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Abstract—Ising machines are purported to be better at solv-
ing large-scale combinatorial optimisation problems better than
conventional von Neumann computers. However, these Ising
machines are widely believed to be heuristics, whose promise
is observed empirically rather than obtained theoretically. We
bridge this gap by considering an opto-electronic oscillator based
coherent Ising machine, and providing the first analytical proof
that under reasonable assumptions, the OEO-CIM is not a
heuristic approach. We find and prove bounds on its performance
in terms of the expected difference between the objective value
at the final iteration and the optimal one, and on the number
of iterations required by it. In the process, we emphasise on
some of its limitations such as the inability to handle asymmetric
coupling between spins, and the absence of external magnetic
field applied on them (both of which are necessary in many
optimisation problems), along with some issues in its convergence.
We overcome these limitations by proposing suitable adjustments
and prove that the improved architecture is guaranteed to
converge to the optimum of the relaxed objective function.

Index Terms—coherent Ising machine, stochastic approxima-
tion, convergence analysis, noisy gradient-descent

I. INTRODUCTION

Recent developments in photonics-based analog computing
have triggered a global exigency towards realizing new com-
putational paradigms [1]–[3] that can potentially outperform
conventional digital computers in executing challenging com-
putational tasks, such as solving combinatorial optimisation
problems that are known to be NP-hard [3]–[5]. Many NP-
hard combinatorial optimisation problems can be efficiently
mapped to a ground-state-search problem of the Ising model
[6] – which is basically a mathematical abstraction of mag-
netic systems describing the behavior of competitively inter-
acting spins or angular momenta of fundamental particles
[7], [8]. Such an Ising model of coupled artificial spins
can be physically realized using various systems ranging
from Josephson junction [9], trapped ions [10], to optical
states [11]. Among these possible realizations, the optics-
based approach involving coherent Ising machines (CIMs) is
advantageous because of operability at room temperature, the
requirement of cost-effective off-the-shelf components, minia-
turisation possibilities over integrated photonic circuits, and
the scope to implement dense and flexible coupling topologies
[12], [13]. Furthermore, being intrinsically gain-dissipative
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systems, CIMs are naturally prone towards avoiding local
energy minima and thus achieving optimal solutions [13],
[14]. Given a very short-lived evolution to the ground state
or optimal solution, the Ising machines promise significant
speed up over conventional (digital) computers in solving hard
optimisation problems [13], [15], efficient solution of which
is central to several industry-verticals [3], [13].

CIMs belong to the non-von Neumann computing architec-
ture. They compute very differently from conventional (digital)
computers, digital annealers, quantum annealers, or even gate-
based quantum computers. In that light, they exhibit a few
distinct advantages over many other computing approaches.
This includes higher speed and efficiency over classical com-
puting, for instance: a few hundred THz bandwidth in op-
tical compared to that of a few GHz in classical comput-
ing; along with inherent parallel operations and in-memory
computation at lower energy costs. Next, as opposed to the
alleged effectiveness of the quantum approximate optimisation
algorithm (QAOA) [16] in efficiently solving NP-hard optimi-
sation problems against commercial solvers executed on digital
computers, the benchmarking results obtained with CIM are
more promising and convincing [17]. Furthermore, unlike the
gate and annealing based model of quantum computation, the
operation of CIMs is not limited by factors such as scalability,
high noise, and cryogenic cooling [17]. Lastly, in absence of
noise the anneal time can be significantly slower for quantum
annealing based approaches which is not the case for CIMs
– being optically driven it is not subjected to thermal noise.
Finally, digital annealers can be potentially outperformed by
CIMs, since unlike CIMs they are practically limited by digital
CMOS hardware-constraints.

Quite a few methods of experimentally realizing CIMs have
been reported in literature. They all commonly use optical
setups along with programmable fast feedback electronics to
implement Ising spin networks with bistable coherent optical
states [13]. This enables them to naturally approach the
optimal states of the programmed Hamiltonian. These methods
of realizing Ising spin systems with a network of coupled
optical states can be broadly classified into three types: (a)
CIM based on mutually coupled lasers [18] (b) degenerate
optical parametric oscillator (DOPO) [19], [20] based CIMs
[11], and (c) opto-electronic oscillator (OEO) based CIM [13],
[21]. Moreover, the DOPO-based CIM method can be further
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sub-classified into two architectures, depending upon their
ways of obtaining the effective spin-spin interaction between
the realized Ising spins: σi (j) ∈ {±1}, as specified by the
coupling matrix J and the linear (Zeeman) term h representing
the inhomogeneous magnetic field strength in the Ising model
Hamiltonian [22]:

H =
1

2

n∑
i,j

J ijσiσj +

n∑
i

hiσi, (1)

where i (or j) represents each spin index or each vertex of
an (un)directed spin graph. Operationally, Eq. (1) denotes the
cost (energy, or objective value) of a Quadratic Unconstrained
Binary Optimisation (QUBO) problem [21], and the σis
represent the binary decision variables. Among these two
architectures, first is the optical delay line (ODL) architecture
where a part of the time-delayed signal is redirected back into
the fibre loop [23], [24]; while the other is the measurement-
feedback (MFB) architecture where the feedback signal is
computed electronically based on the measurement performed
by a homodyne detector [4], [5], [15]. Recently, even quite
a few quantum models for CIMs, based on DOPO and MFB
architectures, have been theoretically developed and evaluated
[12], [22], [25], [26]. Although more popular, the nonlinear
DOPO-based coherent optical state generation process is nei-
ther quite scalable nor very resource efficient as it requires high
power laser systems and temperature-regulated nonlinear ele-
ments, resulting into large setup footprints. On the contrary, the
OEO-based CIM architecture involving self-feedback, which
was first proposed in [13], offers a higher stability at a much
lower form-factor. Due to its cost-effectiveness and complex
nonlinear dynamics, this architecture has been lately gaining
a lot of attention [21], [27]. Given that these advantages are
instrumental for various applications including cryptography,
microwave generation, and optical neuronal computing [13],
henceforth, for our rigorous convergence analyses we will
focus upon this OEO-based CIM architecture.

II. OEO-BASED COHERENT ISING MACHINES

An OEO-based CIM architecture fundamentally relies upon
the idea that large and regulated artificial spin networks can be
created by exploiting the rich bifurcation structure of OEOs.
Building upon this central idea, in this work, we have adapted
the compact CIM setup, that was first demonstrated by Bohm
et al. in 2019 [13], as per our requirement for the convergence
analysis. A conceptual schematic of this setup is presented in
Fig. 1. As shown in the figure, a continuous wave laser beam
is subjected to nonlinear opto-electronic feedback system via
amplitude modulation followed by a direct photodetection of
the optical signal. This enables the mapping of OEO network
to a network of Ising spins. More specifically, the amplitude
modulation of the input laser beam is internally performed by
a Mach-Zehnder (electro-optic amplitude) modulator (MZM),
set to operate in the linear regime by imparting a constant bias
of π/4 [28]. The polarization controller contains a combination
of two quarter- and one half-wave plates, and thus converts an
arbitrarily polarized beam into the desired input polarization

Fig. 1: A conceptual schematic of our OEO-based CIM setup
(adapted from [13]). This diagram includes the modifications
proposed in Sec. VIII such as the use of step-sizes βk that are
dependant on the iteration-number k, and the modulation of
the Gaussian white noise with the step-size.

for the amplitude modulator. In a nutshell, this CIM setup
generates the artificial spins in a feedback induced pitchfork
bifurcation and encodes them in the intensity of coherent
states. Due to its cost-effectiveness, the OEO-based CIM
was named “a poor man’s CIM” by its first demonstrators
in [13]. In this article, we have referred to its customized
design as Economical Coherent Ising Machines and henceforth
abbreviated it as ECIM. In the ECIM, each binary variable σi

is relaxed [29] to si such that the latter takes continuous values
in [− 1

2 ,
1
2 ].The objective function, under this relaxation, takes

the form:
H(s) =

1

2
s⊤Js, (2)

which is written in the vector-form. Accordingly, the relaxed
optimisation problem is given by: mins∈[−1/2,1/2]n H(s). Once
the optimal relaxed decision variables s∗ have been obtained,
they are “rounded off” to the discrete domain using an
element-wise sign function: σ∗ = sgn(s∗).

As mentioned in [13], the iterative equations of the ECIM,
again in vector formats, are as follows:

f (k) = αs(k) − βJs(k) (3)

s(k+1) = cos2
(
f (k) − π

4
1+ ζ(k)

)
− 1

2
1, (4)

where, k denotes the iteration-number, f (k) is referred to as
the feedback vector, and ζ(k) is a white Gaussian noise whose
importance is discussed in detail in Sec. VI. It is noteworthy
that the non-linear, trigonometric transfer function used here
ensures that the decision variables never leave the feasible
region as the iterations progress. Finally, we briefly allude to
the fact that the ECIM caters only to problems where the
coupling matrix J is symmetric, and the linear term h⊤s is
absent. This has been emphasised and remedied in Sec. VII,
where unlike [30], the linear term has been included without
banking on ancillary spins. Fig. 1 portrays a schematic of the
ECIM along with the modifications proposed in this paper,
such as using a βk which varies with iterations and modulating



the noise with βk. These modifications are expounded on in
sections VII and VIII.

III. MAIN CONTRIBUTIONS

Before proceeding further, we describe the key contributions
made in this paper. The principal argument here is that,
contrary to prior belief (as stated in [31]), the ECIM is not
a heuristic, but a system whose performance on minimizing
the relaxed objective function can be rigorously analysed. By
drawing similarities between the former and noisy gradient-
descent, we provide an alternate perspective to the ECIM.
Further, we immaculately extend it by considering asymmet-
ric coupling matrices and including external magnetic fields
without relying on ancillary spins [30]. While theoretically
analysing the ECIM’s performance, we mathematically justify
some hithertofore empirical observations such as the effect of
the coupling term β and the role of noise. We also highlight
that through the use of the ECIM in its present form, the
expected value of the relaxed objective function converges
in a region around the optimal value, find the dependence
of the difference on the parameters, and calculate an upper
bound on the number of iterations required to obtain a certain
level of proximity to the optimal objective value. Finally, we
address this issue by resorting to gradually-decreasing values
of β which ensures convergence to the optimal value with
probability 1, and also find the rate of convergence of the
relaxed objective function.

IV. PRELIMINARY REMARKS AND ASSUMPTIONS

In our analysis of the ECIM’s convergence, we assume that
J has real eigenvalues, and foist the following conditions on
the hyperparameters:

1) In Eq. (3), β is restricted to be a positive quantity, while
the value of α is fixed to 1,

2) The noise ζ(k) is sampled from the normal distribution
N (0, σ2I), with I being the n× n identity matrix.

Furthermore, the following preliminary remarks and notations
may help with the ensuing analysis, which will be followed
throughout the rest of the paper:

1) ||v|| denotes the l2 norm of the vector v,
2) The number of relaxed decision variables is given by n,

such that s ∈ [−1/2, 1/2]n,
3) Linear terms will henceforth be included into the objec-

tive function:

E(s) =
1

2
s⊤Js+ h⊤s, (5)

and the optimisation problem accordingly becomes:

min
s∈[−1/2,1/2]n

E(s) (6)

4) We use the shorthand E∗ = mins∈[−1/2,1/2]n E(s),
5) ∇E(s) := ∇sE(s) = 1

2 (J + J⊤)s + h =: Qs + h is
used to represent the gradient of the objective function
with respect to s. We use c2 to denote the upper-bound
on the squared l2 norm of the gradient for some c < ∞:

||∇E(s)||2 ≤ c2 (7)

Alternatively, it may be said that the function is
Lipschitz-continuous.

6) It is easy to observe that the Hessian of E(s) is Q.
Let λi, i ∈ [n], denote the eigenvalues of J , with
λ̄ := maxi λi. This implies that E(s) is Lipschitz-
smooth with a constant λ̄,

7) We define Fk = {s(0), ζ(0), ζ(1), . . . , ζ(k−1)} to be the
increasing sequence of σ-fields that captures the history
of the ECIM iteration process,

8) E[X|F ] denotes the expectation of the random variable
X , conditioned on the σ-field F ; E[X|F ] = X if
X is F-measurable, and E[X|F ] = E[X] otherwise.
Additionally, if the random variable Y is F-measurable
and X is not, then E[XY |F ] = Y E[X].

Finally, we assume that the objective function obeys the PL
inequality [32] with some µ > 0, i.e.,

1

2
||∇E(s)||2 ≥ µ(E(s)− E∗), (8)

This assumption imposes invexity on the objective function,
which is a less stringent condition than convexity [32]. It is
noteworthy that equations (7) and (8) do not contradict each
other, unlike the argument in [33], since in our case:

||s1 − s2||2 ≤ n, ∀s1, s2 ∈ [−1/2, 1/2]
n (9)

V. COHERENT ISING MACHINE AND GRADIENT-DESCENT

With the details mentioned in Section IV, we begin by
establishing an equivalence between Eq. (4) and first-order,
noisy gradient-descent [34], the latter of which is given by1:

s(k+1) = s(k) − γk∇E(s(k)) + ζ(k), (10)

where, γk > 0 is the step-size at the kth iteration.
On the other hand, we expand Eq. (4) about π

41 using
Taylor’s series up to the first order:

s(k+1) ≈ cos2
(π
4
1
)
−
(
∇θ cos

2 θ
)
θ=π

4 1
(f (k) + ζ(k))− 1

2
1

= f (k) + ζ(k) = αs(k) − βJs(k) + ζ(k)

(11)
where o(||f (k) + ζ(k)||) terms have been ignored. It is imme-
diately apparent that equations (10) and (11) are equivalent
when J = J⊤, h = 0, α = 1, and γk = β. Thus, the Ising
machine may be interpreted as noisy gradient-descent with
β as the step-size. Further, keeping this perspective in mind,
it is natural to replace the symmetric couple matrix with an
asymmetric one, and to include the external magnetic field
term in the ECIM, resulting in Eq. (3) to be modified to:

f (k) = αs(k) − β∇E(s(k)) = αs(k) − β(Qs(k) + h), (12)

which is the same equation as arrived in [21], for a symmetric
coupling matrix, through the use of an ancillary spin [30].
Establishing a relationship between noisy gradient-descent
and the ECIM leaves the latter susceptible to analysis using
stochastic approximation methods, which we begin in Sec. VII.

1strictly speaking, the update-equation for gradient methods with errors is
s(k+1) = s(k) − γk(∇E(s(k)) + ζ(k)). We will eventually modify the
ECIM’s equations within this section such that they correspond exactly with
the above equation.



VI. NECESSITY OF NOISE

Before delving into the convergence-analysis of the ECIM,
we take a short detour to discuss the importance of noise and
the role it plays in different problem-scenarios. It has been
argued in [13] that noise helps the ECIM escape unstable
fixed points of the iteration scheme in Eq. (4), which in the
absence of an external magnetic field h, is given by s = 0.
In the presence of linear terms and absence of noise, the fixed
points are such that s(k+1) = s(k). From Eq. (12) we see
that these correspond to the stationary points of E(s) where
∇E(s) = 0, which in the interior of the feasible region may
include global/local minima, maxima, and saddle points. The
exact nature and number of such stationary points depends on
the matrix Q. For various types of Q, we briefly discuss on
the type and number of stationary points and the significance
of noise in each case. It must, nonetheless, be noted that
these stationary points may fall within, without, or even on
the boundary of the feasible region.

1) First, we consider Q to be a positive definite matrix. In
this case, the relaxed objective function is strictly convex
and admits a single stationary point which is the global
minimum. If Q is positive semidefinite, then there exist
multiple global minima. The presence of noise appears
to be inconsequential for such convex problems.

2) Conversely, if Q is negative (semi)definite, then the
relaxed objective function has (multiple) maxima, and
the solution is known to lie on the boundary of the
feasible region. In this case, noise helps the ECIM
escape from the maxima in these concave problems.

3) Finally, if Q is has a mix of both positive and negative
eigenvalues, then the problem has only saddle points,
which the noise helps escape from. Here, too, the
solution lies on the boundary.

VII. CONVERGENCE ANALYSIS

We embark on the analysis of the economic CIM by first
setting α = 1 and employing Taylor’s series again, but this
time expanding the objective function E(s(k+1)) about s(k)

instead, to get:

E(s(k+1)) = E(s(k) − β∇E(s(k)) + ζ(k))

= E(s(k))− (β∇E(s(k))− ζ(k))⊤∇E(s(k))+

(β∇E(s(k))− ζ(k))⊤Q(β∇E(s(k))− ζ(k))

≤ E(s(k))− (β∇E(s(k))− ζ(k))⊤∇E(s(k))+

λ̄||β∇E(s(k))− ζ(k)||2 (13)

where the inequality above is a consequence of the fact that
v⊤Jv ≤ λ̄||v||2 for any v ∈ Rn. Next, we subtract E∗ from
both sides and take expectation conditioned on Fk, and note
the following facts:

1) E∗, E(s(k)) and ∇E(s(k)) are Fk-measurable, while
ζ(k) is not,

2) Further, E[ζ(k)|Fk] = E[ζ(k)] = 0, E[||ζ(k)||2|Fk] =
E[||ζ(k)||2] = nσ2,

applying which, we arrive at:

E[E(s(k+1))− E∗|Fk] ≤ [E(s(k))− E∗]− β||∇E(s(k))||2

+ λ̄(β2||∇E(s(k))||2 + nσ2) (14)

which, on using equations (7) and (8), becomes:

E[E(s(k+1))− E∗|Fk] ≤ (1− 2βµ)[E(s(k))− E∗]

+ λ̄(β2c2 + nσ2) (15)

Finally, we take unconditional expectation on both sides of the
equation above to obtain:

E[E(s(k+1))−E∗] ≤ (1−2βµ)E[E(s(k))−E∗]+λ̄(β2c2+nσ2)
(16)

At this point, we highlight a minor problem with the conver-
gence of the ECIM and hypothesise that E[E(s(k))] cannot
get arbitrarily close to E∗ with a suitably-chosen, constant
step-size β.

We formalise our claim as:

lim inf
k→∞

E[E(s(k))− E∗] ≤ λ̄

2µ

(
βc2 +

nσ2

β

)
(17)

and set about proving it by contradiction, along the lines of
that in [35]. To do so, we assume the above statement to be
false, i.e., for some ϵ > 0:

lim inf
k→∞

E[E(s(k))− E∗] ≥ λ̄

2µ

(
βc2 +

nσ2

β

)
+ 2ϵ (18)

Now suppose there exists a k0 which is large enough such that
for all k ≥ k0, we have:

E[E(s(k))] ≥ lim inf
k→∞

E[E(s(k))]− ϵ (19)

Adding equations (18) and (19):

E[E(s(k))− E∗] ≥ λ̄

2µ

(
βc2 +

nσ2

β

)
+ ϵ (20)

Substituting this back into Eq. (16), we end up with the
following recurrence inequality:

E[E(s(k+1))− E∗] ≤ E[E(s(k))− E∗]− 2βµϵ (21)

We then unroll the above inequality for K steps to get:

E[E(s(k))− E∗] ≤ E[E(s(k−K))− E∗]− 2βµϵK (22)

But at this recall we note that E∗ is the optimal objective
value, and hence, (E(s(k)) − E∗) ≥ 0 for any k. Further,
the objective values are bounded, which means that the above
recurrence cannot continue indefinitely. This leads to the
desired contradiction, thus completing the proof of our claim.

A keen observation of Eq. (17) confirms our initial specula-
tion that one may not be able to select a suitable low β to get as
close to the optimal objective value as required. If a low value
of β is chosen, then the second term in the equation increases
in magnitude, according us no benefit towards reducing the
expected gap between E(s(k)) and E∗. This second term has
an even greater effect and significance in larger problems
with a larger number of decision variables n, indicating a



poor scaling of the ECIM in its present form. This helps
explain the observation in Fig. 3(c) of [36] that the TTS
(“Time-to-Solution”, as defined in the same reference) first
decreases with increasing β and then, counter-intuitively, starts
increasing; and that there is a minute increase in TTS as σ2

is increased. Granted, that one may opt to reduce the noise-
variance to counter the effect of n/β, but this leaves the ECIM
prone to get stuck at local minima, saddle points, or maxima,
as discussed in Sec. VI.

VIII. PROPOSED MODIFICATIONS

To offset the difficulties in convergence of the ECIM, as
discussed at the end of the last section, we first present a slight
shift in perspective of the ECIM’s update equations, which
will offer no immediate benefit, but facilitate the modifications
that will be communicated in the latter half of this section.
The proposition is simple: that the white Gaussian noise be
scaled with the step-size β such that equations (3) and (4) are
modified to:

f (k) = αs(k) − βk

(
∇E(s(k))− ζ(k)

)
, (23)

and
s(k+1) = cos2

(
f (k) − π

4
1
)
− 1

2
1, (24)

respectively, where βk is the step-size at iteration k. At face-
value, nothing appears to have changed, but we posit that with
gradually-decreasing step-sizes, the ECIM converges to the
optimal objective value “almost surely”.

However, before discussing about diminishing step-sizes,
we repeat the analysis in Sec. VII with β = βk to arrive at
the modified versions of equations (15) and (26):

E[E(s(k+1))− E∗|Fk] ≤ (1− 2βkµ)[E(s(k))− E∗]

+ λ̄β2
k(c

2 + nσ2), (25)

and

E[E(s(k+1))− E∗] ≤ (1− 2βkµ)E[E(s(k))− E∗]

+ λ̄β2
k(c

2 + nσ2). (26)

A. With a Constant Step-Size

With the modified equations presented above, using tech-
niques similar to the ones employed previously, it may be
shown that with constant step-sizes βk = β:

lim inf
k→∞

E[E(s(k))− E∗] ≤ λ̄

2µ
β(c2 + nσ2) (27)

It is important to note here that the step-size β may be
controlled by the user to make E(s(k)) get arbitrarily close
to E∗. Further, it is also possible to find an estimate of the
number of iterations κ required such that:

min
0≤k≤κ

E[E(s(k))− E∗] ≤ λ̄

2µ
β(c2 + nσ2) + ϵ, (28)

where ϵ > 0 and

κ ≤
⌊
E(s(0))− E∗

2βµϵ

⌋
(29)

This is easily obtained by setting both k and K to κ in Eq.
(22) such that:

0 ≤ E[E(s(k))− E∗] ≤ [E(s(0))− E∗]− 2βµϵκ (30)

We would like to reiterate that merely scaling the noise term
with the step-size is equivalent to using noise with a lower
variance and does not provide any additional benefits with
constant step-sizes, but the variation in perspective allows us
to inspect the ECIM with decreasing step-sizes, that we now
foray into.

B. With Decreasing Step-Sizes
Here, we prove that it is possible to drive E(s(k)) to E∗ with

probability 1 with the help of constantly decreasing step-sizes.
As is customary in machine learning literature, we consider
step-sizes of the following form:

∞∑
k=0

βk = ∞ and
∞∑
k=0

β2
k < ∞ (31)

One popular example of a sequence of step-sizes that follows
the above criteria is βk = β0/(k+1)r where, β0 > 0 and r ∈
(0.5, 1].

With these step-sizes, we note that in Eq. (25), the terms
(E[E(s(k)) − E∗]), 2βkµ(E[E(s(k)) − E∗]) and λ̄β2

k(c
2 +

nσ2) are non-negative and Fk-measurable. Further, the latter
sequence is summable, i.e.:

λ̄(c2 + nσ2)

∞∑
k=0

β2
k < ∞. (32)

This enables us to invoke the Supermartingale Convergence
Theorem (SMCT, as mentioned in Proposition 2.2 of [37]),
which guarantees that:

1) E(s(k)) − E∗ converges to some non-negative value
almost surely, and

2)
∞∑
k=0

2βkµ(E(s(k))− E∗) < ∞ w.p. 1 (33)

Now we show that not only does (E(s(k))−E∗) converge to
a non-negative value, but that it converges to 0 almost surely,
essentially meaning that E(s(k)) → E∗ a.s. To demonstrate
this, we fall back on proof by contradiction again, and consider
an ϵ > 0 and a k0 > 0 such that for all k ≥ k0,

(E(s(k))− E∗) ≥ ϵ, (34)

which leads to:
∞∑

k=k0

2βkµ(E(s(k))− E∗) ≥ 2µϵ

∞∑
k=k0

βk, (35)

the right hand side of which is ∞ as per the first part of Eq.
(31). But this contradicts the consequence of SMCT shown in
Eq. (33), which is known to be true. Thus, the assumption in
Eq. (34) is false and (E(s(k))−E∗) → 0 almost surely, thus
concluding our proof.

Further, it is also possible to get the rate of decrease
of E[E(s(k)) − E∗] with diminishing step-sizes by a direct
application of Lemma 2.1 in [38] on Eq. (26).



IX. CONCLUSION AND OUTLOOK

In this paper, we demonstrated that ECIMs are not heuris-
tics, unlike they were previously believed to be. This was,
however, done in a restricted setting where only a linear
approximation of a single trigonometric transfer function was
considered, and α was fixed to 1. We conjecture that the proofs
presented here may be extended to the more holistic case
that generalises these aforementioned constraints. Besides, the
performance of the ECIM was theoretically analysed only for
the instance where the binary decision variables were relaxed
to take continuous values. As future work, the analysis may be
carried out by considering a conjunction of Ising Machines and
rounding-off methods (such as branch-and-bound [39]), the
latter of which may be used to convert the decision variables
back to the discrete domain. Overall, this paper paves the way
for rigorous analysis of Ising Machines which may prove to
be compelling alternatives towards solving QUBO problems.
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[13] F. Böhm, G. Verschaffelt, and G. Van der Sande, “A poor man’s coherent
ising machine based on opto-electronic feedback systems for solving
optimization problems,” Nature communications, vol. 10, no. 1, p. 3538,
2019.

[14] T. Leleu, Y. Yamamoto, S. Utsunomiya et al., “Combinatorial optimiza-
tion using dynamical phase transitions in driven-dissipative systems,”
Physical Review E, vol. 95, no. 2, p. 022118, 2017.

[15] T. Inagaki, Y. Haribara, K. Igarashi et al., “A coherent ising machine
for 2000-node optimization problems,” Science, vol. 354, no. 6312, pp.
603–606, 2016.

[16] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014.

[17] Y. Yamamoto, “Optical neural network operating at the quantum limit-
coherent ising/xy/recurrent neural network machines,” in 2018 Photonics
in Switching and Computing (PSC). IEEE, 2018, pp. 1–4.

[18] S. Utsunomiya, N. Namekata, K. Takata et al., “Binary phase oscillation
of two mutually coupled semiconductor lasers,” Optics express, vol. 23,
no. 5, pp. 6029–6040, 2015.

[19] P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium
transitions in sub/second harmonic generation i. semiclassical theory,”
Optica Acta: International Journal of Optics, vol. 27, no. 3, pp. 321–
335, 1980.

[20] ——, “Non-equilibrium transitions in sub/second harmonic generation
ii. quantum theory,” Optica Acta: International Journal of Optics,
vol. 28, no. 2, pp. 211–225, 1981.

[21] A. Prabhakar, P. Shah, U. Gautham et al., “Optimization with photonic
wave-based annealers,” Philosophical Transactions of the Royal Society
A, vol. 381, no. 2241, p. 20210409, 2023.

[22] S. Kiesewetter and P. D. Drummond, “Coherent ising machine with
quantum feedback: The total and conditional master equation methods,”
Physical Review A, vol. 106, no. 2, p. 022409, 2022.

[23] A. Marandi, Z. Wang, K. Takata et al., “Network of time-multiplexed
optical parametric oscillators as a coherent ising machine,” Nature
Photonics, vol. 8, no. 12, pp. 937–942, 2014.

[24] K. Takata, A. Marandi, R. Hamerly et al., “A 16-bit coherent ising
machine for one-dimensional ring and cubic graph problems,” Scientific
reports, vol. 6, no. 1, p. 34089, 2016.

[25] T. Shoji, K. Aihara, and Y. Yamamoto, “Quantum model for coherent
ising machines: Stochastic differential equations with replicator dynam-
ics,” Physical Review A, vol. 96, no. 5, p. 053833, 2017.

[26] A. Yamamura, K. Aihara, and Y. Yamamoto, “Quantum model for coher-
ent ising machines: Discrete-time measurement feedback formulation,”
Physical Review A, vol. 96, no. 5, p. 053834, 2017.

[27] G. Umasankar, P. S. Shah, N. Chandrachoodan et al., “Benchmarking
the poor man’s ising machine,” in 2021 IEEE Photonics Society Summer
Topicals Meeting Series (SUM). IEEE, 2021, pp. 1–2.

[28] T. A. Maldonado, “Electro-optic modulators,” Handbook of optics,
vol. 2, pp. 13–11, 1995.

[29] L. Lovász, “On the ratio of optimal integral and fractional covers,”
Discrete Mathematics, vol. 13, no. 4, pp. 383–390, 1975. [Online].
Available: https://doi.org/10.1016/0012-365x(75)90058-8

[30] A. K. Singh, K. Jamieson, P. L. McMahon, and D. Venturelli, “Ising
machines’ dynamics and regularization for near-optimal mimo detec-
tion,” IEEE Transactions on Wireless Communications, vol. 21, no. 12,
pp. 11 080–11 094, 2022.

[31] N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as
hardware solvers of combinatorial optimization problems,” 2022.

[32] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition,”
2020.

[33] L. M. Nguyen, P. H. Nguyen, M. van Dijk et al., “Sgd and hogwild!
convergence without the bounded gradients assumption,” 2018.

[34] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient
methods with errors,” SIAM J. Optim., vol. 10, pp. 627–642, 1999.
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