
1

SmartConnect: A System for the Design and
Deployment of Wireless Sensor Networks

Abhijit Bhattacharya, Sanjay Motilal Ladwa, Rachit Srivastava, Aniruddha Mallya, Akhila Rao,
Easwar Vivek. M, Deeksha G. Rao Sahib, S.V.R. Anand, and Anurag Kumar

Dept. of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India.
Email: {abhijit, anand, anurag}@ece.iisc.ernet.in, {sanjofpesit, aniruddha.mallya, akhila.suresh.rao,

easwar.vivek, deek123, rachitsri}@gmail.com

Abstract— We have developed SmartConnect, a tool that
addresses the growing need for the design and deployment
of multihop wireless relay networks for connecting sensors
to a control center. Given the locations of the sensors, the
traffic that each sensor generates, the quality of service (QoS)
requirements, and the potential locations at which relays can
be placed, SmartConnect helps design and deploy a low-
cost wireless multihop relay network. SmartConnect adopts
a field interactive, iterative approach, with model based
network design, field evaluation and relay augmentation per-
formed iteratively until the desired QoS is met. The design
process is based on approximate combinatorial optimization
algorithms. In the paper, we provide the design choices made
in SmartConnect and describe the experimental work that led
to these choices. We provide results from some experimental
deployments. Finally, we conduct an experimental study of
the robustness of the network design over long time periods
(as channel conditions slowly change), in terms of the relay
augmentation and route adaptation required.

Index Terms—Wireless sensor network design; Wireless
relay network design and deployment; Field interactive
design

I. Introduction
Industrial and commercial establishments (such as

chemical factories and hotels) deploy a large number
of sensors for control or monitoring applications. The
sensors are typically spread over a large area and at
distances of several tens of meters from the control
center. In existing installations, the sensors are connected
to the control center by a wireline network, usually a
combination of point-to-point and bus networks. Instal-
lation and maintenance of such wireline networks incur
substantial cost. In addition, it is difficult to expand such
wireline sensor networks, for example, to add sensors at
some new locations. Due to such reasons, recently there
has been a spurt of interest in replacing wireline sensor
networks with multihop wireless sensor networks.

There are several sensing applications, particularly in
industrial settings, that could employ low power wire-
less sensors that use the wireless physical (PHY) layers
and medium access controls (MAC) being standardized
by IEEE 802.15.4 [14], or Wireless HART [3], or ISA
100.11a [4]. Such low power devices can simply be
“planted” where needed, and can be expected to work
for several months on batteries and harvested energy.
Due to their low power operation, the range of such
radios is a few meters to a few 10s of meters, necessi-
tating multihopping, and therefore a higher packet loss
rate. There are many applications, however, e.g., such
as data logging and non-critical control (see [18]), for

which such low power and lossy networks are adequate.
With such networks in mind, this paper is concerned
with the challenges of designing and deploying wireless
relay networks for interconnecting sensors (viewed as
data sources) with a control center (viewed as a data
sink, and also referred to in the paper as a base station).
The system that we have developed to address the chal-
lenges, and the algorithms and procedures embedded in
it, is called SmartConnect. In this paper, we present the
design of, and experiences with SmartConnect, a system
that iterates by interacting with partial deployments in
the field, and uses on-field measurements and statistical
models, to suggest improvements, eventually leading to
a design that meets QoS requirements.

Given the locations of the sensors and the sink, we
are concerned with the problem of placing wireless relay
nodes so that the resulting multihop wireless network
can carry the sensor data to the sink. There would be
placement constraints due to the presence of obstacles
(e.g., a firewall, a large machine, or a building), or due
to taboo regions; hence we can place relays only at
certain designated locations. We therefore consider the
situation in which a number of potential relay locations
is provided to the network designer, but as few relays
as possible should be deployed. In addition, since no
application can tolerate arbitrary packet delay and loss,
the network design has to ensure some level of quality
of service (QoS). We require that the network design has
to guarantee that the data packets will reach the control
station within a stipulated delay constraint with a high prob-
ability, while taking into account the highly unpredictable
nature of wireless channel. Further, the wireless network
should also preferably have multiple node disjoint paths
from each source to the sink to provide resilience to node
failures.

Since there could be hundreds of locations, a design
approach based on an exhaustive link quality measure-
ment between every possible pair of locations will be
expensive and time consuming. Radio frequency (RF)
propagation models are approximate and cannot yield
designs that can be expected to work when actually
deployed. SmartConnect, therefore, adopts an iterative
field interactive approach.

The current version of SmartConnect provides a
methodology for network design and deployment for
sensor networks that carry low rate measurement traffic
(“light traffic”), typical of applications such as condi-
tion monitoring and non-critical data logging [18]. The
methodology comprises the following components:

ar
X

iv
:1

41
1.

74
82

v1
 [

cs
.N

I]
 2

7
N

ov
 2

01
4

(i) Given the sensor locations, the potential relay loca-
tions, and the location of the sink, a model for link quality
is used to generate a graph of potential links over the
potential relay locations (discussed in Section IV).
(ii) The QoS constraint for light traffic is formulated
in terms of a Steiner-type problem of minimizing the
number of potential relays to be employed subject to a
sensor-sink hop count constraint. This involves the solu-
tion of certain Steiner graph design problems for which
approximation algorithms (developed by us in related
prior work [8]) are utilized (discussed in Section V).
(iii) The proposed relays (typically a very small number,
as we found in our experiments) are placed in the
field and link quality measurements are made under
commands from the SmartConnect console. The graph
design algorithm then uses these measured links and
models of the remaining unknown links to propose an
improvement to the design (discussed in Section III, with
examples presented in Section VII).
(iv) A stochastic model from our previous work [23]
provides an approximate analytical model of multihop
networks that use the beaconless CSMA/CA as defined
in IEEE 802.15.4, to determine the maximum measure-
ment rate that the design can support while meeting
QoS.
(v) At this stage, network operation can start. However,
since the quality of wireless links can vary over time,
SmartConnect monitors the packet delivery performance
over the network, and triggers a repair (that may re-
quire relay augmentation, or just re-routing) if the per-
formance degrades below a target level (discussed in
Section VIII).

II. Related Literature
Considerable work has been done in the design and

deployment of wireless networks in general, and wire-
less sensor networks, in particular. Ray [20], Li et al. [16],
and Huang et al. [13] present tools for node deployment
to achieve coverage and connectivity in sensor networks,
which are based only on modeling and simulation,
and do not take into account the unpredictability of
wireless links which require on-field testing of modeled
links. SmartConnect adopts a field-interactive design
approach, where we iteratively improve upon an initial
model based design by making on-field link quality
measurements.

Several recent papers address various aspects of wire-
less link modeling and link quality estimation.

Chipara et al. [11] developed a wall classification
based radio coverage prediction model in an indoor
WSN, that seems to assume knowledge of the actual
path of signal propagation over a link, which is often not
accurately known in a wireless environment due to stochastic
fading. The link model in SmartConnect attempts to
capture the average characteristics of the environment
by estimating the maximum communication range, Rmax;
deviation in link quality from predicted model due to
specific non-homogeneities are accounted for during on-
field link learning.

Liu and Cerpa [17] present a three step, feature based
approach to short temporal link quality prediction to
better utilize temporally intermediate links for routing
purposes. However, their link prediction approach can-
not be adopted in an iterative network design process,

since this approach requires link features (e.g., PRR, RSSI
etc.), which are available only for on-field links, and not
for links between potential locations which are not yet
deployed.

Chen and Terzis [10] proposed a Bernoulli trial method
to identify spatially intermediate links with high PRR.
A key trade-off of the proposed approach is that one
requires several trials to identify even a single good
(high PRR) location. They also presented a method for
unconstrained relay placement (i.e., no restriction on the
locations of the relays) to connect a set of sensing
motes to a gateway. Their objective in deploying relays
is to identify relatively longer links (beyond the stable
connected range) with high PRR. SmartConnect, on the
other hand, addresses a constrained relay placement prob-
lem, and provides explicit end-to-end QoS guarantee that
cannot be achieved by just ensuring a high PRR on each
link.

Krause et al. [15] study the problem of sensor place-
ment to maximize information obtained from the sensors
while minimizing total communication cost. In SmartCon-
nect, sensor locations are given, which is more often the
case [10]; we aim at minimizing the cost of deploying
additional relays, subject to a target communication cost
per sensor.

There are also products that deploy relays for sensor
connectivity based only on on-field measurements [2]
[6]. But any broken links are corrected and tested only
based on the intuitive prediction of the deployment
engineer.

Robinson et al. [21] address the problem of deploying
a minimum number of mesh nodes to build a tree for pro-
viding client coverage and mesh (backhaul) connectivity
subject to mesh capacity constraints, while accounting
for non-uniform propagation characteristics. A Degree
Constrained Terminal Steiner Tree algorithm is used to
obtain an initial design from the estimated network
graph. Once deployed, measurements are made only on
the proposed backhaul links to ensure mesh connectivity. If
a predefined SNR threshold is violated, then the network
is redesigned with the refined network graph.

Beyond the apparent similarity of iterative field mea-
surement driven design, there are several key differences
between SmartConnect and the problem addressed by
Robinson et al.[21].

SmartConnect focuses on providing an end-to-end
QoS guarantee per source while aiming to minimize the
total number of relays, and can provide a robust design
by allowing for multiple node disjoint, QoS aware paths
between each source and the sink. Robinson et al., on the
other hand, do not aim for any explicit end-to-end QoS, or
robustness (k-connectivity). Indeed, in their Measure-and-
place algorithm, measurements are made only on backhaul
links. Thus, any poor link quality on a client-mesh link would
remain undetected in this approach, and will affect the
end-to-end QoS.

Moreover, once the initial design is deployed on field,
SmartConnect makes measurements among all possible
on-field links, thus identifying the potentially good links
which were estimated to be bad, and allowing for con-
vergence of the design procedure in a small number of
iterations (often just one or two iterations). Robinson et
al. make measurements only on the proposed candidate
backhaul links, and not on any other links existing on

Fig. 1. The phases of SmartConnect’s field interactive iterative
network design, deployment and operation.

the field. This keeps the number of measurements per
iteration small, but in turn, may take several iterations
to converge. Also, in their problem, clients cannot act as
mesh nodes, whereas in SmartConnect, sources can act
as relays.

III. Field Interactive Network Design

In this section we provide an overview of the network
design and deployment approach utilized by SmartCon-
nect. At the beginning of the design process we are given
a deployment region with designated sensor locations,
the location of the sink, and several potential locations
at which wireless relays can be placed.

To design a network connecting the set of sensor
sources and the sink, using topology design algorithms,
we need a network graph defined over the sensor
sources, the potential relay locations and the sink. In
very small networks, relays can be placed at all potential
relay locations and the qualities of the links between
every pair of relay locations could be learnt by on-
field measurements. Using our previously developed
topology design algorithm [8] on such a network graph
of field-learnt links would provide a one-shot design
satisfying QoS constraints, if such a design is feasible.
For a larger network with a large number of potential

relay locations, deploying relay nodes at every potential
relay location would be impractical. What we need is
a model to capture the characteristics of the wireless
channel in the deployment environment so as to predict
feasible links between the locations of the sources, the
relay locations, and the sink; we can then apply the
design algorithm on the model based network graph to
obtain an initial design satisfying QoS constraints on this
graph, and place relays only at the locations suggested
by this initial design.

While there could be several approaches for modeling
the quality of links (e.g., an RF propagation model-
ing tool could be utilized), we have adopted a simple
link quality model. Any two nodes within a distance
of Rmax meters are predicted to be in communication
range of each other (details of the procedure to obtain
such a link model are provided in Section IV). This
link model, i.e., Rmax, can be significantly different for
different deployment environments such as an outdoor
power distribution yard, or an indoor industrial or com-
mercial establishment, etc. We note that Rmax is just a
simple distillation of statistical data collected in a similar
environment, and merely asserts that links shorter than
Rmax are likely to be good (in a sense to be explained in
detail in Section IV).

Statistical link models can only estimate the chan-
nel characteristics of the environment, but cannot fully
ascertain the existence of the predicted links on the
field. Some links could be worse than predicted due
to the presence of large obstacles, or even better than
predicted, e.g., due to line of sight visibility. Actual on-
field link quality measurement is, therefore, needed before the
network can be put into operation. By actually placing
relay nodes at locations provided by the initial design,
we can learn the on-field link quality of all the links
between the deployed nodes. Upon completion of link
learning, we have a network graph of field-learnt links
(acceptable links). This graph is fed to the topology
design algorithm for evaluation to verify whether the on-
field nodes along with the good quality learnt links are
sufficient to obtain a sub-network connecting the sensors
to the sink, while meeting QoS. If this evaluation of the
field-learnt network graph is successful, then the design
is complete. Only the relays that are part of this topology
are kept, and the rest are removed.

If however, the topology design algorithm cannot
extract any QoS respecting subnetwork from the on-
field network graph on the deployed nodes, the network
will need relay augmentation. At this stage we have
learnt links between the nodes on field, and modeled links
between the rest of the locations. This network graph
consisting of modeled and learnt links is now used by
the topology design algorithm to obtain a subnetwork
that meets the required QoS, which will require the
deployment of relays at additional potential locations.
Since the locations suggested for relay augmentation are
based on modeled links, the newly added links (due to
relay augmentation) need to be learnt on field before re-
evaluation. As shown in Figure 1, after the initial design,
link learning, evaluation and augmentation are repeated
iteratively until a QoS respecting network is obtained.
This is the crux of SmartConnect’s field interactive, it-
erative design. The iterative process provides a method
of partial deployment of networks with modeled and

Fig. 2. PER vs RSSI measured between two motes, connected by a
standard coaxial cable and standard attenuators. “Over-the-air” packet
size: 120 bytes

learnt links until a complete deployment meeting QoS
requirements on field is obtained. Provided that the link
model is not too conservative (i.e., it does not severely
underestimate the link quality), if there exists a QoS
respecting subnetwork in the actual on-field network
graph, this iterative procedure will converge to such
a solution on field after a few iterations (a possible
problem with an overly conservative link model could
be that the topology design algorithm may declare the
problem to be QoS-infeasible even if there exists a fea-
sible solution in the actual on-field network graph). A
remedy for this situation is discussed in Section VI-B.

Additionally, since wireless links are highly dynamic,
with significant changes in time of day and surrounding
activity, robustness of a deployed network is a challeng-
ing issue. To account for these link variations we perform
a continuous repair process. As we receive sensor data
from the sensor sources, knowing the rate at which data
is being sent, we measure its packet delivery rate. This
packet delivery rate is continuously monitored at the
base station. If it reduces below the delivery rate the
network was designed for, then a repair is triggered
from the base station. Link learning is initiated, the
updated network graph is evaluated, and augmentation
is performed if necessary. On arriving at a design that
was successfully evaluated, network operation continues
till repair is triggered again. This procedure makes the
network robust by accounting for link variation over
large time duration by repairing as and when necessary.
Link variations that stem from change in activity in
the environment, change in obstacle profile or seasonal
changes can be handled.

The details and implementation of the concepts pre-
sented in the current section are discussed in the rest of
the paper. For a virtual demonstration of SmartConnect,
see [1].

IV. Wireless LinkModeling
We assume that our network carries packets of size

120 bytes (in particular, the packet consists of 90 bytes
of payload, together with 24 bytes MAC header, and
6 bytes PHY header); our measure of link quality is
in terms of packet error rate (PER). The packet error
rate is determined by the bit error rate, which in turn
is governed by the received signal strength, the noise
and the interference, and the modulation-demodulation
scheme. For the particular radios we have used, Figure 2
shows measured PER (for our standard packet sizes)
versus the RSSI (received signal strength indicated by the

receiver) in a controlled experiment (see [19], [22]). The
PER measurement was conducted by connecting two
TelosB motes back-to-back via standard attenuators, and
varying the RSSI value. The experiment was repeated
for several different node pairs, and the mean PER
over all the experiments was obtained as a function of
RSSI. Figure 2 shows the mean PER as well as the 95%
confidence interval as a function of RSSI. We notice that
the PER is reliably below 0.02 or 0.03 for RSSI values
larger than -88 dBm, whereas below this RSSI value not
only does the PER rapidly increase, but is highly variable
from mote to mote. We conclude from this experiment
that an on-field link should have an RSSI of better than
−88 dBm.

Given the above experimental results, for our iterative
design process we seek a simple link model, in terms of
a link length Rmax such that with a transmitter power
of 0 dBm, a receiver at a distance of ≤ Rmax is very
likely to receive a signal strength better than -88 dBm.
The transmitter power of 0 dBm 1 is chosen so as to
minimize the requirement of relays.

We now present our approach for choosing Rmax. In
this process we have to contend with wireless propaga-
tion, a highly unpredictable phenomenon. Classically, for
the purpose of analyzing wireless digital communication
links, the RF propagation loss is modeled in terms of
(i) a nominal path loss model (typically an inverse
power law model), (ii) a stochastic shadowing model
(which accounts for statistical variation of path loss over
different links of the same length), and (iii) a stochastic
fading model (which accounts for multipath fading and
channel variations).

In choosing Rmax, we define three measures:
qmax The maximum target PER (e.g., 0.05; see the

measurement results in Figure 2); equivalently
we can think in terms of the minimum RSSI,
RSSImin, e.g., −88 dBm.

pout The fraction of time that the PER on the link
is worse than qmax; since links do fade over
time, outage is inevitable; the probability of a
multihop path being in outage increases with
the number of hops; hence, we need to have
a target link outage probability (henceforth de-
noted by Pout).

pbad is a function of the link length R, and is defined
as the fraction of links of length R that do
not meet the outage target Pout; this measure
is relevant since, due to shadowing, there are
link to link average path loss variations, even
for links of a given length.

We also have a target pbad, which we call Pbad. The
consequences of the choices of Pout and Pbad, and a
methodology for making these choices will be presented
below.

Having defined these measures and their targets, we
then define

Rmax The link length R at which pbad is less than or
equal to Pbad.

Once we identify an Rmax such that targets for all the
above measures are met, then in the design steps that
involve model based design (see Section III), we just
include all links that are of length ≤ Rmax. In doing this,

1The highest power level in this device.

the measure pbad plays two roles: (i) The larger the value
of Pbad, the larger the probability that the model-based
design will not meet QoS on the field. (ii) It also helps
to determine the set of potential locations, as follows.
Given Rmax and Pbad, the set of potential locations can be
chosen to be such that if we consider the graph on these
locations with all edges of length ≤ Rmax, and if each
such potential edge is removed with probability Pbad,
then with a high probability the remaining graph still
has a subgraph that meets our QoS objectives.

Although analytical models (e.g., Rayleigh or Ricean
fading, and log-normal shadowing) can be used to relate
Rmax, RSSImin, Pout, and Pbad, these relations are only
indicative and cannot be used for reliably characterizing
the quality of links in a design process (particularly, in
a nonhomogeneous setting such as the interiors of a
building). We, therefore, resort to a measurement-based
approach.
• A large number of nodes (50 nodes in our experi-

ments) are scattered throughout the region, so as to
obtain links of varied distances.

• Each node, one after the other, broadcasts a large
number (5000 packets in our experiments) of “hello”
packets. The nodes that receive them, log the re-
ceived signal strength (RSSI) of each packet along
with the details of the sender node.

• We now have a distribution of RSSI for every link
in the network. These distributions are distilled
into the plots shown in Figure 4 and Figure 5, as
explained in the following bullet points.

• From the graph in Figure 2 we see that to obtain
a PER of less than or equal to 0.05 with high
probability, the RSSI along the link should be greater
than or equal to −88 dBm; this is when the link is
not in outage.

• The probability that a link is not in outage, say, pnout,
is the fraction of packets received at RSSI ≥ −88 dBm
on the link. The probability that the link is in outage,
pout, is estimated as 1 − pnout.

• A link is said to be ‘good’ if its outage probability
is less than Pout, else it is termed ‘bad’.

• The links we have are now binned according to their
link length. The link length is rounded off to the
nearest meter to make one meter bins. In each bin,
we compute the fraction, say, pgood, of ‘good’ links,
and then pbad is estimated as 1 − pgood.

• The maximum distance bin in which the probability of a
link being bad (pbad) is less than or equal to a threshold
Pbad is chosen as the maximum communication range
(Rmax) for reliable communication.

• The choice of Pout and Pbad are based on measure-
ments and is elaborated in the two examples below.

We have carried out such measurements in a couple
of different environments: a 440KV outdoor power dis-
tribution yard (since the goal of our project was to create
wireless networks for connecting sensors in such yards),
and our department building (ECE Department, IISc; a
layout diagram is shown in Figure 7).

In Figure 4, we provide a summary of measurements
that we took at a 440KV outdoor power distribution
yard. A photograph of a part of this yard is shown in
Figure 3. There are several tall towers across which are
strung high-tension power cables; there are transformers,
circuit breakers, and firewalls separating the transformer

Fig. 3. A view of the 440 KV power distribution yard, showing
the layout of equipment; apart from the transmission towers, several
transformers and a firewall can be seen at a distance.

Fig. 4. Measurements taken from a power distribution yard envi-
ronment (see Figure 3): pbad, i.e., the fraction of links whose outage
probability is greater than Pout, vs link length, R, plotted for multiple
values of Pout.

bays. The ground is covered with coarse gravel; there
are also drainage ditches, and narrow tarred roads criss-
crossing the area.

In Figure 4, for each value of R, between 10 m and
60 m (on the x-axis), we show (on the y-axis) pbad, the
fraction of links whose outage probability was worse
than each of five values of Pout (0.001, 0.002, 0.003, 0.004,
0.005). In these measurements, the target RSSI was -
88 dBm. As expected, for a fixed value of Pout, pbad
increases with R. For example, with Pout = 0.002, for
R = 30m, about 25% of the links displayed an outage
probability worse than 0.002, whereas with R = 60m this
went up to more than 60%. We notice that there is a
sharp increase in pbad, for every value of R, if Pout exceeds
0.002. From the plot we also see that, at every distance, at
least 10% of the links are bad. Lowering Pout will give a
more conservative value of Rmax, for a chosen Pbad. So the
choice of Rmax is a trade-off between Pout and Pbad. For a
given Pbad, increasing Pout may increase Rmax, but affects
the packet delivery probability, whereas reducing Pout
reduces Rmax, thus leading to a more conservative (and
possibly costly) design. For a given Pout, increasing Pbad
can increase Rmax, but it also increases the chance that
a proposed design requires augmentation, and requires
more potential relay locations to begin with. Based on
the measurement results shown in Figure 4, we chose
Pout = 0.004, Pbad = 20%, yielding Rmax = 30m.

Figure 5 shows the summary of similar measurements
we made for an indoor deployment inside our depart-
ment building. The analysis of the figure, as in the
previous example, tells us that for a Pbad of less than
10% we get a value of Rmax of only 3 meters, for any

Fig. 5. Measurements taken inside our department building: pbad, i.e.,
the fraction of links whose outage probability is greater than Pout, vs
link length, R, plotted for multiple values of Pout.

value of link outage. We see that the link outage in
the indoor case is much larger than that of the outdoor
power distribution yard case. So based on Figure 5, we
chose Pout = 0.04, Pbad = 20%, yielding Rmax = 8m.

V. Network Design Approach

In each iteration of the design process outlined in
Section III, we have a graph on the set of sources and
potential relay locations. In some steps, the graph is
based only on the model discussed in Section IV, i.e.,
all pairs of nodes separated by less than Rmax meters are
assumed to have a good link between them, or based on
measurements, or both. In [8] and [9], we have elabo-
rated how, given a network graph defined on the source
nodes, the potential relay locations, and the Base Station
(BS), a candidate topology satisfying the QoS constraints
is extracted. The basic network design problem that
we want to address can be stated as follows: Given a
network graph G = (V,E), where V = Q∪ P, is the set of
vertices consisting of source nodes Q (including the base
station) and potential relay locations P, and E is the set
of all feasible links, obtain a subnetwork that connects
the source nodes to the base station with the requirement
that

1) A minimum number of relay nodes is used.
2) There are at least k node disjoint paths from each

source node to the BS.
3) The maximum delay on any path is bounded by

a given value dmax, and the packet delivery proba-
bility (the probability of delivering a packet within
the delay bound) on any path is ≥ pdel.

The following assumptions are made regarding the
network traffic, and the nature of the wireless medium.

1) The traffic generated by the sensor nodes is very
light; so there is rarely more than one packet in
the network at any point of time so that, with a
high probability, the network is contention free.
Such a situation can arise in many applications
where successive measurements being taken are
well separated in time so that the measurements
can be “staggered”, and they do not occupy the
medium at the same time, e.g., applications such
as data logging, and non-critical preventive control
(see [18, p. 9]).

2) As mentioned in Section IV, since there is a non-
zero PER on each link, packet losses due to random
channel errors have been considered, so that a
random number of retransmissions are required

until each packet is delivered across each link, or
is dropped due to excessive retransmissions.

3) Also slow fading is permitted so that the packet
error probabilities on the links vary slowly over
time, leading to possible link outage (See Section IV).

We approach the problem by designing the network for the,
so called, “lone packet model”, thus reducing the problem to
one of graph design, and then using an analytical model to
evaluate the maximum data rate that the network can support
while meeting QoS. Also note that in order to meet the
QoS constraints for a positive traffic arrival rate, it is
necessary to satisfy the QoS constraints under the lone-
packet model [9]. As it turns out, even this simplified
version of the problem is NP-Hard. Therefore, one can-
not hope to solve the more complex general problem
with positive arrival rate unless one has a satisfactory
solution to this basic lone-packet design problem.

We outline below, how, under a lone-packet model, we
can reduce the QoS constrained network design problem
into a graph design problem.

A. Mapping of QoS to Hop Constraint
Under the assumptions stated earlier, we present be-

low, an elementary analysis that maps the QoS con-
straints, namely, maximum end-to-end packet delay,
dmax, and packet delivery probability, pdel, to a hop count
bound hmax on each path from each source to the BS.

Before proceeding further, we summarize for our con-
venience, the notation used in the development of the
model.

User requirements:
L The longest distance from a source to the base-

station (in meters)
k The required number of node disjoint paths

between each source and the base-station
dmax The maximum acceptable end-to-end delay of

a packet sent by a source (packet length is
assumed to be fixed and given)

pdel Packet delivery probability: the probability that
a packet is not dropped and meets the delay
bound (assuming that at least one path is avail-
able from each source to the base station).

Parameters obtained from the standard:
Dq(·) The cumulative distribution function of packet

delay on a link with PER q, given that the
packet is not dropped; D(h)

q (·) denotes the h-
fold convolution of Dq(·). Under the lone packet
model, Dq(·) is obtained by a simple analysis
of the backoff and attempt process at a node,
as defined in the IEEE 802.15.4 standard for
beaconless mesh networks.

b(·) The mapping from SNR to link BER for the
modulation scheme (see [7])

δ(·) The mapping from PER to packet drop proba-
bility over a link (see [7]). Note that even when
there is no contention, packets could be lost due
to random channel errors on links (i.e., non-
zero link PER). A failed packet transmission is
reattempted at most three times before being
dropped.

Design parameters:

Pxmt The transmit power over a link (assumed here
to be the same for all nodes)

γmin The target SNR on a link
qmax The target maximum PER on a link, when not

in outage

Parameters obtained by making field measurements:
Rmax The maximum allowed length of a link on

the field to meet the target SNR, and outage
probability requirements

Pout The maximum probability of a link SNR falling
below γmin due to temporal variations. A link
is “bad” if its outage probability is worse than
Pout, and “good”, otherwise

To be derived:
hmax The hop count bound on each path, required to

meet the packet delivery objectives
Remark: In practice, k, the number of node disjoint paths
from each source to the sink, can be chosen so that a
network monitoring and repair process ensures that a
path is available from each source to the BS at all times.
The choice of k is not in the scope of our current formula-
tion, and would depend on the rate at which paths can
fail, how quickly the network monitoring process can
detect node failures, and how rapidly the network can
be repaired. We, thus, assume that, whenever a packet
needs to be delivered from a source to the BS, there is
a path available, and, by appropriate choice of the path
parameters (the length of each link, and the number of
hops), we ensure the delivery probability, pdel.

1) Design constraints from packet delivery objectives:
Consider, in the final design, a path between a source
i and the base-station, which is Li meters away. Suppose
that this path has hi hops, and the length of the jth hop
on this path is ri, j, 1 ≤ j ≤ hi. Then we can write

Li ≤

hi∑
j=1

ri, j ≤ hiRmax (1)

where the first inequality derives from the triangle in-
equality, and the second inequality is obvious. Since L is
the farthest that any source is from the base station, we
can conclude that the number of hops on any path from
a source to a sink is bounded below by L

Rmax
.

Suppose that we have obtained a network in which
there are k node independent paths from each source to
the base-station, and all the links on these paths are good
(“good” in the sense explained earlier in the definition
of pout). Following a conservative approach, we take the
PER (conditioned on the link not being in outage) on
every good link to be qmax (we are taking the worst case
PER on each link, and are not accounting for a lower
PER on a shorter link). Consider a packet arriving at
Source i, for which, by design, there are k paths, with
hop counts h`, 1 ≤ ` ≤ k, and suppose that at least one
of these paths is available (i.e., all the nodes along that
path are functioning). The availability of such a path is
determined by a separate route management algorithm
that monitors the k routes for each source, and if the
currently active route from any source fails to provide
the target QoS (e.g., delivery probability), selects one
of the remaining good paths to route traffic from that

source to the sink. The path selection algorithm would
incorporate a load and energy balancing strategy.

If the chosen path has h` hops in it, then the probability
that none of the edges along the chosen path is in outage
is given by

(1 − Pout)h`

Increasing h` makes this probability smaller. With this in
mind, let us seek an hmax, by the following conservative
approach. First, we lower bound the probability of the
chosen path not being in outage by

(1 − Pout)hmax

Now (recalling the definitions earlier in this section) we
can ensure that the packet delivery constraint is met by
requiring

(1 − Pout)hmax (1 − δ(qmax))hmax D(hmax)
qmax

(dmax) ≥ pdel (2)

where, the second term lower bounds the packet success
probability on a path, given the path is not in outage,
and the last term is the probability of in-time delivery
given that the packet was not dropped. Recall that we
take the PER on each “good” link (when not in outage)
to be qmax.

Since the packet drop probability, given the path is
not in outage, is negligibly small (in fact, it is upper
bounded by qn

max on each link, where n is the total
number of failed transmission attempts before a packet is
dropped; n = 4 for IEEE 802.15.4 CSMA/CA MAC [14]),
the packet delivery probability is essentially dominated
by the path outage probability, and the probability of in-
time delivery, given the packet is not dropped. In some
of the deployment environments that we encountered,
especially indoor environments, the probability of link
outage turned out to be quite large; for instance, in the
case of the interiors of our department building, it turned
out that even for small link lengths (≤ 8 meters), about
20% of the links had outage probability in excess of 5%,
and the situation was even worse for longer links (see
Figure 5).

In view of this, we adopt the following design
strategy: given qmax, we first choose hmax so as to make
D(hmax)

qmax
(dmax) close to 1, say 0.9999. For example, for qmax =

0.05, and dmax = 200ms, hmax turns out to be 6 to ensure
D(hmax)

qmax
(dmax) ≥ 0.9999. We thus ensure that when the

path is not in outage, we deliver the packets in time
with very high probability. Let us denote this choice of
hmax as h(1)

max. Now the achievable pdel gets governed only
by the Pout. Then, to ensure the target delay bounded
packet delivery probability, pdel, we choose hmax such
that (1 − Pout)hmax × 0.9999 ≥ pdel, i.e.,

hmax =

⌊
ln(pdel/0.9999)

ln(1 − Pout)

⌋
C h(2)

max

Finally, the hop constraint is chosen as min{h(1)
max, h

(2)
max}.

For example, for Pout = 0.05, and pdel = 0.77, it turns out
that h(2)

max = 5, so that the final hop constraint becomes
hmax = min{h(1)

max, h
(2)
max} = min{6, 5} = 5.

2) The network design problem: With the above mapping
from pdel and dmax to hmax, our original QoS constrained
network design problem can be reformulated as the
following graph design problem:

Given the network graph G = (Q ∪ P,E) consisting of
the set of source nodes Q (including base station), the set
of potential relay locations P, and the set of all feasible
edges E, extract from this graph, a subgraph spanning Q,
rooted at the BS, using a minimum number of relays such
that each source has at least k node disjoint paths to the sink,
and the hop count from each source to the BS on each path is
≤ hmax. In [9], this is called the Rooted Steiner Network-k
Connectivity-Minimum Relays-Hop Constraint (RSNk-MR-
HC) problem.

For the special case of k = 1, in [9] this is called the
Rooted Steiner Tree-Minimum Relays-Hop Constraint (RST-
MR-HC) problem.

B. Network Design Algorithms: The Basic Principle
The details of the network design algorithms for the

RST-MR-HC and the RSNk-MR-HC problems are dis-
cussed in [8] and [9].

Both the algorithms basically perform a series of short-
est path computations from each source to the sink,
starting with an initial feasible solution, and adopting
a certain combinatorial relay pruning strategy to prune
relay nodes from the feasible solution sequentially, each
time computing a new shortest path involving only the
remaining nodes, in an attempt to minimize relay count,
while still retaining hop count feasibility.

C. Network Performance Analysis
The final step of our design approach is to use an

analytical model to obtain the maximum packet rate that
each sensor can generate so that the QoS target is not
violated for the packets generated by any sensor. For
this we utilize a fast and accurate analytical model for
multihop CSMA/CA networks that we have reported in
[23]. Our approach models CSMA/CA as standardized
in IEEE 802.15.4, buffers at each transmitter, and packet
error rates on each wireless hop.

VI. Implementation, Practical Issues, and Testing
A. SmartConnect: System Implementation

The components of the SmartConnect network design
and deployment architecture and the interactions be-
tween them are depicted in Figure 6. The SmartConnect
GUI runs the algorithms for network design and analysis
at the back-end, and has a console for configuration, field
interaction, and information display. The SmartConnect
GUI is connected over TCP/IP to the SmartConnect-WSN
gateway. The SmartConnect-WSN gateway is a Linux
host connected to a base station mote over USB.

The SmartConnect GUI automates the entire design
and deployment process by requiring the user to provide
minimal inputs. Active participation from the user is
solicited only at the time of placing relay nodes on the
field. Apart from using the design algorithm to provide
relay locations for deployment, the user can intervene
with their own intuitively provided relay locations or
modify those provided by the design algorithm. The
user can also view predicted and field learnt links

Fig. 6. SmartConnect architecture: Iterative deployment involves
command-response interaction between nodes on the field and the
SmartConnect system via the SmartConnect-WSN gateway; message
interaction between the SmartConnect graphical user interface (GUI)
and SmartConnect-WSN gateway takes place over TCP/IP.

from each node, as well as the full network graph on
which the algorithm is working in each iteration. In our
implementation the wireless nodes including the base
station mote were TelosB motes with a 2.2 dBi external
omnidirectional antenna for increased radio range.

B. Some Practical Issues

Communication Before Network Set-Up: In the design
phase of the deployment we have source nodes and relay
nodes at predicted locations on field. There is no existing
reliable network connecting the nodes on the field to the
sink. At this stage, for sending commands and receiving
data from the nodes we need a protocol for topology-
free routing. The commands sent from the base station
to the nodes during link learning, and the data sent from
nodes to the base station containing link data are all sent
using a form of flooding implemented in TinyOS called
dissemination [5].

When the initial design is deployed on the field,
the design is based only on modeled links. In such a
deployment dissemination could fail due to one or more
‘bad’ links disconnecting a section of the network. We
thus cannot assure reliability of the commands being
sent out to the nodes. Since our communication range
is conservative in most cases the number of relay nodes
placed on field are in excess of what are needed and
used. We depend on this aspect of our design to provide
a communication framework before the actual network
comes into place. Barring very small number of ex-
ceptions, we found that in most test cases we could
successfully reach all nodes in the network.
Stopping with declaration of infeasibility: The topol-
ogy design algorithm uses either, a model based network
graph (for the initial design) or a hybrid network graph
of modeled links and field-learnt links (relay augmenta-
tion) to propose relay locations. The link model we use is
conservative so as to reduce the number of iterations the
design would require (discussed in Section IV). So, when
a model based network graph is fed to the topology
design algorithm, it could declare the design infeasible

(initial design/augmentation not possible) even though,
on field measurement of link quality, the design could
be feasible. This could happen during initial design, or
when augmentation is needed. However, in our expe-
rience, this situation did not arise over a large number
of deployments. Nevertheless, to still be able to attempt
a design, even when the design algorithm declares in-
feasibility, SmartConnect allows the user to intuitively
place relays at any potential relay location, and proceed
with the design process. On evaluation of the field-learnt
network graph the design may or may not be successful.
The user is allowed to continue augmenting the network
and evaluating until relays are placed at all potential
relay locations.

C. Testing
After network design and validation, a test phase is

conducted to verify whether the delivery probability
and delay promised by the design are being met by
the network. In this phase the network is essentially in
operation, but the data being relayed by the network
are pseudo-sensor data. In the specific case that we
are addressing, the data from each sensor is collected
infrequently. The time duration required to receive from
each sensor source depends on the number of hops it is
from the base station and is in the order of only a few
milliseconds. This allows us to collect data from each
source in a Time Division Multiplexed (TDM) manner. A
time frame is created with one slot given to each source.
Each source sends in its time slot, thus maintaining light
traffic in the network. This requires us to have a time
sync protocol in place, so the time frames of all nodes
are synchronized. The time sync protocol used in our
implementation is FTSP (flooding time synchronization
protocol) provided by TinyOS.

VII. Experiences with Experimental Deployments
inside our Department Building

SmartConnect has been used to make test deploy-
ments in three very different environments: inside our
department building, on the lawns of our building, and
at a large power distribution yard (recall Figure 3). We
found that by far the most challenging environment was
the building. Hence, we report here our experience with
a test deployment in our department.

A. Indoor Deployment 1
We use this test deployment, to test the basic working

of the iterative design and the approximation algorithms.
GUI snapshots are shown at each design phase.

This deployment environment is a high ceilinged
building, constructed from stone blocks (granite), and
built during the period 1946 to 1951. It has thick stone
walls (0.66 m thick outer walls, and 0.66 m thick walls
between rooms), 5m high ceilings, heavy wooden doors,
cubicle separators, tables and other office equipment. As
described in Section IV a communication range model
was obtained for the environment before the deploy-
ment. Owing to heavy attenuation by walls and doors
with very few corridors, link outage in the environment
was large, resulting in an Rmax value of only 8 m.

Sensor MeasuredPdel Predicted Pdel
source ID

2 0.9751 0.9119
3 0.9857 0.9448

34 0.9791 0.9163
13 0.9997 0.9518
17 1.0000 0.9880
26 0.9191 0.9122
27 0.8548 0.9120
28 0.9389 0.9155
32 0.9581 0.9259
33 0.9911 0.9345

TABLE I
Indoor Deployment 1: Delay bounded packet delivery rate in the

final design shown in Figure 10.

The deployment parameters of this test deployment
are as follows. Field area of 1650 m2, 24 potential
locations, 10 sensor sources, 200 ms delay constraint,
communication range of 8 m and a path redundancy
of 1. The target, delay bounded, packet delivery ratio
pdel for this network deployment was 73% which would
allow a network of at most 6 hops (recall from Section V,
the method of choosing hmax).

Figure 7 shows a GUI snapshot of the initial design on
the model based network graph. The sensor sources are
indicated by red stars, the black squares are potential
relay locations, the yellow house is the sink, and the
blue triangles are relay nodes. The design algorithm
suggested relay locations are indicated by blue triangles
and the paths shown are QoS abiding paths on the model
based network graph. We see that the initial design
suggested nine relays (numbered 6, 7, 35, 12, 19, 23, 24,
30, and 31). The GUI snapshot also shows the paths that
each source should use.

After placing relays at locations suggested by the
topology, link learning was done with the nodes on field.
The field-learnt links between these nodes are shown in
Figure 8. Each red line on the graph is a bidirectional
‘good’ link. A link is said to be bidirectional if link outage
constraints are met when measured in either direction.
We see from the figure that the learnt-links network
graph was not even fully connected. Evaluation of this
field-learnt network graph failed, and a second itera-
tion was required with the design algorithm suggesting
augmentation of relays (four relays, numbered 15, 16,
18, and 22). Figure 9 shows the field-learnt links after
augmentation and the second iteration of link learning
(the augmented relays are highlighted with a circle). This
graph on evaluation was found to meet QoS. The final
design is shown in Figure 10. Some observations from
this design are that; of all the relays suggested, only two
relays (numbered 7 and 35) were used by the design
(relays 6, 12, 15, 16, 19, 18, 23, 22, 24, 30, and 31 were
removed after the design); some sources are also acting
as relays in the design; the link between nodes 33 and
35, even though very long, was learnt to be ‘good’ on
field since it had a clear line of sight path. An important
observation is that a link that was not there in the first
iteration appeared later, indicating link instability. This
is addressed later in Section VIII.

Once the design was complete, we ran the analytical
model described in [23], and found that to meet the
QoS requirement, the maximum packet generation rate
from any sensor, for a Poisson packet generation process,
i.e., λmax, is 0.103 pkts/s; i.e., about 1 packet every 10
seconds from each sensor, which is quite adequate for

Fig. 7. Indoor deployment 1: Initial design on the model based
network graph. 10 sources; the initial model-based design suggests
9 relays; the paths in the initial design are shown.

Fig. 8. Links learnt after deploying the relays suggested by the initial
design. All good links learnt are shown.

Fig. 9. Augmentation step suggests the placement of Relays 15, 16,
18, and 22. The additional good links learnt now yield a connected
network.

Fig. 10. Final network design based only on the good links learnt in
the field. Just two of the relays deployed in the field (namely, 7, and
35) end up being needed. λmax of the network is 0.103 pkts/s.

Fig. 11. Indoor deployment 2: Three sensors; five relays proposed by
the initial design (namely, 8, 11, 35, 16, 18); finally just three relays (8,
11, and 35) are used. λmax of the network is 0.118 pkts/s.

Sensor Measured pdel Predicted pdel
source ID

6 0.8971 0.8830
9 0.8961 0.8930
22 0.9075 0.9300

TABLE II
Indoor deployment 2: Delay bounded packet delivery rate in the

final design shown in Figure 11.

applications such as condition monitoring.
Finally, field testing was performed by sending

pseudo-sensor data packets over the network. Results
are provided in Table I. Predicted pdel for each source
node in the table was found by using field-learnt link
outage values in the same pdel inequality.

We see that Node 27 has a delivery probability 6%
lower than the predicted value. Due to the dynamic
nature of this environment, after deployment, some links
turned out to be worse than measured. This could be
due to the movement of people around some motes or
opening/closing of doors. In this example the predicted
and the measured delivery probabilities are still better
than the target pdel, which we recall was 73%. However,
this need not continue to hold over time, as long term
variations in the statistics of the links affects delivery
rates. This motivates the need for a repair phase (refer
to the last block of the flow diagram in Figure 1) that is
triggered by a drop in delivery rate to handle long term
variations and make the network robust. The procedure
for doing this along with some experimental results are
discussed in Section VIII.

B. Indoor Deployment 2
The results of another smaller deployment made in

our department building is presented here. The design
parameters for this deployment were the same as in
the previous example, except that 3 sensor sources were
deployed here and the target pdel for this deployment
was 77% allowing at most a 5 hop network (see Section V
for details of the procedure to choose hmax).

Figure 11 shows a snapshot of the final network de-
sign. This network required only one iteration of design
and evaluation. Of the five relays suggested by the
initial design, three (namely, 8, 11, and 35) were used
and the other two (namely, 16, and 18) were removed.
On completion of the design, we analyzed the network
performance for positive traffic arrival rates as in the

previous example, and found that to meet the QoS
requirement, the maximum packet generation rate, i.e.,
λmax, from any sensor, for a Poisson packet generation
process, is 0.118 pkts/s. The results of field testing on
the network are shown in Table II. Notice that for Node
22, even though the measured pdel was worse than the
predicted pdel, both were still much better than the target,
i.e., 77%.

C. Large Deployment: Outdoor and Indoor
We further test the tool with larger field dimensions.

This deployment is performed on the ECE department
premises of IISc which constitutes the building described
above (indoor deployment) along with lawns with thick
vegetation and parking lot on either side of the building
with vehicles parked(outdoor deployment). The deploy-
ment parameters are as follows: Field area of 8750m2,
153 potential locations, 10 sensor sources, 250ms delay
constraint, communication range of 15m(the Rmax value
for outdoor environment) and a path redundancy of 1.

Figure 12 shows the GUI snapshot of intial design on
the model based graph. The colour conventions for the
sources, relays and the base station are as described for
the indoor deployment in Section VII. The initial design
suggested 25 relays. The paths that each source should
use are also indicated in the figure.

As described and discussed in the indoor deploy-
ment, link-learning is done with the nodes on field after
placing the relays at the suggested locations. Figure 13
shows the field learnt links for the given deployment.
It can be observed that one source no. 26 (Bottom-
center in the figure) has no ‘good’ links from any of the
other nodes. Hence evaluation of the field-learnt graph
failed and augmentation was suggested. Figure 14 shows
the field-graph for the second iteration. However, now
source no 32 (Bottom-right in the figure) is disconnected
(indicating link instability) and another augmentation
was suggested. After the third iteration, all the source
nodes are connected to the base station while meeting
the required QoS. The calculated paths after the final
successful design are shown in Figure 16.

VIII. Robust Network Design
The SmartConnect design approach accounts for short

term link variations (over channel coherence times) via
the wireless link model. A sensor network would, how-
ever, be expected to operate over a long period of time;
at least months, and even years. Over such long periods,
due to changes in the propagation environment (e.g.,
for in-building networks, the changes could be new
furniture, partitions, etc.), the quality of the links in
the original design could significantly vary causing a
decrease in packet delivery rates. The on-field iterative
approach we have adopted, permits us to easily address
the problem of network robustness under long term
variations in the links; see the design flow chart in
Figure 1.

After the initial design has been done, network opera-
tion starts, and the network monitors the packet delivery
rates. Repair of the network is initiated when the delivery
rate of data reduces below what it was designed for. At
this point the links between the nodes in the field are
learnt again, and, if possible, the topology is redesigned

Fig. 12. Large deployment. Initial design on the model based network
graph. 10 sources; the initial model-based design suggests 25 relays;
the paths in the initial design are shown.

Fig. 13. Links learnt after deploying relays at the suggested locations.
All good links are shown

Fig. 14. Links learnt after Relay 24 is deployed as suggested for
augmentation. However, source 32 is disconnected.

Fig. 15. Links learnt after iteration 3 with Relay 31 deployed as
suggested for augmentation. The links yeild a connected network.

Fig. 16. Final network design based only on the good links learnt on
the field. Just four of the relays deployed on the field are used.

Fig. 17. Set of 24 locations where nodes were placed and link learning
performed periodically to evaluate network robustness

with no addition of relay nodes. If this is not possible
then, exactly as in the initial design process, the modeled
links are included and a proposal is made for aug-
mentation with additional relays. At each augmentation
stage, all the heretofore deployed relays are retained. The
reason for doing this is to provide robustness against
future channel variations so that such variations can
be handled just by topology redesign over the existing
nodes, without needing further relay augmentation.

With this approach in mind, it is interesting to ask the
following questions:

1) How often is topology redesign required?
2) Does it indeed happen that after some time no

further relay augmentation is required?
3) Does it help to design the network with path

redundancy?
In order to study these questions we carried out an

experiment in which a set of 24 locations were identified
inside a section of our department building (Figure 17).
Unlike the deployment experiments reported in Sec-
tion VII, we confined these locations to the several offices
and labs occupied by Network Labs (ECE Department,
IISc) (about 600 square meters) in order to be able to
leave the relays undisturbed for several days. With the
nodes at these 24 locations, link learning was performed
periodically with a gap of 4 hours, 20 times over a span
of 3 days, and another 20 times over a span of another 3

Expt. Source IDs Initial Augmentation
required

Final relay no. of
topology

no. relay set at cycles set redesigns

1 23, 11 10, 3 6, 7 10, 3, 22 5
9, 12 17 2, 5

2 18, 19 10 17 10, 11 4
6, 4 5

3 20, 22 no relays none none 0
5, 21 were used

4 18, 22 11, 3 none 11, 3 1
16, 6

5 15, 10 3 none 3 0
11, 4

6 19, 20 11 none 11 0
21, 3

7 12, 15 14, 5 12, 32 14, 5 8
21, 3 10, 11

8 23, 24 14, 5 16, 17 14, 5, 3, 10 3
15, 16 3 12, 11, 6

9 18, 24 10, 3 17, 20 10, 3 2
11, 5 6, 12

10 10, 6 no relays 13, 17 3, 11 3
12, 19 were used 5

TABLE III
Results from the experiment to study temporal robustness of the
network design, where at each design stage only one path is ensured

(i.e., k = 1); see text for details.

Expt. Source IDs Initial Augmentation
required

Final relay no. of
topology

no. relay set at cycles set redesigns

1 23, 11 10, 3, 22 no augmentat- 10, 3, 22 1
9, 12 14, 1 -ion required 14, 1

2 18, 19 10, 22, 14 no augmentat- 10, 22, 14 2
6, 4 5, 3 -ion required 5, 3

3 20, 22 10, 6 no augmentat- 10, 6 0
5, 21 -ion required

4 18, 22 10, 11 13 10, 11 1
16, 6 3 3, 4

5 15, 10 3, 16 no augmentat- 3, 16 0
11, 4 6 -ion required 6

6 19, 20 5, 11 no augmentat- 5, 11 0
21, 3 -ion required

7 12, 15 14, 5 no augmentat- 14, 5 0
21, 3 10, 11 -ion required 10, 11

8 23, 24 5, 3, 12 no augmentat- 5, 3, 12 0
15, 16 10, 6 -ion required 10, 6

9 18, 24 10, 3 no augmentat- 10, 3 0
11, 5 15, 21 -ion required 15, 21

10 10, 6 22, 14 13, 17 22, 14, 5 2
12, 19 5, 3 3. 21, 11

TABLE IV
Results from the experiment to study temporal robustness of the
network design, where at each design stage two node disjoint paths
are ensured from each source (i.e., k=2); see text for details.

days, a week later; a total of 40 evaluation and possible
redesign cycles.

With the link quality data collected, we could then
study (offline) the effect of link variations and the pre-
sense of alternate paths in networks designed over these
24 nodes. To study the approach where the network is
designed with only one path from each source to the
basestation (i.e., k=1), we considered 10 sets of 4 nodes
as sources, and designed networks (for a target delay
of 200 ms) connecting these sources to a base station,
taking the remaining 20 locations as potential relay
placement points, using the proposed iterative design
approach in the first evaluation cycle. For each of these
10 network design problems, by using the collected link
quality measurements we could track the evolution of
the delivery probabilities over the 40 evaluation cycles,
and (virtually) carry out topology redesign and relay
augmentation. A redesign was triggered when the de-
livery rate from any source (as estimated from the mea-
sured qualities of the links being used in each design)
dropped to below 73% (which is the least delivery rate
expected for a 6 hop network with outage ≤ 5% along

each link (discussed in Section V-A)). The performance
deterioration would then be attempted to be resolved by
topology redesign or by relay augmentation.

We report our results of such an experiment with
the network being redesigned at each repair stage so
that there is one path connecting each source to the
basestation (i.e., k = 1), in Table III. The second column
of this table shows the 10 different sets of nodes that
were sources in the 10 experiments (the numbers relate
to Figure 17). The third column shows the set of relays
used in the initial design. In the fourth column we
show the indices of the 40 evaluation cycles at which
relay augmentation was needed. The next column shows
the final set of relays, and the final column shows the
total number of times redesign (with or without relay
augmentation) was done over the 40 evaluation cycles.

From Table III, we see that a maximum of 8 topology
redesigns were required over the 40 cycles. So, in the
worst case, a topology redesign was required around
once in a day. In all cases, except experiment 7 (which,
in fact, also required the most number of repairs, 8),
no augmentation was required after at most the 20th
evaluation cycle, even when the network was evaluated
after a full week for another 3 days (in fact, cases 3, 4,
5 and 6 never required a relay augmentation). Hence, it
appears that we eventually converge to a deployment
where no further relay augmentation will be needed,
and topology redesigns over the existing nodes alone
will suffice to take care of long term variations. Note
that, in this approach, we are essentially over-deploying
relays to create redundant links for robustness of the
deployed network. But it is also important to notice that
in most cases the difference in the size of the initial
relay set and final relay set is not large (the worst case
being Experiment 8 where four relays had to be added
to the original three, out of a total of 20 potential relay
locations) indicating that the number of extra relays
required to take care of time varying link qualities is
quite small.

Having explored this, we then began to answer the
third question posed earlier in this section. At the very
beginning, if we design the network to have path re-
dundancy (node disjoint paths), would we reduce the
number of redesigns required with time?

The experiments were carried out in the same way
as described above, except that in the first design cycle
we design 2 node disjoint paths from each source to
the basestation such that the QoS is met along both
the paths for each source (i.e., in the notation of this
paper, k = 2). This design is now evaluated along the
40 cycles, and redesign is triggered only if the delivery
probabilities along both the paths of any source violate
the target delivery probability of 73%. As in the k = 1
experiments, we considered 10 source sets of 4 sources
each. The results are presented in Table IV. We see that
no augmentation was required to the initial relay set in 8
out of 10 cases as compared to 4 out of 10 cases without
path redundancy. The maximum number of topology
redesigns required was 2 whereas it was 8 in cases
without path redundancy. Also, no redesign was re-
quired beyond the 17th evaluation cycle. The maximum
number of relays added in cases where augmentation
was required was also just 2 relays. While designing with
path redundancy, overdeployment is done in the very

first design step, causing the network to converge faster
than with no path redundancy. In comparison with the
approach in which the network is initially designed with
only one path from each source to the sink, we conclude
that adding path redundancy at the very beginning
significantly improves the robustness of the network to
long term channel variations.

IX. Experiments with a Dynamic Routing Protocol:
RPL on SmartConnect

Having designed a QoS aware, robust network us-
ing SmartConnect, it is interesting to explore how the
network performance changes when operated in con-
junction with some routing protocol that selects routes
dynamically to optimize some predefined objective (such
as end-to-end delivery probability) instead of using the
static routes suggested by SmartConnect. In particu-
lar, we are interested in studying the behavior of the
networks obtained using SmartConnect when used in
conjunction with RPL [18], which is an industry stan-
dard routing protocol for wireless networks with time-
varying and lossy links. RPL can be programmed to
use any objective function, and link quality metrics. For
our purposes, we define the objective function to be
to maximize the end-to-end delivery probability, and
the link quality metric to be the packet error rate on
a link. When the nodes suggested by the SmartConnect
design are deployed on field, and RPL is run on them,
RPL monitors the links, and accordingly, keeps updating
the link quality estimates of the links, and dynamically
selects the best routes (basically using Bellman-Ford
algorithm with the most recent link quality estimates)
in accordance with the predefined objective function. A
more detailed description of the link quality estimation,
and path update mechanism is as follows [24], [12]: each
node continuously maintains a list of potential parents,
one of which is chosen as the preferred parent based on
their current path qualities (“ranks” in RPL terminology)
to the sink. Routing from a node is performed through
this preferred parent. The link qualities of a node to all of
its potential parents (including the preferred parent) are
initialized to some default value. In addition to the data
traffic from the source nodes, each node sends periodic
control packets (DAO messages) to its preferred parent.
The link qualities are updated by measuring success
rates on the links currently being used by data or control
traffic. Thus, the most recent updates are available for
only those links that are part of the currently active RPL
tree topology, i.e., only the links between nodes and their
preferred parents.2 An update in link quality triggers
an update in the rank of the corresponding transmitting
node. Whenever a node’s rank is updated, it broadcasts
a control packet announcing its new rank; the nodes
receiving this broadcast refresh their potential parent
list, and recompute their preferred parent, potentially
causing an update in their ranks (and hence, possibly,
their paths to the sink) as well.

2As pointed out by Dawans et al. [12], “this approach is conservative
in the sense that it only evaluates the links that are currently being
used. It efficiently detects link failures towards the current preferred
parent, but doesnt investigate any alternative otherwise. As a result,
CTP and RPL often stick to a routing topology that may become sub-
optimal with time.”

Fig. 18. Design obtained using SmartConnect; RPL was run after
deploying relays at the suggested locations

Intuitively, use of such a dynamic routing protocol
with the SmartConnect based network can provide the
following advantages:

1) Recall that SmartConnect suggests routes that are
just good enough to meet the predefined QoS tar-
get. On the other hand, RPL aims at optimizing the
QoS objective, not just meeting the target. Hence,
on the same collection of nodes (those obtained
from SmartConnect design), RPL may be able to
find better routes (in terms of QoS) than those
suggested by SmartConnect.

2) In SmartConnect, whenever the QoS drops below
the target QoS, we have to trigger repair which
results in a topology redesign (rerouting without
relay augmentation), or relay augmentation. Since
RPL selects routes dynamically, it may take care of
topology redesigns automatically, and thus, elim-
inate the need for invoking the SmartConnect re-
pair phase until such time as relay augmentation
becomes necessary (i.e., no QoS satisfying routes
exist in the current on-field network graph).

A. Experiments with k = 2
To verify the above intuitions, we performed the fol-

lowing experiment.

The experiment:
1) Using SmartConnect, we designed a network for 4

sources and k = 2. The design parameters were the
same as in the robustness experiments described
in Section VIII. The resulting topology is shown in
Figure 18.

2) At each of the locations (including the source loca-
tions) suggested by the SmartConnect design, two
motes were deployed, one programmed for static
routing (using the routes suggested by SmartCon-
nect), and the other programmed for running RPL
with PER as link quality metric, and (maximizing)
end-to-end delivery probability as the objective
function; the two motes at each location were op-
erated at channels that were 30 MHz apart.

3) To comply with the lone-packet model, each source
generated traffic at a rate of 1 packet every 15
seconds. Both the RPL network, and the static
routing network were operated in parallel for 5
days.
• In RPL, the PER on a link was computed over a

window of 20 packets, and the the link quality

Fig. 19. Results of using RPL in conjunction with SmartConnect. Top
panel: performance of static routing; Bottom panel: performance of RPL

estimate was updated as:

current estimate = (1 − α) × current PER
+ α × previous estimate

where α = 0.5. The initial estimates for all the
links were set to 1.

• In SmartConnect, tracerouting was performed
every 150 seconds to select one of the two static
routes for each source.

4) The end-to-end delivery probability of each source
in each network was continuously monitored over
windows of 100 packets.

The results are summarized in Figure 19.

Observations and Discussion:
1) From Figure 19, we observe that the end-to-end

delivery probability achieved by RPL over the en-
tire period of 5 days was better than that achieved
by the static routing of SmartConnect.3 This is
expected due to the following reasons.

a) Since SmartConnect uses static routes, a drop
in any link quality in any of these routes
adversely affects the SmartConnect QoS, and
the QoS cannot recover until the repair phase
is triggered, or the affected links recover,

3Note, however, that for the most part, SmartConnect still met the
target pdel of 73%.

whereas RPL being a dynamic routing proto-
col, can better adapt to the time-varying link
qualities, and can automatically switch to an
alternate path with better QoS without having
to wait for the affected links to recover.

b) Note that the objective function of RPL is only
packet delivery probability (and not end-to-
end delay), unlike SmartConnect, where the
design was done to ensure a delay-bounded
packet delivery probability, and hence the de-
sign was somewhat more conservative. Note
that paths that achieve the minimum pdel need
not meet the delay requirement. This delay-
oblivious objective function of RPL could be
another possible reason why RPL does better
than SmartConnect static routes in terms of
pdel even during the initial windows.

2) With RPL, the end-to-end delivery probability of
any source seldom dropped below 90%, and even
when it did, it recovered within at most 1 window,
i.e., 100 packets (approximately 25 minutes). Note
that this recovery is non-disruptive, i.e., network
operations may continue during the recovery pro-
cess unlike SmartConnect repair phase, which, if
invoked, would shut down network operations
until the repair is complete. Further note that the
repair phase involves at least one round of link
learning, which, for a 9-node network as in our
experiment, would take about 30 minutes, and
hence is, at best, comparable to the recovery time of
RPL. Thus, RPL can automate topology redesigns
without disrupting network operations, and hence,
eliminate unnecessary calls to SmartConnect repair
phase.

3) Finally, since RPL performs topology redesigns
automatically, we need to figure out when a call
to the SmartConnect repair phase is necessary. We
propose two empirical ways to do this:

a) Since we observe from Figure 19 that RPL
always recovered within 100 packets, we may
wait for one 100-packets window, and if the
QoS does not meet the target even after that,
we shall invoke SmartConnect repair phase.

b) For α = 0.5, the minimum number of 20-
packets windows required by RPL to change
its PER estimate of a link from 1 to say, 0.01,
assuming no packet drops on that link over
that period, is d ln 0.01

ln 0.5 e = 7. Hence, wait for
7 × 20 = 140 packets before triggering the
SmartConnect repair phase.

B. Experiments with k = 1
Next, we ask the question whether the redundancy in

the underlying network topology for k = 2 helps RPL
performance, or whether RPL is flexible enough to de-
liver the same performance over the same time duration
even on a sparser topology, say on a SmartConnect based
network topology for k = 1. To answer this question, we
performed the following experiment.

The experiment:
1) Using SmartConnect, we designed a network for

the same 4 sources as in Section IX-A, and k = 1.

Fig. 20. Design obtained for k = 1 using SmartConnect; RPL was run
after deploying relays at the suggested locations

Fig. 21. Results of using RPL in conjunction with SmartConnect for k =
1. Top panel: performance of static routing; Bottom panel: performance
of RPL

The design parameters were the same as in the
robustness experiments described in Section VIII.
The resulting topology is shown in Figure 20.

2) The rest of the procedure was the same as in
the previous experiment described in Section IX-A,
except that no tracerouting was performed for
SmartConnect since each source had only one static
route to the sink.

The results are summarized in Figure 21.

Observations and Discussion:
1) Comparing Figures 19, and 21, we see that

a) On the k = 2 deployment, RPL achieved a
probability of delivery close to 1 for a duration
of 250 windows, i.e., in excess of 4 days,
whereas on the k = 1 deployment, after about
170 windows, i.e., 3 days, the probability of
delivery for a source dropped to zero, and
never recovered. Interestingly, the probabil-
ity of delivery for that source in SmartCon-
nect remained more than 80% upto about 183
windows, indicating that a QoS-satisfying path
existed, but RPL was unable to find it. While
it seems counter-intuitive at first glance, this
situation can arise if a node in the current RPL
routing tree does not have any alternate potential
parent to switch to when the link to its current
preferred parent goes down. Clearly, such a
situation is more likely in a sparse network
deployment.

b) Unlike in the k = 2 case, in the k = 1 case, we
see more fluctuations in the RPL performance
during the first 3 days, and it did not always
recover within one window.

2) From Figure 21, SmartConnect probability of de-
livery for one of the sources (indicated by magenta
color in the plot) dropped to zero after about 2 win-
dows (50 minutes), and never recovered, whereas
RPL continued to maintain a high pdel for that
source.

To summarize, Observation 1 above clearly emphasizes
the need for a redundant deployment, while Observation
2 once again demonstrates the advantage of RPL over
SmartConnect static routing. Moreover, the observations
suggest the counter-intuitive fact that neither RPL nor
static routing is guaranteed to perform better than the other in
all scenarios; the performance depends on the underlying
deployment.

Overall, the experiments in Sections IX-A and IX-B
suggest that using RPL in conjunction with the robust
network design obtained from SmartConnect may sig-
nificantly enhance QoS performance of the network, and
also eliminate unnecessary calls to the SmartConnect re-
pair phase, thus causing minimal disruption to network
operations.

X. Conclusion
We have presented SmartConnect, a tool for assisting

in designing and deploying multihop relay networks
for connecting wireless sensors with a control center,
for noncritical monitoring and control applications. We
described the core idea of field interactive iterative
design, and the associated procedures and algorithms.
The SmartConnect system has been fully implemented
and can be used for network design in a variety of
environments.

The core topology design algorithm, that SmartCon-
nect currently uses, assumes a light traffic model, so that
at any time, with a high probability just one packet is
traversing the network. In our ongoing work, we aim to
extend SmartConnect to be able to design relay networks
for more general sensing loads. It may also be interest-
ing to see how the network topologies designed using

SmartConnect behave in conjunction with a dynamic
routing protocol such as RPL [18], [24]. Finally, in this
work, we have assumed that the nodes in the network
are always awake. The problem of QoS aware network
design for sleep-wake cycling nodes remains a topic of
our future research.

Acknowledgement
This work was supported by the Department of Elec-

tronics and Information Technology (DeitY, Govt. of
India) via the Automation Systems Technology (ASTEC)
program, and by the Department of Science and Tech-
nology (DST, Govt. of India) via a J.C. Bose Fellowship.

References
[1] http://www.ece.iisc.ernet.in/dit-astec/smartconnect-demo.html.
[2] www.e-senza.com/products/senzaanalyzer.
[3] www.hartcomm.org/protocol/wihart/wireless technology.html.
[4] www.isa.org/isa100.
[5] www.tinyos.net/tinyos-2.x/doc/html/tep118.html.
[6] www.vykon.com.
[7] A. Bhattacharya. Node Placement and Topology Design for

Planned Wireless Sensor Networks. M.E thesis, Indian Institute
of Science, June 2010.

[8] A. Bhattacharya and A. Kumar. Delay Constrained Optimal Relay
Placement for Planned Wireless Sensor Networks. In 18th IEEE
International Workshop on Quality of Service (IWQoS), 2010.

[9] A. Bhattacharya and A. Kumar. QoS Aware and Survivable
Network Design for Planned Wireless Sensor Networks. Technical
report, available at arxiv.org/pdf/1110.4746, 2011.

[10] Y. Chen and A. Terzis. On the Implications of the Log-normal Path
Loss Model: An Efficient Method to Deploy and Move Sensor
Motes. In Sensys. ACM, 2011.

[11] O. Chipara, G. Hackmann, C. Lu, W. D. Smart, and G.-C. Roman.
Practical Modeling and Prediction of Radio Coverage of Indoor
Sensor Networks. In IPSN. ACM, 2010.

[12] S. Dawans, S. Duquennoy, and O. Bonaventure. On link es-
timation in dense RPL deployments. In 7th IEEE International
Workshop on Practical Issues in Building Sensor Network Applications
(SenseApp), pages 956–959, 2012.

[13] Y.-K. Huang, P.-C. Hsiu, W.-N. Chu, K.-C. Hung, A.-C. Pang, T.-W.
Kuo, M. Di, and H.-W. Fang. An integrated deployment tool for
zigbee-based wireless sensor networks. In EEE/IFIP International
Conference on Embedded and Ubiquitous Computing, 2008.

[14] IEEE. IEEE Standards Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs). New York, October 2003.

[15] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal
Sensor Placements: Maximizing Information while Minimizing
Communication Cost. In IPSN. ACM, 2006.

[16] J. Li, Y. Bai, J. Ma, H. Ji, and D. Qian. The architecture of
planning and deployment platform for wireless sensor networks.
In International Conference on Wireless Communicationss, Networking
and Computing (WiCOM), 2006.

[17] T. Liu and A. E. Cerpa. Foresee (4C): Wireless Link Prediction
using Link Features. In IPSN. ACM, 2011.

[18] T. Phinney, P. Thubert, and R. Assimiti. Rpl applicability in in-
dustrial networks: draft-phinney-roll-rpl-industrial-applicability-
00. Internet-Draft, October 2011.

[19] B. Raman, K. Chebrolu, N. Madabhushi, D. Y. Gokhale, P. K.
Valiveti, and D. Jain. Implications of link range and (in)stability
on sensor network architecture. In WiNTECH, September 2006.

[20] A. Ray. Planning and Analysis Tool for Large Scale Deployment
of Wireless Sensor network. International Journal of Next-Generation
Networks (IJNGN), 1(1), 2009.

[21] J. Robinson, M. Singh, R. Swaminathan, and E. Knightly. De-
ploying mesh nodes under non-uniform propagation. In IEEE
INFOCOM, March 2012.

[22] K. Srinivasan and P. Levis. Rssi is under appreciated. In Third
Workshop on Embedded Networked Sensors (EmNets), 2006.

[23] R. Srivastava and A. Kumar. Performance analysis of beacon-less
ieee 802.15.4 multi-hop networks. In Fourth International Conference
on Communication Systems and Networks (COMSNETS), January
2012.

[24] T. Winter, P. Thubert, and R. A. Team. RPL: Ipv6 routing protocol
for low power and lossy networks, March 2012.

	I Introduction
	II Related Literature
	III Field Interactive Network Design
	IV Wireless Link Modeling
	V Network Design Approach
	V-A Mapping of QoS to Hop Constraint
	V-A1 Design constraints from packet delivery objectives
	V-A2 The network design problem

	V-B Network Design Algorithms: The Basic Principle
	V-C Network Performance Analysis

	VI Implementation, Practical Issues, and Testing
	VI-A SmartConnect: System Implementation
	VI-B Some Practical Issues
	VI-C Testing

	VII Experiences with Experimental Deployments inside our Department Building
	VII-A Indoor Deployment 1
	VII-B Indoor Deployment 2
	VII-C Large Deployment: Outdoor and Indoor

	VIII Robust Network Design
	IX Experiments with a Dynamic Routing Protocol: RPL on SmartConnect
	IX-A Experiments with k=2
	IX-B Experiments with k=1

	X Conclusion
	References

