Student> .



Algorithm 1 Matching a triple pattern over a database
1: function matchTP-DB
2: input: triple pattern 𝑡𝑝 = (𝑠𝑝, 𝑝𝑝, 𝑜𝑝), database 𝐷𝐵 = {𝑇𝑠𝑝, 𝑇𝑜𝑝}
3: output: bag of triples 𝐵(𝑠𝑝,𝑝𝑝,𝑜𝑝) = {𝑡∣𝑡 is in 𝐷𝐵 ∧ 𝑡 matches 𝑡𝑝}
4: 𝐵 = ø
5: if 𝑡𝑝.𝑠𝑝 is not a variable then
6: if 𝑡𝑝.𝑝𝑝 is not a variable then
7: Retrieve triples into bag 𝐵 from 𝑇𝑠𝑝 where row key 𝑠 = 𝑡𝑝.𝑠𝑝 using

column 𝑡𝑝.𝑝𝑝
8: else
9: Retrieve triples into bag 𝐵 from 𝑇𝑠𝑝 where row key 𝑠 = 𝑡𝑝.𝑠𝑝 using

all columns
10: end if
11: Remove any triple 𝑡 ∈ 𝐵 from 𝐵 if matchTP-T(𝑡𝑝, 𝑡) = false
12: return 𝐵
13: end if

14: if 𝑡𝑝.𝑜𝑝 is not a variable then
15: if 𝑡𝑝.𝑝𝑝 is not a variable then
16: Retrieve triples into bag 𝐵 from 𝑇𝑜𝑝 where row key 𝑜 = 𝑡𝑝.𝑜𝑝 using

column 𝑡𝑝.𝑝𝑝
17: else
18: Retrieve triples into bag 𝐵 from 𝑇𝑜𝑝 where row key 𝑜 = 𝑡𝑝.𝑜𝑝 using

all columns
19: end if
20: Remove any triple 𝑡 ∈ 𝐵 from 𝐵 if matchTP-T(𝑡𝑝, 𝑡) = false
21: return 𝐵
22: end if

23: if 𝑡𝑝.𝑝𝑝 is not a variable then
24: Retrieve triples into bag 𝐵 from 𝑇𝑠𝑝 (or 𝑇𝑜𝑝) using column 𝑡𝑝.𝑝𝑝
25: else
26: Retrieve triples into bag 𝐵 from 𝑇𝑠𝑝 (or 𝑇𝑜𝑝) using all columns
27: end if
28: Remove any triple 𝑡 ∈ 𝐵 from 𝐵 if matchTP-T(𝑡𝑝, 𝑡) = false
29: return 𝐵
30: end function

The order in the original query does not satisfy the desired
criteria: 𝑡𝑝1 yields a large result set with all students across
all universities in a dataset; 𝑡𝑝2 has no shared variables
with 𝑡𝑝1 and a memory-expensive Cartesian product must
be computed between 𝑡𝑝1’s and 𝑡𝑝2’s results. The reordered
query can save both memory and network transfer time:
not only is 𝑡𝑝3, the triple pattern with the smallest result,
placed at the first position, but the Cartesian product is also
eliminated.

Next, the algorithm evaluates the first triple pattern in
ordered 𝑏𝑔𝑝 using matchTP-DB. If the result in 𝐵 is empty,
the algorithm returns an empty result without evaluating sub-
sequent triple patterns. Otherwise, matchBGP-DB iterates
over other triple patterns computing either joins on shared
variables or Cartesian products if no shared variables exist.
Each join resembles the index-nested-loops join strategy
known in relational databases. Instead of directly evaluating
triple pattern 𝑡𝑝𝑖 using matchTP-DB, shared variables are
first substituted with their bindings found in 𝐵 and the
resulting triple patterns 𝑡𝑝′ in set 𝑇𝑃 are evaluated using
matchTP-DB. If 𝑡𝑝′ yields a non-empty result, triples
in 𝐵′ are concatenated with the corresponding triples in
𝐵; otherwise, previous solutions from 𝐵 whose variable
bindings were used in variable substitution to obtain 𝑡𝑝′ are
removed as the join condition has failed.

Other SPARQL constructs, such as projection (SELECT),
filtering (FILTER), alternative graph patterns (UNION), and

Algorithm 2 Matching a basic graph pattern over a database
1: function matchBGP-DB
2: input: basic graph pattern 𝑏𝑔𝑝 = {𝑡𝑝1, 𝑡𝑝2, . . . , 𝑡𝑝𝑛−1, 𝑡𝑝𝑛} and 𝑛 ≥ 1,

database 𝐷𝐵 = {𝑇𝑠𝑝, 𝑇𝑜𝑝}
3: output: bag of tuples 𝐵(𝑡𝑝1.𝑠𝑝,𝑡𝑝1.𝑝𝑝,𝑡𝑝1.𝑜𝑝,𝑡𝑝2.𝑠𝑝,...) = {𝑔∣𝑔 is a graph

in 𝐷𝐵 ∧ 𝑔 matches 𝑏𝑔𝑝}
4: 𝐵 = ø
5: Order triple patterns in 𝑏𝑔𝑝, such that triple patterns that yield a smaller result

and triple patterns that have a shared variable with preceding triple patterns
should be evaluated first.

6: Let ordered 𝑏𝑔𝑝 = (𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛)
7: 𝐵 = matchTP-DB(𝑡𝑝1, 𝐷𝐵)
8: if 𝐵 = ø then return 𝐵 end if
9: for each 𝑡𝑝𝑖 in (𝑡𝑝2, ..., 𝑡𝑝𝑛) do

10: if 𝑡𝑝𝑖 has shared variables with 𝑡𝑝𝑖−1, ..., 𝑡𝑝1 then
11: Let 𝑇𝑃 be a set of triple patterns obtained by substituting shared

variables with their respective bindings from 𝐵
12: for each 𝑡𝑝′ in 𝑇𝑃 do
13: 𝐵′ = matchTP-DB(𝑡𝑝′, 𝐷𝐵)
14: if 𝐵′ ∕= ø then
15: Add triples in 𝐵′ to 𝐵 by concatenating each triple 𝑡′ ∈ 𝐵′

with every tuple 𝑡 ∈ 𝐵 if 𝑡’s bindings were used in variable
substitution to obtain 𝑡𝑝′

16: else
17: Remove any tuple 𝑡 from 𝐵 if 𝑡’s bindings were used in variable

substitution to obtain 𝑡𝑝′

18: if 𝐵 = ø then return 𝐵 end if
19: end if
20: end for
21: else
22: 𝐵′ = matchTP-DB(𝑡𝑝𝑖, 𝐷𝐵)
23: Compute Cartesian product of 𝐵 and 𝐵′, i.e. 𝐵 = 𝐵 × 𝐵′

24: end if
25: end for
26: return 𝐵
27: end function

optional graph patterns (OPTIONAL) can be incorporated in
the presented algorithmic framework, but is out of this paper
scope.

IV. DISTRIBUTED RDF DATA STORAGE AND QUERYING

IN MYSQL CLUSTER

Relational RDF databases use several approaches to
database schema generation that include schema-oblivious,
schema-aware, data-driven, and hybrid strategies [15]. These
approaches feature various database relations, such as prop-
erty, class, class-subject, class-object, and clustered property
tables. In this work, we use a schema-oblivious approach
that employs a generic schema with a single table 𝑇 (𝑠, 𝑝, 𝑜),
where columns 𝑠, 𝑝, and 𝑜 store triple subjects, predicates,
and objects, respectively. Fig. 3 shows table 𝑇 with our
sample RDF triples (see Fig. 1) stored.

Our rationale for choosing this schema is threefold. First,
it can support ontology evolution with no schema modifica-
tions. The schema proposed for HBase is also very flexible
as only column qualifiers may dynamically change and
such changes are performed on the row level. Second, most
mentioned tables employed by relational RDF databases can
be viewed as a result of horizontal partitioning of table
𝑇 . However, partitioning is already performed by MySQL
Cluster automatically. Finally, this schema allows lossless
storage and is easy to implement. In particular, it greatly
simplifies SPARQL-to-SQL translation that is required to



𝑇
s p o

<C> <type> <Student>
<C> <name> "Craig"
<C> <memberOf> <IEEE>
<S> <type> <Student>
<S> <name> "Sam"
<S> <memberOf> <ACM>
<A> <type> <Faculty>
<A> <name> "Artem"
<A> <memberOf> <IEEE>
<A> <memberOf> <ACM>

Figure 3. Storage schema and sample instance in MySQL Cluster.

query stored RDF data.
To execute SPARQL queries over our database schema

in MySQL Cluster, we present a SPARQL-to-SQL query
translation algorithm for basic graph patterns. The algorithm
is based on our previous work [15] on semantics-preserving
SPARQL-to-SQL translation, but it is optimized to generate
flat SQL queries. Query flattening (vs. nesting) removes a
concern of triple pattern reordering in basic graph patterns
since a relational query optimizer is capable of selecting a
“good” join execution order automatically.

Algorithm 3 Translation of SPARQL basic graph patterns
to flat SQL queries

1: function BGPtoFlatSQL
2: input: basic graph pattern 𝑏𝑔𝑝 = {𝑡𝑝1, 𝑡𝑝2, . . . , 𝑡𝑝𝑛−1, 𝑡𝑝𝑛} and 𝑛 ≥ 1,

database 𝐷𝐵 = {𝑇}
3: output: flat SQL query
4: Assign a unique alias 𝑎𝑖 to each triple pattern 𝑡𝑝𝑖 ∈ 𝑏𝑔𝑝
5: 𝑠𝑒𝑙𝑒𝑐𝑡 = “”; 𝑓𝑟𝑜𝑚 = “”; 𝑤ℎ𝑒𝑟𝑒 = “”
6: //Construct the SQL From clause:
7: for each 𝑡𝑝𝑖 ∈ 𝑏𝑔𝑝 do
8: 𝑓𝑟𝑜𝑚 += “𝑇 $𝑎𝑖, ”
9: end for

10: //Construct an inverted index (hash) ℎ on variables in 𝑏𝑔𝑝:
11: for each 𝑡𝑝𝑖 ∈ 𝑏𝑔𝑝 do
12: for each variable ?𝑣 found in 𝑡𝑝𝑖 do
13: Let 𝑝 be “s”, “p”, or “o” if ?𝑣 is at the subject, predicate, or object

position, respectively, in 𝑡𝑝𝑖

14: ℎ(?𝑣) = ℎ(?𝑣) ∪ {“$𝑎𝑖.$𝑝”}
15: end for
16: end for
17: //Construct the SQL Where clause:
18: for each 𝑡𝑝𝑖 ∈ 𝑏𝑔𝑝 do
19: for each instance or literal 𝑙 found in 𝑡𝑝𝑖 do
20: Let 𝑝 be “s”, “p”, or “o” if 𝑙 is at the subject, predicate, or object position,

respectively, in 𝑡𝑝𝑖

21: 𝑤ℎ𝑒𝑟𝑒 += “$𝑎𝑖.$𝑝 = ‘$𝑙’ And ”
22: end for
23: end for
24: for each distinct variable ?𝑣 found in 𝑏𝑔𝑝 and ∣ℎ(?𝑣)∣ > 1 do
25: Let 𝑥 ∈ ℎ(?𝑣)
26: for each 𝑦 ∈ ℎ(?𝑣) and 𝑦 ∕= 𝑥 do
27: 𝑤ℎ𝑒𝑟𝑒 += “$𝑥 = $𝑦 And ”
28: end for
29: end for
30: //Construct the SQL Select clause:
31: for each distinct variable ?𝑣 found in 𝑏𝑔𝑝 do
32: Let 𝑥 ∈ ℎ(?𝑣)
33: Let 𝑚 is the name of variable ?𝑣
34: 𝑠𝑒𝑙𝑒𝑐𝑡 += “$𝑥 As $𝑚, ”
35: end for
36: return “Select $𝑠𝑒𝑙𝑒𝑐𝑡 From $𝑓𝑟𝑜𝑚 Where $𝑤ℎ𝑒𝑟𝑒”
37: end function

The BGPtoFlatSQL function is outlined in Algorithm 3.
It translates a SPARQL basic graph pattern 𝑏𝑔𝑝 that consists

of a set of triple patterns 𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛 into an equivalent
flat SQL query that can be executed over a MySQL Clus-
ter database with our schema. BGPtoFlatSQL constructs
𝑓𝑟𝑜𝑚, 𝑤ℎ𝑒𝑟𝑒, and 𝑠𝑒𝑙𝑒𝑐𝑡 clauses of an SQL query as
follows. For each triple pattern in 𝑏𝑔𝑝, a unique table alias
is assigned and table 𝑇 with this alias is appended to the
𝑓𝑟𝑜𝑚 clause. The algorithm then computes an inverted
index on all variables in 𝑏𝑔𝑝, such that each distinct variable
is associated with attributes in the respective tables from
the 𝑓𝑟𝑜𝑚 clause. The 𝑤ℎ𝑒𝑟𝑒 clause is first constructed to
ensure that any non-variables in 𝑏𝑔𝑝 are restricted to their
values (e.g., literals or identifiers). The inverted index is
then used to append join conditions into the 𝑤ℎ𝑒𝑟𝑒 clause,
such that all attributes that correspond to the same variable
must be equal. Finally, the 𝑠𝑒𝑙𝑒𝑐𝑡 clause is generated to
include attributes that correspond to every distinct variable
in 𝑏𝑔𝑝, with attributes being renamed as variable names.
The following example illustrates the result of a translation
performed with BGPtoFlatSQL:

//input SPARQL query Q7 from LUBM
𝑡𝑝1: ?X <type> <Student> .
𝑡𝑝2: ?Y <type> <Course> .
𝑡𝑝3: <http://...Professor0> <teacherOf> ?Y .
𝑡𝑝4: ?X <takesCourse> ?Y .
//output equivalent SQL query
Select 𝑡𝑝1.s As X, 𝑡𝑝2.s As Y
From T 𝑡𝑝1, T 𝑡𝑝2, T 𝑡𝑝3, T 𝑡𝑝4

Where 𝑡𝑝1.p = ’<type>’ And
𝑡𝑝1.o = ’<Student>’ And
𝑡𝑝2.p = ’<type>’ And
𝑡𝑝2.o = ’<Course>’ And
𝑡𝑝3.s = ’<http://...Professor0>’ And
𝑡𝑝3.p = ’<teacherOf>’ And
𝑡𝑝4.p = ’<takesCourse>’ And
𝑡𝑝1.s = 𝑡𝑝4.s And 𝑡𝑝2.s = 𝑡𝑝3.o And
𝑡𝑝2.s = 𝑡𝑝4.o

Translation of other SPARQL constructs into SQL is out
of this paper scope; details can be found in [15].

V. PERFORMANCE STUDY

This section reports our empirical comparison of the pro-
posed approaches to distributed Semantic Web data storage
and querying in HBase and MySQL Cluster.

A. Experimental Setup

Hardware. Our experiments used nine commodity ma-
chines with identical hardware. Each machine had a late-
model 3.0 GHz 64-bit Pentium 4 processor, 2 GB DDR2-
533 RAM, 80 GB 7200 rpm Serial ATA hard drive. The
machines were networked together via their add-on gigabit
Ethernet adapters connected to a Dell PowerConnect 2724
gigabit Ethernet switch and were all running 64-bit Debian
Linux 5.0.7 and Oracle JDK 6.

HBase and MySQL Cluster. Hadoop 0.20.2, with a mod-
ified core library, and HBase 0.90 were used. Minor changes
to the default configuration for stability included setting each
block of data to replicate two times and increasing the HBase
max heap size to 1.2 GB. MySQL Cluster 7.1.9a was used
with a modified configuration based on the MySQL Cluster



Quick Start Guide with increased memory available for use
by NDB data nodes.

Our implementation. Our algorithms were implemented
in Java and the experiments were conducted using Bash shell
scripts to execute the Java class files and store the results in
an automated and repeatable manner.

B. Datasets and Queries

The experiments used datasets from the Third Prove-
nance Challenge (PC3)4 and Lehigh University Benchmark
(LUBM) [1]. PC3 employed the Load Workflow that was a
variation of a workflow used in the Pan-STARRS project.
Via simulation, a number of scientific workflow provenance
documents for multiple workflow runs was generated and
represented using Tupelo’s OWL vocabulary available from
the Open Provenance Model website5. Each workflow execu-
tion generated approximately 700 RDF triples. Table I indi-
cates the characteristics of each PC3 dataset. The three PC3
SPARQL queries utilized for the experiments can be found
in our previous work [4]. LUBM is a popular benchmark for
RDF databases that includes the OWL university ontology,
RDF data generator, and 14 test queries. Table II indicates
the characteristics of each generated LUBM dataset. The
LUBM queries expressed in a KIF-like language can be
found on the LUBM website6; for the purpose of our
experiments, they were rewritten in SPARQL. Since our
experiments tested query performance and not reasoning
ability, each generated LUBM dataset was augmented with
additional triples needed to produce the sample query results
supplied by LUBM.

Table I
PC3 DATASET CHARACTERISTICS.

Dataset # of workflow runs # of RDF triples Disk space
𝐷1 1 700 86 KB
𝐷2 10 7,000 860 KB
𝐷3 100 70,000 8.7 MB
𝐷4 1,000 700,000 88 MB
𝐷5 10,000 7,000,000 895 MB
𝐷6 100,000 70,000,000 9 GB

C. Data Ingest Performance

Due to the space limit, we only report a few observations
on data ingest. First, out of tested statement-by-statement,
batch, and bulk load methods, MySQL Cluster and HBase
showed the best data ingest performance with bulk and
batch methods, respectively. Second, MySQL Cluster was
able to bulk load datasets up to 𝐷5 and 𝐿8 and HBase
successfully batch loaded all the datasets. Finally, MySQL
Cluster initially demonstrated a significant advantage over
HBase (3 times faster on 𝐿1), however this performance

4Third Provenance Challenge, http://twiki.ipaw.info/bin/view/Challenge/
ThirdProvenanceChallenge

5Open Provenance Model, http://openprovenance.org
6Lehigh University Benchmark, http://swat.cse.lehigh.edu/projects/lubm/

Table II
LUBM DATASET CHARACTERISTICS.

Dataset # of universities # of RDF triples Disk space
𝐿1 1 38,600 4.4 MB
𝐿2 5 563,000 68 MB
𝐿3 10 1,211,000 146 MB
𝐿4 30 3,908,000 477 MB
𝐿5 50 6,593,000 807 MB
𝐿6 70 9,308,000 1.1 GB
𝐿7 90 11,964,000 1.5 GB
𝐿8 110 14,649,000 1.8 GB
𝐿9 200 26,635,000 3.3 GB
𝐿10 400 53,301,000 6.6 GB
𝐿11 600 80,043,000 9.9 GB

advantage decreased with dataset size growth (only 1.5 times
faster on 𝐿8); it also should be noted that HBase required
to store twice as many triples as MySQL Cluster.

D. Query Evaluation Performance

HBase and MySQL Cluster query performance and scala-
bility on PC3 and LUBM datasets are reported in Fig. 4. The
PC3 benchmark used three queries with varying complexity:
𝑄1 was the simplest query with one triple pattern, 𝑄2 had
three triple patterns, and 𝑄3 was the most complex one
consisting of six triple patterns. The basic graph patterns
in all three queries returned a small result. Both HBase
and MySQL Cluster showed very efficient and comparable
response times, with the former being slightly faster. At 𝐷6,
HBase took a slight upward turn in times that had previously
remained nearly flat, which signifies that the graphs have a
small slope (while the dataset size increased by a factor of
10, the response times increased by a factor of only around
2 to 4); similar behavior was also observed for some LUBM
queries.

The LUBM benchmark used 14 queries whose complexi-
ties are shown in Table III. LUBM query evaluation results
for HBase and MySQL Cluster revealed several interesting
patterns, denoted as A, B, C, D, and E in Table III. Pattern
A (𝑄1, 𝑄3, 𝑄7, and 𝑄11) is characterized by the rapidly
increasing query execution time for MySQL Cluster and
nearly constant response time for HBase as the dataset size
increased. Pattern B (𝑄2 and 𝑄14) is characterized by rapid
performance degradation in both systems. While 𝑄2 had
six triple patterns, 𝑄14 had only one triple pattern that
retrieved all undergraduate students across all universities
in the database. Both queries yielded large results, such that
results for 𝐿9, 𝐿10, and 𝐿11 could not fit into main memory
on the HBase master server. In the case of 𝑄14, which
involved no joins, it is evident that the major factor in query
performance is data transfer time and it is hardly possible to
achieve better performance on the given hardware. Patterns
C (𝑄4, 𝑄5, 𝑄6, and 𝑄8) and D (𝑄9, 𝑄10, and 𝑄13)
include queries whose performance showed limited or no
growth in execution times with an increase in the data size
in both systems. Pattern C queries were approximately 2
to 3 times faster on MySQL Cluster and pattern D queries



0 100 200 300 400 500 600
0

200

400

600

800
LUBM Q5

0 100 200 300 400 500 600
0

2,000

4,000

6,000
LUBM Q11

Legend

MySQL Cluster

HBase

PC3
X-Axis: Number of workflows 

in the database, log 
scale

Y-Axis: Query execution
time, ms

LUBM
X-Axis: Number of 

universities in the 
database

Y-Axis: Query execution
time, ms

1 100 10000

0

5

10

15

PC3 Q1

109

1 100 10000

0

10

20

30

PC3 Q2

27

10

1 100 10000
0

10
20
30
40
50

PC3 Q3

47

11

0 100 200 300 400 500 600

0

20,000

40,000

LUBM Q1

27

47,212

0 100 200 300 400 500 600

0

200,000

400,000

600,000
LUBM Q2

484,783
567,855

0 100 200 300 400 500 600

0

50,000

100,000

150,000

200,000
LUBM Q3

28

163,357

0 100 200 300 400 500 600

0

50

100

150

200
LUBM Q4

153
53

645
133

0 100 200 300 400 500 600

0

200

400

600
LUBM Q6

470197

0 100 200 300 400 500 600

0

10,000

20,000

30,000
LUBM Q7

123

19,089

0 100 200 300 400 500 600

0

5,000

10,000

15,000
LUBM Q8

10,0994,746

0 100 200 300 400 500 600

0

2,000

4,000

6,000
LUBM Q9

1,561
4,222

0 100 200 300 400 500 600

0

500

1,000

1,500
LUBM Q10

27

1,282

463

5,422

0 100 200 300 400 500 600

0

200

400

600

800
LUBM Q12

702

374

0 100 200 300 400 500 600

0

50

100

150
LUBM Q13

16

123

0 100 200 300 400 500 600

0

10,000

20,000

30,000
LUBM Q14

16,362

26,456

Figure 4. Query performance and scalability.

were anywhere from 3 to 47 times faster on HBase. Pattern
E stands out on its own with a single representative query -
𝑄12. For smaller datasets, 𝑄12 was much faster on MySQL
Cluster, however its performance quickly decreased on larger
datasets, much like in pattern A. HBase, on the other hand,
demonstrated a gradual increase in execution time: close
to the 100 university mark, HBase performance exceeded
MySQL Cluster performance.

The comparison of the query evaluation patterns and
query complexity in LUBM (see Table III) does not re-

veal any strong correlation between the two characteristics.
The query complexity is not the sole indicator of query
performance under HBase and MySQL Cluster: the size of
intermediate and final results can have a significant impact.

Overall, in our experiments, the HBase approach showed
better performance and scalability than the MySQL Cluster
approach. Neglecting 𝑄2 and 𝑄14 of LUBM, which are
expensive due to returning large results, the evaluation of
two queries over the largest LUBM dataset in HBase took
over 1s: 𝑄8 (10s) and 𝑄9 (1.5s). In contrast, six LUBM



Table III
LUBM QUERY COMPLEXITY AND EVALUATION PATTERNS.

Query complexity LUBM queries and
(# of triple patterns) their evaluation patterns

1 𝑄6(C), 𝑄14(B)
2 𝑄1(A), 𝑄3(A), 𝑄5(C),

𝑄10(D), 𝑄11(A), 𝑄13(D)
3 N/A
4 𝑄7(A), 𝑄12(E)
5 𝑄4(C), 𝑄8(C)
6 𝑄2(B), 𝑄9(D)

queries took over 1s in MySQL Cluster under similar
circumstances. Finally, 𝑄1, 𝑄3, 𝑄7, and 𝑄11 of LUBM
scaled significantly worse in MySQL Cluster.

E. Summary

Our performance study revealed interesting patterns in
query evaluation, showed that our algorithms are efficient,
and suggested that cloud computing has a great potential
for scalable Semantic Web data management. Given that the
experiments were performed with large datasets on commod-
ity machines, both HBase and MySQL Cluster approaches
showed to be quite efficient and promising. The proposed
approaches were up to the task of efficiently storing and
querying large RDF datasets. Overall, the experimental
results were in favor of the HBase approach: not only were
larger datasets able to load, but query performance and
scalability were shown to be superior in many cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of distributed
Semantic Web data management using state of the art
cloud and relational database technologies represented by
HBase and MySQL Cluster. We designed a novel database
schema for HBase to efficiently store RDF data and proposed
scalable querying algorithms to evaluate SPARQL queries
in HBase. We chose a generic RDF database schema for
MySQL Cluster and presented a SPARQL-to-SQL transla-
tion algorithm that generates flat SQL queries for SPARQL
basic graph patterns. Finally, we conducted an experimental
comparison of the two proposed approaches on a cluster of
commodity machines using datasets and queries of the Third
Provenance Challenge and Lehigh University Benchmark.
Our study concluded that, while both approaches were up
to the task of efficiently storing and querying large RDF
datasets, the HBase solution was capable of dealing with
larger RDF datasets and showed superior query performance
and scalability. We believe that cloud computing has a great
potential for scalable Semantic Web data management.

In the future, we will focus on architectural aspects of an
RDF database management system in the cloud, search for
optimizations in schema design, explore additional SPARQL
features, and research inference support in distributed envi-
ronments.

REFERENCES

[1] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for
OWL knowledge base systems.” Journal of Web Semantics,
vol. 3, no. 2-3, pp. 158–182, 2005.

[2] A. Chebotko and S. Lu, Querying the Semantic Web: An Effi-
cient Approach Using Relational Databases. LAP Lambert
Academic Publishing, 2009.

[3] M. F. Husain, L. Khan, M. Kantarcioglu, and B. M. Thu-
raisingham, “Data intensive query processing for large RDF
graphs using cloud computing tools,” in Proc. of CLOUD,
2010, pp. 1 – 10.

[4] J. Abraham, P. Brazier, A. Chebotko, J. Navarro, and A. Pi-
azza, “Distributed storage and querying techniques for a
Semantic Web of scientific workflow provenance,” in Proc.
of SCC, 2010, 178-185.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
ACM Transactions on Computer Systems, vol. 26, no. 2, 2008.

[6] J. Myung, J. Yeon, and S. Lee, “SPARQL basic graph pattern
processing with iterative MapReduce,” in Proc. of MDAC,
2010, pp. 6:1–6:6.

[7] P. Ravindra, V. V. Deshpande, and K. Anyanwu, “Towards
scalable RDF graph analytics on MapReduce,” in Proc. of
MDAC, 2010, pp. 5:1–5:6.

[8] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen,
“Scalable distributed reasoning using MapReduce,” in Proc.
of ISWC, 2009, pp. 634–649.

[9] A. Matono, S. M. Pahlevi, and I. Kojima, “RDFCube: A
P2P-based three-dimensional index for structural joins on
distributed triple stores,” in Proc. of DBISP2P Workshops,
2006, pp. 323–330.

[10] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor,
“A subscribable peer-to-peer RDF repository for distributed
metadata management,” Journal of Web Semantics, vol. 2,
no. 2, pp. 109–130, 2004.

[11] B. Quilitz and U. Leser, “Querying distributed RDF data
sources with SPARQL,” in Proc. of ESWC, 2008, pp. 524–
538.

[12] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, and G.-
J. Houben, “Towards distributed processing of RDF path
queries,” International Journal of Web Engineering and Tech-
nology, vol. 2, no. 2/3, pp. 207–230, 2005.

[13] N. Li, J. Rao, E. J. Shekita, and S. Tata, “Leveraging a
scalable row store to build a distributed text index,” in Proc.
of CloudDb, 2009, pp. 29–36.

[14] H. Choi, J. Son, Y. Cho, M. K. Sung, and Y. D. Chung, “SPI-
DER: a system for scalable, parallel/distributed evaluation of
large-scale RDF data,” in Proc. of CIKM, 2009, pp. 2087–
2088.

[15] A. Chebotko, S. Lu, and F. Fotouhi, “Semantics preserving
SPARQL-to-SQL translation,” Data & Knowledge Engineer-
ing, vol. 68, no. 10, pp. 973–1000, 2009.


