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Abstract—Imitation learning enables autonomous agents to
learn from human examples, without the need for a reward
signal. Still, if the provided dataset does not encapsulate the task
correctly, or when the task is too complex to be modeled, such
agents fail to reproduce the expert policy. We propose to recover
from these failures through online adaptation. Our approach
combines the action proposal coming from a pre-trained policy
with relevant experience recorded by an expert. The combination
results in an adapted action that closely follows the expert. Our
experiments show that an adapted agent performs better than its
pure imitation learning counterpart. Notably, adapted agents can
achieve reasonable performance even when the base, non-adapted
policy catastrophically fails.

Index Terms—imitation learning, behavioral cloning, inverse
reinforcement learning, online adaptation

I. INTRODUCTION

Reinforcement learning (RL) [1] and Deep reinforcement
learning (DRL) [2] have recently gained momentum as a con-
sequence of notable breakthroughs in policy learning [3]–[5],
and following the introduction of reinforcement learning from
human feedback (RLHF) [6] for fine-tuning large language
models (LLMs). In previous research, RL and DRL have
been successfully applied in several domains, ranging from
(and not limited to) playing video games [7]–[9], autonomous
driving [10], to physics [11].

Despite these incredible results, several challenges remain
open [12]. Among those, specifying a reward signal for
complex, structured tasks is one of the most prominent.
A common approach to address this problem is imitation
learning (IL) [13], that is, agents learn to act from an expert
demonstrating the task, without a reward signal. Perhaps, the
most known example of IL algorithm is behavioral cloning
(BC) [14]. In BC, a policy is learned via supervised learning
on the observation-action pairs of the expert dataset. Another
notable IL-derived framework is inverse reinforcement learn-
ing (IRL) [15], [16], where a policy is trained using standard
RL on a reward model inferred from the expert trajectories.

While IL policies extend RL agents to scenarios where
no reward function can be designed, they also suffer from a
number of drawbacks. For instance, BC suffers distributional
shift and causal confusion [14], while IRL is never guaranteed
to learn an optimal reward model [15]. A solution to these
problems is adversarial imitation learning, where a policy

Fig. 1. A visual explanation of our proposed method. At timestep t, the
current observation is fed to the imitation learning policy network to obtain a
policy action distribution. Concurrently, we retrieve a number of resembling
frames from the expert data and compute an expert action distribution. The two
distributions are then combined to obtain a joint, adapted action distribution.
Finally, the action is selected by sampling from the joint distribution.

is trained by learning two networks simultaneously in an
adversarial fashion. The most notable examples of adversar-
ial algorithms are generative adversarial imitation learning
(GAIL) [17] and adversarial inverse reinforcement learning
(AIRL) [18]. GAIL and AIRL take inspiration from gen-
erative adversarial networks (GANs) [19]. Specifically, both
algorithms train a policy along with a discriminator that tries
to distinguish between policy-generated and expert-generated
trajectories [17], [18]. AIRL differs from GAIL as it also
derives a reward function. Both algorithms have significantly
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improved the performance of autonomous agents in a wide
range of tasks. Still, adversarial training is unstable and sample
inefficient [17]–[19], that is, an adversarial agent might never
learn a useful policy, and will typically require very long
training procedures.

Additionally, a range of challenges still require a general
solution. For instance, autonomous agents should be able to
model long-term, causal relationships and plan their actions
accordingly [1], [20]. Model-based RL attempts to solve
these problems by learning an implicit representation of the
environment [20]. More recently, OpenAI proposed Video
PreTraining (VPT) [3], a transformer-based [21], causal model
to play Minecraft from human demonstrations. VPT was ca-
pable of solving long-standing challenges such as the MineRL
Diamond challenge [22]. Similarly, recently proposed Dreamer
architectures [4], [5] merge several network architectures and
combine IL and DRL methods to learn a world model to
operate informed decisions.

While agents such as VPT and Dreamer indeed achieve
outstanding results, they are bounded to use complex archi-
tectures [3]–[5] or need massive datasets to be trained suc-
cessfully [3]. Therefore, their usability in real world scenarios
remain uncertain.

In real world use cases, usually gathering data is expensive
and demands massive resources [25]–[27]. Hence, autonomous
agents should be able to learn from small dataset, while being
robust to unpredictable conditions and aligned to human needs.
Previous research in this direction have leveraged search as a
way to reliably and efficiently select actions [23], [24]. For
example, a robotic arm in a low-dimensional domain with
continuous action space can average over a set of retrieved
relevant actions [23]. In the case of an open-world, high-
dimensional visual domain with discrete actions, copying a
sequence of actions from relevant past experience of an expert
has been proven successful [24]. Despite showing robust
performance, such methods lack real time adaptability to
unpredictable conditions.

Inspired by this previous research, we propose Bayesian
online adaptation (BOA), an efficient technique to improve
an IL agent action selection process using search, requiring
little to none scaling in network complexity. Our approach is
explained visually in Fig. 1. BOA leverages Bayesian statistics
and search to improve the performance of pure IL agents.
Additionally, our method allows a partial explanation of the
action selection process, hence improving interpretability of
the model.

II. PRELIMINARIES

a) Reinforcement Learning: We model our control prob-
lem as a partially observable Markov decision problem
(POMDP) as a 7-tuple (S,A, T,R,Ω, O, γ) where S ⊂ Rd

is the state space, A is the action space, T : S×A → S is the
transition dynamics, R : S×A → R is the reward function, Ω
is a set of observations, O is a set of conditional observation
probabilities and γ ∈ [0, 1) is the discount factor.

b) Imitation Learning: In the IL scenario, the reward
function R and the transition dynamics T are unknown. As
such, a policy can not acquire relevant experience by interact-
ing with the environment. Instead, a dataset of observation-
action pairs D = {(ot, at)},D ⊂ S×A with t ∈ [0, τ ], τ ∈ N
is provided by an expert demonstrating the task. The general
aim of an IL policy is to minimize a loss L : A×A → R that
describes the difference between the policy predicted actions
and the expert actions.

c) Multinomial Distribution: The Multinomial distribu-
tion is a parametric, discrete distribution characterized by two
parameters K and N . K is often referred to as classes or
categories, while N indicates the number of trials. Given a
random variable X ∼ (N ; p1, . . . , pK), the distribution has a
discrete probability density function of the form

P(X = x) =
N !∏K
i=1 xi!

K∏
i=1

pxi
i (1)

Whenever N = 1, the Multinomial distribution becomes a
Categorical distribution.

d) Dirichlet Distribution: The Dirichlet distribution is
a parametric distribution defined by a scalar parameter K
and a vector parameter α, called categories and concentration
respectively. The probability density function is

f(x;α) =
1

B(α)

K∏
i=1

xαi−1
i (2)

where B(α) is the multivariate beta function.
Among its other properties, the Dirichlet distribution is the

conjugate prior of the Multinomial distribution. That is, if in
Bayesian inference the prior follows a Dirichlet distribution
and the likelihood follows Multinomial distribution, then the
posterior is known to also follow a Dirichlet distribution.

III. PROPOSED METHOD

Our method leverages Bayesian inference to update the
beliefs of an autonomous agent in real-time. The intuition is
as follows: in general, an IL agent tries to imitate the expert’s
action distribution, given an observation. It follows that IL
works as long as the dataset fully encapsulates the dynamics
of a task. Whenever this condition is not satisfied, an IL agent
is bound to either fail or show sub-optimal behavior [13], [14].
To mitigate this problem, we provide a learning-based agent
with a minibatch of expert solutions for a particular state.
Then, we infer the probable action of the expert and update
the agent action distribution accordingly.

A. Search

Similar to Zero-shot Imitation Policy (ZIP) [24], as a
preliminary step we encode the expert demonstrations dataset
using a pre-trained encoder h(·) inspired from VPT. Details
of the encoder we have used are provided in Section VII. For
each trajectory i and for each timestep t, we pass the expert
state s

(i)
t to obtain a latent z(i)t = h(s

(i)
t ). Each latent is then

paired with its corresponding action a
(i)
t . Thus, we define the



Fig. 2. Screenshots from the 10 MiniWorld environments used in our experiments. MiniWorld uses minimal graphics, while still providing variance in the
visual domain. From left to right, top to bottom: CollectHealth, FourRooms, Hallway, MazeS3, OneRoom, PutNext, Sidewalk, TMaze, WallGap, YMaze.
Images are upscaled to 800× 600 for visual clarity.

expert latent space DE = {(z(i)t , a
(i)
t )} as the set of encoded

observation-action pairs of expert trajectories.
During inference, at each timestep t we encode the current

observation o∗t , obtaining z∗t = h(o∗t ), and retrieve the k-most
similar latents from DE . Then, we count the number of occur-
rences of each action and store them in a vector ct. Finally,
we model the expert action distribution as πE(a

(E)
t |st), where

πE(a
(E)
t = i|st) = c

(i)
t

k .

B. Bayesian Online Adaptation

At timestep t, an agent (that is, a policy θ) observes a
state st and selects a discrete action a

(θ)
t . We can model the

prior distribution πθ(a
(θ)
t |st) as a Dirichlet distribution with

K = |A| components and concentration vector αprior with
αprior,i = πθ(a

(θ)
t = i|st). That is, each pseudo-count is the

probability of the corresponding action as inferred by the IL
agent.

We formulate our inference problem as a Bayesian adapta-
tion problem. Our aim is to update the beliefs of an IL agent,
given a set of actions retrieved from the expert. Therefore,
given the prior πθ(a

(θ)
t |st), we would need to find the likeli-

hood πE(a
(E)
t |a(θ)t , st) to estimate the posterior.

In our adaptation setting, a(E)
t is selected by feature similar-

ity search between the current encoded observation z∗t and the
previously encoded expert latents. Since z

(i)
t = h(s

(i)
t ), clearly

a
(E)
t is conditionally dependent on s

(i)
t , i.e. πE(a

(E)
t |st). Con-

versely, in our pipeline the action selected by the policy a
(θ)
t

does not affect the choice of a
(E)
t . Therefore, we can safely

state that, in our setting, a
(E)
t is conditionally independent

from a
(θ)
t . Therefore

πE(a
(E)
t |a(θ)t , st) = πE(a

(E)
t |st). (3)

Thus, we can use the result of our search as likelihood. Lever-
aging the fact that the Dirichlet distribution is the conjugate
prior of the Multinomial distribution, we can state that the pos-
terior πE(a

(θ)
t |a(E)

t , st) also follows the Dirichlet distribution
with K components and an updated αposterior = αprior + ct.

Given that ∀i,αprior,i ∈ [0, 1] while ∀i, c(i)t ∈ N, we argue
that αposterior might be unbalanced towards ct, hence giving
more importance to πE(a

(E)
t |st). To balance the terms, we

multiply each αprior,i by the number of searched vectors k,
so that αposterior = k ·αprior + ct.

Finally, we can sample the Dirichlet posterior
Dir(K,αposterior) and obtain a Categorical distribution
Cat(αposterior). From this, the new action ãt can be obtained
by sampling

ãt ∼ Cat(αposterior). (4)

C. Search complexity

Autonomous agents should act within a very short, constant
amount of time. When introducing search for inference, a
dependency on the complexity of the search space follows
from it. In general, the more complex and dense the search
space, the longer the query time.

In our work, we mitigate this dependency using faiss [28],
a library for efficient search leveraging GPUs. faiss provides
methods for both exact and approximate search. In our study,
we encode the expert trajectories into d-dimensional vectors
and project them in a search space with the same dimension.
Then, we use (exact) L2 search to retrieve the k closest sam-
ples to the current observation. In our experiments, faiss was
able to handle as many as 150 trajectories without significant
delays in inference time (average search time 6.37±0.933ms).

IV. EXPERIMENTS

We compare five agents, namely PPO [29], BC [14],
GAIL [17], ZIP [24], and BOA on a range of tasks from
MiniWorld [30], a modular and customizable library with 3D
minimalistic graphics for fast rendering. MiniWorld features
tasks of varying complexity to test diverse skills, such as
navigation, memory and planning. Our experiments are run
on 10 tasks that provide an explicit terminal condition and
access to a scalar reward. A more detailed description of the
goals for each environment is provided in Section VIII. All
environments provide 60× 80 RGB observations with integer



pixel values in the range [0, 255]. In our study, we apply
minimal pre-processing to the images by simply scaling the
pixel down to lie within [0, 1] range. Fig. 2 shows an example
of observation from each environment.

We manually collected 20 trajectories for each task and
trained all agents on the same dataset within a task. All agents
used the same encoder within a task, empirically chosen to be
a VPT-inspired [3] encoder architecture with a residual [32]
backbone and no attention obtained by training GAIL.

As a preliminary step, we study the hyperparameters of our
approach, namely, the number k of retrieved samples during
search and the number of trajectories encoded in latent space.
We test k = {1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100},
and estimate the best value for each task by letting a BOA
agent play 3 runs of 30 episodes per value, using all available
data. We repeat this test for both GAIL-based and BC-based
BOA, as the two IL algorithms treat the action distribution
differently. In particular, BC tends to be overconfident in its
predictions [14], while GAIL predictions are usually much
smoother [17].

To evaluate the effect of the number of encoded trajecto-
ries on performance, we manually gather an additional 130
trajectories for the MazeS3 task, up to a total of 150. Then,
we assess the performance of BOA using 1-150 trajectories,
incrementing the number of encoded trajectories by 5 each
time. For this test, we use the environment-wise optimal value
of k found in the previous step and test each configuration
over 5 runs of 30 episodes each.

Additionally, we compare our agents by observing their
mean episodic return on each task. We enforce here that in
our setting IL and adapted agents never observe the reward,
and that we collect it for the sole purpose of comparing
performance. The only agent using the reward signal during
training is PPO. We extensively test the agents on 6 runs of
100 episodes for each task.

The source code to reproduce the experiments can be found
at https://github.com/fmalato/online adaptation.

V. RESULTS

In the first part of this section we study how varying
the hyperparameters of our approach affect performance. In
the second subsection, we establish a numerical comparison
between the tested agents.

A. Hyperparameters ablation

Fig. 3 and 4 show the ablation study over the number of
retrieved samples k and the number of encoded trajectories n,
respectively.

a) Number of retrieved samples: Fig. 3 compares
BOA+BC and BOA+GAIL on each environment as the num-
ber of retrieved examples k increases. Overall, no significant
trend is visible, and no agent consistently dominates the other.
If we consider only GAIL, though, we can notice that in most
environments performance is stronger when k is small.

We explain this descending pattern as a joint effect of the
learned latent representation and the expert trajectories. In

particular, whenever the counts vector ct has c(i)t = k for some
value of k, the retrieved sample is heavily polarized towards
action i. In this case, the expert will influence αposterior

the most. On the other hand, if the expert-provided dataset
includes similar observations with different actions, the effect
of the expert on the posterior will, in general, be mitigated.
Still in this case, if k is small enough, the action distribution
has a significant chance of being sharp, hence having a sensible
effect over αposterior. Considering that such a descending
effect is seen for the most part in maze exploration tasks,
where similar observations might carry different actions (e.g.
when facing a wall, an agent can either turn left or right),
the dominance for small values of k is clear. On the contrary,
when the environment is simple enough (e.g. Hallway) or is
less likely to encounter the above-described situation, the agent
show more robust performance when varying k.

b) Number of encoded trajectories: In Fig. 4 we observe
how the number of encoded trajectories affects the success
rate of both adapted agents. Following from the findings of
the previous paragraph, we adopt k = 1 for BOA+GAIL and
k = 5 for BOA+BC. The dominance of BOA+GAIL over
BOA+BC visible in Fig. 4 confirms the result of the previous
experiment, where BOA+GAIL succeded 44.00%± 6.48% of
the times, while BOA+BC yielded a mean success rate of
30.00%±2.72%. Overall, changing n does not seem to affect
any of the adapted agents, even though a faint trend seems to
suggest that BOA+BC would benefit from additional data.

The best performance of BOA+GAIL is 56.00% ± 5.96%
(n = 40), while the worst mean success rate is 39.34%±9.25%
(n = 130). As for BOA+BC, the best and worst results are
38.67% ± 6.06% (n = 90) and 24.66% ± 3.80% (n = 50)
respectively.

B. Numerical performance

Fig. 5 shows the average return for each tested agent. At
first glance, BOA agents either outperform or match the per-
formance of their corresponding IL agent in all environments.
Notably, the adaptation generally improves the reward even
when the underlying IL policy catastrophically fails.

From Fig. 5 we see how PPO is able to complete a
good portion of the exploration tasks, except for TMaze and
WallGap. Still, PPO does not achieve reliable performance
in any of them. We hypothesize this is due to the sparse
nature of the reward. Our other baseline, ZIP, achieves strong
performance on every task except PutNext. We believe this
follows from the inherent difficulty of the environment that,
unlike all the others, requires two sequential steps to achieve
the goal.

GAIL and BC solve some of the tasks with acceptable
results and fail in others. We suppose that in those cases,
BC fails in environments where data does not extensively
encapsulate the complexity of the environment, while GAIL
failures are due to its inherent instability.

As expected, both BOA agents improved the capabilities
of their corresponding IL policies. BOA+BC achieves almost-
zero performance only in TMaze and PutNext. We suspect

https://github.com/fmalato/online_adaptation
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Fig. 3. Mean success rate for different numbers of retrieved samples. Each graph corresponds to one environment. Measurements retrieved on 3 runs of 30
episodes each. The best value is marked with a star. Red lines represent a BOA agent adapting GAIL agent, while a blue line denotes a BC agent adapted
with BOA.

TABLE I
BEST CHOICE OF k FOR ADAPTED AGENTS BOA+GAIL AND BOA+BC FOR EACH ENVIRONMENT, WITH ASSOCIATED MEAN SUCCESS RATE.

CollectHealth FourRooms Hallway MazeS3 OneRoom PutNext Sidewalk TMaze WallGap YMaze

BOA
+GAIL

k 40 1 70 1 15 20 5 1 70 1

Success
Rate (%)

39.67
±2.05

41.33
±2.05

97.67
±1.70

44.00
±6.48

70.00
±3.74

10.00
±0.82

73.33
±2.05

23.33
±3.30

11.11
±4.16

23.00
±1.41

BOA
+BC

k 15 60 1 5 10 60 60 1 90 30

Success
Rate (%)

40.00
±5.44

38.89
±9.56

99.00
±0.82

30.00
±2.72

85.56
±1.57

3.33
±2.72

54.44
±7.86

8.89
±4.16

15.56
±7.86

55.56
±13.97
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Fig. 4. Mean success rate for different numbers of encoded trajectories. The
test is conducted on both BOA+BC (in blue) and BOA+GAIL (red line) on
5 runs of 30 episodes each. n varies between 1 and 150. We highlight the
best value for each agent with a star-shaped mark.

this happens for two reasons: first, BC completely fails on the
task; second, the IL policy assigns a very high probability to
the selected action, leading the adaptation to fail as well. When

this is not true, such as for GAIL, we see how the adaptation
still improves the results.

These findings confirm our hypothesis: while selecting
actions directly from the expert distribution is likely to yield
better results, adapting IL agents with search on the expert
data improves performance. Nonetheless, while ZIP blindly
copies actions based on past situations, BOA always takes
into account the possibility of different situations. In a more
unpredictable and complex scenario we expect BOA to per-
form better than ZIP, as suggested by the PutNext task. We
motivate this claim with the following reasoning.

ZIP assumes that an expert can provide optimal solutions
to any situation within a specified task. Therefore, ZIP will
reliably solve tasks that are represented at least once within
the expert dataset. As the complexity of the task increases, ZIP
will either require a much larger expert dataset or encounter
limitations. On the contrary, an IL policy should be able to
generalize its knowledge, thus being capable of addressing
some shortcomings of the expert dataset. In such setting,
problems are likely to arise whenever a certain situation is
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Grey bars represent baseline methods.

under-represented in the dataset.
BOA complements the two approaches: on one hand, it

is capable of addressing the under-representation problem of
IL methods thanks to search; on the other hand, it allows
generalization in situations where the encoded experience is
contradictory. Still, BOA needs a softer search mechanism
than ZIP to allow generalization. As such, BOA might fall
short of ZIP in simple tasks, but is bound to improve on
complex ones such as PutNext. Most importantly, BOA always
improve its underlying policy thanks to search, while keeping
generalization capabilities intact.

C. Perceptual evaluation

As an additional set of experiments, we evaluate the adapted
agents perceptually. To support the statements of this subsec-
tion, we have released a video on our YouTube channel (visible
at https://youtu.be/WoWalj4CVmM). Moreover, to keep the
amount of visual material limited and the evaluation concise,
we evaluate three environments with diverse purposes, namely
FourRooms for navigation, PutNext for the sequential tasks,
and CollectHealth to evaluate the survival skills. For each
environment, we watch 10 episodes played by ZIP, followed
by BC and GAIL, and finally by BOA+BC and BOA+GAIL.

a) FourRooms: According to our evaluation, ZIP pos-
sesses the best ”human-like” skills: if it gets stuck in front of
a wall, it will most likely recover and can confidently pass
through doors. Still, when seeing the red box, in a significant
number of instances, ZIP has ignored it. This is a consequence
of action copy: if a new search is triggered while the red box
is in sight, ZIP will reach the goal. Otherwise, the new search
will likely lead to more exploration.

Despite being tested as stochastic, BC will likely get stuck.
The agent possesses decent navigation skills, but the overcon-
fidence in its prediction will make it often fixate on a single
action. As expected, GAIL possesses better navigation skills
and can confidently explore. While it also gets stuck at times,
it is much more likely to recover than BC.

The first clear difference between both BOA agents and
the other agents is that whenever the red box is spotted,
they actively aim for it. Judging from the behavior of the
plain IL policies, this is likely an effect of the adaptation.
Between BOA+BC and BOA+GAIL, the latter possesses the
best navigation skills. While BOA+BC can confidently nav-
igate (resembling ZIP sometimes), it can not overcome door
obstacles.

b) PutNext: ZIP can confidently explore the room. Ad-
ditionally, it usually picks up some block and drops it next
to another. Still, the case where those two coincide with a
yellow and red block is low, hence probability of success is
even lower.

BC aims for a block most of the time but then fails to pick
it up. We suspect this is a consequence of the unbalance in
data, as pick up and drop actions are well under-represented
with respect to movement actions. GAIL also seems to be
aiming for blocks and can sometimes pick them up, but its
actions resemble more a slightly conditioned random policy
than a confident one. We suspect that in this case, the training
collapsed.

BOA agents show interesting and complementary behavior.
Specifically, while this would need to be confirmed further
with additional experiments, BOA+BC seems to actively aim
for the yellow box and, sometimes, picks it up. Then, it is
unable unlikely to drop it. On the contrary, BOA+GAIL can
pick up any block and, sometimes, drop it near another. Still,
it does not seem to actively look for the yellow one.

c) CollectHealth: ZIP shows confident exploratory be-
havior and is capable of picking up a couple of health kits
before dying.

BC mostly turns right. At times, it attempts to aim for a
health kit, but the rapidity of the environment does not allow it
to pursue the goal. GAIL is more confident in walking towards
health kits, but only sometimes manages to pick one up.

BOA+BC corrects the turning behavior of plain BC and al-
lows the agent to reach, sometimes, for a health kit. Similarly,
BOA+GAIL can aim for health kits, but only sometimes it can

https://youtu.be/WoWalj4CVmM


reach one.

VI. CONCLUSIONS

We have presented Bayesian online adaptation (BOA), a
hybrid search-learning approach for adapting an imitation
learning agent in real-time via search on expert-provided data.
We have shown how our approach performs better than pure
IL agents while falling short of action copy. Regardless, BOA
agents carry the advantage of potentially being able to adapt to
unpredictable situations, leveraging their underlying IL policy.
Future research could investigate the effect of adaptation on
RL agents such as PPO, or how to improve training time of
RL agents by using adapted actions during training. Another
direction could study balancing the effect of the adaptation
based on the relevance of each retrieved sample. Finally,
combining BOA with classical RL algorithms could prove
adaptation as a versatile strategy to boost learning and improve
sample efficiency.

Other than improving performance, BOA implicitly ad-
dresses the problem of explainability in machine learning.
While being far from solving it, such a hybrid approach
can always track the effect of the expert-retrieved samples,
hence providing additional insight into the action selection
process. For instance, during our perceptual evaluation, we
noticed that in some instances the effect of the adaptation
was immediately clear. Thus, an interesting future research
direction could leverage this intuition to enhance explainable
agents.

REFERENCES

[1] R. S. Sutton, A. G. Barto, “Reinforcement learning: an introduction,”
The MIT Press, 2nd Edition, 2018.

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, “A
Brief Survey of Deep Reinforcement Learning,” in IEEE Signal Process-
ing Magazine, Special Issue on Deep Learning for Image Understanding,
2017.

[3] B. Baker, I. Akkaya, P. Zhokhov, J. Huizinga, J. Tang, A. Ecoffet, B.
Houghton, R. Sampedro, J. Clune, “Video PreTraining (VPT): Learning
to Act by Watching Unlabeled Online Videos,”, in arXiv, 2022.

[4] D. Hafner, T. Lillicrap, M. Norouzi, J. Ba, “Mastering Atari with
Discrete World Models,” at International Conference on Learning Rep-
resentations, 2021.

[5] D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap , “Mastering Diverse Domains
through World Models,” in arXiv, 2023.

[6] P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, D. Amodei,
“Deep reinforcement learning from human preferences,” in arXiv, 2017.

[7] A. Kanervisto, J. Karttunen, V. Hautamäki, “Playing Minecraft with
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VII. APPENDIX A - ENCODER DETAILS

As stated in Section III-A, in our study we use a VPT-
inspired encoder h(·) to build the latent search space. We
have designed our encoder with two purposes in mind: on one
hand, we want a temporally extended representation to better
characterize each state; on the other hand, we want to keep
the architecture as shallow as possible, to keep our architecture
easily trainable on consumer hardware with small datasets.

The original VPT architecture is built on top of the Inverse
Dynamics Model (IDM) [3] for predicting actions from obser-



vations. The input to both models is a stack of 128, 128×128
RGB frames. IDM features a 3D convolution followed by three
residual stacks and two fully connected layers with 256 and
4096 activations, respectively. Each residual stack is composed
of a 2D convolution with max pooling and two residual
blocks as described in [32]. The output is then forwarded
to four transformer heads which build long-term relationships
between frames. With respect to IDM, VPT removes the 3D
convolution layer.

In our work, we use the same architecture as IDM, up to
the two fully connected layers. Differently from IDM, our
FC layers feature 2048 and 1024 activations. Additionally,
we retain the 3D convolution layer but use a stack of 4,
60× 80 RGB images as input to encapsulate temporally close
dependencies, similarly to [33]. As a result, our encoder is
composed of 50M parameters, a 90% reduction with respect
to IDM/VPT.

VIII. APPENDIX B - ENVIRONMENTS DESCRIPTION

We provide a short description for each of the 10 tasks used
in the study. An example of each environment is provided in
Fig. 2.

We use 7 unique navigation tasks in our experiments. They
all share the same goal, that is, reaching a randomly-spawned
red box. The reward is +(1 − 0.2 ∗ t

T ) upon reaching the
red box, where t is the current number of timesteps and T is
the maximum duration of an episode; 0 otherwise. The action
space is discrete, 3-dimensional featuring actions {left, right,
forward}. We provide a brief description of each.

• FourRooms: Four rooms with chess floor tiles, grey walls
and ceiling, connected in a quadrant pattern.

• Hallway: One rectangular room with chess floor tiles,
grey walls and ceiling.

• MazeS3: Three randomly-generated rooms connected
with corridors. MazeS3 features chess tiles, red brick
walls and grey ceiling.

• OneRoom: One big squared room with chess floor tiles,
grey walls and ceiling.

• TMaze: Two corridors connected in a T pattern. Goal
position is randomly spawned on either branch of the T.

• WallGap: Two rooms with no ceiling connected with a
gap in a wall. Agent spawns in one room, red box in the
other.

• YMaze: Similar to TMaze, but arranged in the shape of
a ”Y”.

Additionally, we use three tasks with different rules. Their
descriptions are as follows.
Name: CollectHealth

• Description: The environment is composed of a single
room with green floor and grey walls and ceiling. Scat-
tered all over the floor are health kits.

• Goal: Survive as long as possible.
• Action space: Discrete, 8-dimensional. Actions: {left,

right, forward, backwards, pick up, drop, toggle, com-
plete}.

• Rules: Agent has an initial health of 100. After each
timestep, health decreases by 2. If health reaches 0, the
agent dies. Whenever an agent collects a health kit, its
health is restored back to 100. Collecting a health kit
requires actively performing a pick up action.

• Reward: +2 for each timestep; −100 for dying.
Name: PutNext

• Description: One big, squared room with chess tiles, grey
wall and ceiling, filled with colored boxes.

• Goal: Place the yellow box next to the red box.
• Action space: Discrete, 8-dimensional. Actions: {left,

right, forward, backwards, pick up, drop, toggle, com-
plete}.

• Rules: An agent reaches the yellow box and performs a
pick up action. Then, the agent must navigate to the red
box and perform a drop action.

• Reward: +(1− 0.2 ∗ t
T ) when red and yellow boxes are

close; 0 otherwise.
Name: Sidewalk

• Description: One rectangular room opened on one side.
The opened side is delimited with traffic cones. Red-brick
walls, grey floor and no ceiling.

• Goal: Reach the red cube within the time limit.
• Action space: Discrete, 3-dimensional. Actions: {left,

right, forward}.
• Rules: Navigate the maze to reach the goal location. If

the agent steps out of the sidewalk, it dies.
• Reward: +(1 − 0.2 ∗ t

T ) when the goal is reached; 0
otherwise.
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