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Abstract

We propose the AdaPtive Noise Augmentation (PANDA) procedure to regularize the
estimation and inference of generalized linear models (GLMs). PANDA iteratively op-
timizes the objective function given noise augmented data until convergence to obtain
the regularized model estimates. The augmented noises are designed to achieve various
regularization effects, including Iy, bridge (lasso and ridge included), elastic net, adaptive
lasso, and SCAD, as well as group lasso and fused ridge. We examine the tail bound
of the noise-augmented loss function and establish the almost sure convergence of the
noise-augmented loss function and its minimizer to the expected penalized loss function
and its minimizer, respectively. We derive the asymptotic distributions for the regular-
ized parameters, based on which, inferences can be obtained simultaneously with variable
selection. PANDA exhibits ensemble learning behaviors that help further decrease the
generalization error. Computationally, PANDA is easy to code, leveraging existing soft-
ware for implementing GLMs, without resorting to complicated optimization techniques.
We demonstrate the superior or similar performance of PANDA against the existing ap-
proaches of the same type of regularizers in simulated and real-life data. We show that
the inferences through PANDA achieve nominal or near-nominal coverage and are far
more efficient compared to a popular existing post-selection procedure.

keywords: [y penalty, augmented Fisher information, ensemble learning, noise injection
and augmentation, regularization and penalization, inference

1 Introduction

Regularization of generalized linear models (GLMs) to mitigate overfitting and conduct vari-
able selection is a well-studied topic. There exist a variety of regularizers, such as bridge
(Frank and Friedman, 1993), ridge (l2), lasso (/) (Tibshirani, 1996), elastic net (Zou and
Hastie, 2005), SCAD (Fan and Li, 2001), adaptive lasso (Zou, 2006), group lasso (Yuan and
Lin, 2014), fused lasso (Tibshirani et al., 2005), sparse group lasso (SGL) (Simon et al., 2013),
among others. As for the inference for regression coefficients in penalized GLMs, many exist-
ing approaches are post-election procedures, meaning the inference is initiated after variable
selection and oftentimes non-selected variables are assumed to be of no inferential interest and
no uncertainty quantification are provided for the corresponding regression coefficients (Leeb
and Potscher, 2005; Leeb et al., 2006; Berk et al., 2013; Zhang and Zhang, 2013; Javanmard
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and Montanari, 2014; Lockhart et al., 2014; Efron, 2014; Lee et al., 2016; Tibshirani et al.,
2016; Reid et al., 2017; Taylor and Tibshirani, 2017). Procedures for simultaneous variable
selection and inference do exist. Fan and Li (2001) provide simultaneous variance estimates for
the coefficients of selected estimated variables (so non-zero coefficient estimates). For linear
regression, (Zhang and Zhang, 2013; Javanmard and Montanari, 2014) provide simultaneous
variable selection with the lasso penalty and inference for both zero or non-zero coefficient
estimates. Van de Geer et al. (2014) propose a procedure for constructing confidence inter-
vals and hypothesis testing for a low-dimensional subset of a large parameter vector in the
high-dimensional GLM setting with convex loss functions with the lasso penalty.

Despite the extensiveness of the work on regularized variable selection in GLMs, there is still
room for improvement over the existing solutions. Two of these areas are the [y regularization
and inference in regularized GLMs. Optimization with the [y penalty is NP-hard. Dicker et al.
(2013) propose the seamless-ly (SELO) penalty to approximate the ly penalty and a coordinate
descent algorithm to obtain solutions in the context of the least-squares optimization and
p < n. SELO outperforms SCAD in model error and variable selection accuracy rate per
the empirical studies. Liu and Li (2016) propose an EM algorithm that approximates the
lp regularized regression by solving a sequence of [y optimizations. The method deals with
p > n, but is examined only in the least-squares setting and does not provide inferential
procedures. Regarding the inference for regularized GLMs, as mentioned above, the majority
of existing methods operate in a post-selection matter and thus focus on the inference for
selected variables only. Fan and Li (2001) and Dicker et al. (2013) provide standard errors for
the parameter estimates in non-convex optimization, and again for selected variables only.

We propose a novel general regularization framework, AdaPtive Noisy Data Augmentation
(PANDA), for GLMs that 1) achieves the [y penalty in addition to all the above mentioned
existing penalty types, 2) obtains inference in regularized GLMs for both zero and non-zero
coefficients, and 3) enjoys simple practical implementation that would greatly appeal to prac-
titioners. In brief, PANDA augments the original n observations with properly designed n.
noise terms to achieve the desired regularization effects on model parameters. PANDA is
iterative and the variance terms of the augmented noise are adaptive to the most updated
parameter estimates until the algorithm converges. One requirement on n, is the augmented
data size n 4+ n. > p so to allow for the ordinary least squares (OLS) or maximum likelihood
estimation (MLE) procedures to be applied without resorting to complicated optimization
algorithms. As such, PANDA 1is computationally straightforward and efficient. PANDA is
also flexible and general. By properly designing the variance of the augmented noise, PANDA
can achieve various regularization effects, including [, for 0 < v < 2 (including ly, lasso,
ridge as special cases), elastic net, SCAD, group lasso, and fused ridge. PANDA achieves
close-to-exact [y regularization by promoting orthogonality between the coefficients and the
augmented noise vector. When n, < p, PANDA shrinks exactly n. parameters towards 0
upon convergence. PANDA is more capable and more efficient inferentially compared to exist-
ing inferential approaches for reqularized GLMs. It conducts variable selection and provides
inference for coefficients simultaneously, whether the coefficients are estimated to be zero or
not. Our empirical results suggest the inference based on PANDA is valid and more efficient
compared to some existing post-selection procedures. Finally, PANDA is theoretically justi-
fied. We establish the Gaussian tail of the noise-augmented loss function and the almost sure



convergence to its expectation under some regularity conditions, providing theoretical justifi-
cation for PANDA as a regularization technique and that the noise-augmented loss function
is trainable for practical implementation.

The optimizer calculated by PANDA from a GLM is similar to the local quadratic approx-
imation (LQA) technique (Tibshirani, 1996; Fan and Li, 2001), but with several important
differences. First, LQA cannot yield the [y penalty while PANDA can achieve close-to-exact
lp regularization; second, LQA relies on analytical work to approximate penalized loss func-
tion with a quadratic form, followed by the optimization of the quadratic function, whereas
PANDA only needs to augment the original data with noisy samples and then leverage existing
software to compute OLS/MLE from GLMs.

The rest of the paper is organized as follows. Sec 2 presents the PANDA algorithm and the reg-
ularization effects it brings to GLMs. Sec 3 establishes the consistency on the noise-augmented
loss function and the regularized parameter estimates, presents the Fisher information of the
model parameters in augmented data, examines PANDA’s ensemble learning behavior, and
provides the asymptotic distributions for the parameter estimates via PANDA. Sec 4 demon-
strates the [y penalty realized by PANDA, compares PANDA to a popular post-selection
inferential approach in statistical inferences for GLMs, and implements PANDA in simulated
and real-life studies to show its effectiveness in regularizing GLM estimation. Sec 5 provides
some concluding remarks and offers future research directions on PANDA.

2 Methodology

2.1 Noise Augmentation Scheme and Regularization Effect in PANDA

Let Y be the outcome variable and X = (Xi,..., X,)” be the independent variables. GLM
is based on the assumption that the conditional distribution of Y given X comes from an
exponential family

p(Y[X) = exp (Y — B(n) + h(Y)), (1)

where = 6, + 6X if the canonical link is used (e.g., the .
. . . . o ’ noise-augmented
identity link for Gaussian Y’; the logit link for Bernoulli V). data
When p is large, regularization or penalty is often imposed observed ViX|
on 6 when estimating 6. data

YiXq s e
PANDA regularizes the estimation of 8 by first augmenting | YnlX,
the observed data with a noisy data matrix. Fig 1 depicts s e e
a schematic of data augmentation in PANDA, where the YnXp e
augmented noise ¢; to y is 7, the sample average of y. For €n, €n,
logis_tic regression, e; ~ Bern(p), where p is the sample pro- Xi = (i, e xp) fori=1,...,n
portion of an event. The augmented data e, to x are drawn ei=Fande = (e er)
from the Noise Generating Distributions (NGD), the vari- f(l)ri— 1 l . bl Bl

ance term of which is function of @ and tuning parameters

N Figure 1: A schematic of the data

augmentation for GLM in PANDA
(for logistic regression, e,; ~
Bern(p), where p is the sample pro-
portion of an event)

e, ~ N (0,V(6; X)) (2)

Proposition 1 (regularization effects of PANDA for
GLM). Denote the loss function given the observed data
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(x,y) by 10x,y) = —>_i, <h(?/i)+ (90+Ej6jxij> yi—j(90+zj9ji€ij)> (the negative log-
likelihood function), and that given the noise augmented data (X,y)) by

L(01%.3) == {7 (h@)+ (6 + 5,03 ) ) =B (fo+ 3, 655) . (3)
where 0= (0, {0;};-1...
the distribution of e, is

Ee, (1,(0|x,y)) = 1(0|x,y) + P(0), where
P(9)=n, (olzj eg.wej)) +O (nez ; (e;*v?(ej))) ") (4)

where C; =2"1B"(6) and C'=>"", (h(ey;)+ey.if0)+DB(0o) are constants independent of 6_,.

»). The expectation of the Taylor series of [, around ;0 =0 over

The proof is given in Sec S.1 of the supplementary materials. The regularization effect P(0)
in Eqn (4) depends on the variance term of the NGD in Eqn (2) from which the augmented
noise to x is sampled. Eqns (5) to (8) list some examples of the NGD from which e;, the noise

term that augments x; for j = 1,...,p, is drawn and their expected regularization effects.

bridge: e; ~ N (0,A]0;]77) for v € [0, 2] (5)
including [y when v = 2, lasso when v = 1, and ridge when ~ = 0;
elastic net: e; ~ N (0,\[6;|7" + 07) ; (6)
adaptive lasso: e; ~ N (O, /\|0j|_1|éj|_7> ,where 6; is a consistent estimate for 6;; (7)
SCAD =0 if |0, > an.A
F € a+1 a 2ne a’—

7] ~ N <O, <ﬁ — éaT—i_nZ> 1(0,ne)\] (‘93 |>‘|‘ (ail) <|9_j\‘ - )\26’? - 22(12”61) 1(ne)\,ane/\] (‘ej |)> O0.W.
where 1., (|60;]) =1 if I <|0;|<u, 0 0.w.; (8)
For regularizing a group of ¢ parameters 8, = (6,...,0,) simultaneously (e.g., genes on

the same pathway, binary dummy variables created from the same categorical attribute),
the NGDs in Eqns (9) and (11) can be used. Specifically, the group-lasso penalty sets all ¢
parameters in @, either at zero or nonzero simultaneously; and the fused-ridge and fused-lasso
penalties promote numerical similarity among 6.

AV .
Hol\/H_;>,where 9(1):{9](1)} for j=1,...,q;1=1,...,g groups (9)

fused ridge: e = (e1,...,¢e4) ~ Ny (0, \(TT")), where entries in T are (10)
Tkk =1 Tk+1 k-1(k=q),k — 1 and 0 O0.W.;

fused lasso: e = (ey,...,e,) ~ Nig (0, \(TT)) , where Ty =A|0; — 0| for k#£K . (11)

The tuning parameters 02 > 0,A > 0, 0 < v < 2, a > 2 in Eqn (5) and (11) can be

user-specified or chosen by a model selection criterion such as cross-validation (CV), AIC, or

BIC. The dispersion of the noise term varies by X in general. X associated with small |6;]

is augmented with more spread-out noises, and X; with large |6;| is augmented with noises

concentrated around 0. The exceptions are the ridge (7 = 0 in Eqn (5)) and fused ridge
regularizations (Eqn (10)), where the variance term remains constant for 6; for all j.

group lasso: e;;) ~ N (0,

For linear regression, the noise-augmented loss function is 1,(0|%,¥) = > (5:— > i i;;9)) 2

and the penalty P(0) realized by PANDA with different types of NGD can be obtained in
closed form (Table 1) and are exact as suggested by the names. P(0) in Table 1 can be
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easily derived based on the results in Sec S.1 of the supplementary materials. Compared to
the original SCAD in Fan and Li (2001) for linear regression, the SCAD penalty realized by
PANDA for |6;] < An. is not [; as in the original SCAD but closer to a [y 5 penalty; the middle
segment penalty |0;| € (An.,an.A] is not exactly the same as the original SCAD either, but
it has the same functionality by shrinking |6;| € (An., |0;| < aAn.] toward 0 and connecting
the two end segments to form an overall smooth penalty for 6;; for |6;| > aAn., there is no
penalty as in the original SCAD.

Table 1: Close-formed penalty term in regularized linear regression (Gaussian Y') via PANDA

NGD P(0) when Y is Gaussian

Ly Eqn (5) (Ane) Z] 1 Z];ﬁk 10, ’2 K

EN Eqn (6)  (Ane) 2201 D254 10 "*’ (0%ne) D281 3005

adaptive Eqn (7)  (An.) Z] 1 Z]?ﬁk |6, ||0 | =7,

SCAD Eqn (8) >0, {(neA0;] — (a4 1)6%/(2a*n.)))- L, <on. +

(aAne|0;]—(Ane)?/2—05(1-1/(2a%))) (a—1)""1jp; e (ne arne] }
group lasso  Eqn (9)  (Ane) D7 1 ail|0il]2

When Y is non-Gaussian, the achieved regularization effects P(0) in Eqns (5) to (11) are
second-order approximate. For example, Table 2 lists the analytical form of P(@) for the
lasso-type noise (7 = 1 in Eqn (5)). For all the regression types, in addition to the l; penalty,
there is an additional big-O term on 6, which is arbitrarily small under some regularity
conditions (more details are provided in Sec 2.3).

Table 2: Expected penalty term in PANDA with lasso-type noise e; ~ N (0, A|#;|77)

Y P(6)
Bernoulli ’\ge(lfzf% >, 1051 +O(Nn.|[0]]3 )
Exponential A1 exp(6y) > 1051 + O(Nn.|[0]]3) +
Poisson Ale exp(6p) > 1051+ O(Nn.|[0][3) +

rexp(6o)
Negative Binomial ’\2 m >, 1051+ O0(Xn.|0]]3) + C (r is the # of failures)

For relatively small n., especially when n. < p, PANDA promotes sparsity on 6 by imposing
ne linear constraints on 6. Applying the second-order approximation at el @ = 0, we have

1, (0]x) =~ {Z?;n (h@i)‘i‘ (90 +2; ijig) ﬂi) —B; (90 +2; 9j@j> }
~1(01%) + Gy 1 (3,0 em) el (12)

where C; and C' the same as in Eqn (4). The regularization effect obtained in Eqn (12)
with fixed n. is different from the regularization presented in Proposition 1 in the sense that
it takes effect by promoting the orthogonality between 6 and e, ;,¢ = 1...,n, rather than
penalizing the individual parameters. The formal results are given in Proposition 2. The
proof is provided in Sec S.2 of the supplementary materials.

Proposition 2 (orthogonal regularization effect of PANDA for GLM with fixed n.).
With fixed n,. and the approximate loss function in Eqn (12), PANDA estimates 6 by solving

6 = argming [,(8]%) ~ arg ming(1(0]x) + Cy 37, (eZTO)z (13)



in each iteration, which is conceptually equivalent to the constrained optimization problem
min [(0]x) subject to

A

2
ot (el) <>, (e?@) or equivalently, (14)
30 < d; < (327, (€78)*)'/? such that |€T 0| < d;, fori=1,...,n,. (15)

6 in Eqns (14) and (15) is the solution from Eqn (13). Proposition 2 suggests that the (uncon-
strained) optimization problem PANDA solves in each iteration is equivalent to a constrained
optimization problem with n, linear constraints on 8. When n, < p, the n. constraints in Eqn
(15) only affect a subset of the p parameters. For the [y penalty (v = 2 in Eqn 5)) and when
A is large, the constraints take effect on exactly n. parameters. In other words, the following
two optimization problems are equivalent.

Problem 1: 8 = Eq(8) = Ee{arg ming(I(8]x) + C1 20, (32, 05¢,1)” } (16

Problem 2: 6 = argming [(6]x), subject to > 10, #0)=p—n, (17)
Figure 2 plots the heat maps of the constrained region on @ = (61, 65) as suggested by Eqn (14)
for n. = 1,2 and 10, respectively when 6 = (0.01,1) (the upper panel) and 0 = (0.01,0.01)
(the bottom panel), with the [y penalty. Specifically, each heat map is made of 50,000 “dots”
uniformly distributed in the [2,2] x [2,2] solution region (for plotting purposes, we focus on
the region of [2,2]?; in theory, the region can be as large as (—oc, 00)?). The relative density
of a particular constraint on @ out the 5,000 repeats is proportional to the grayness of the
dot. In the upper panel, with n. = 1, the chance of constraining ¢; at 0 is much higher than
at any non-zero values. As n. increases from 1 to 2 to 10, the constrained region for @ shrinks
(to 0 for #; and to within [—1,1] for 6;). In the bottom panel, setting n. = 1 still lead a
substantial chance of getting non-zero 6. As n,. increases to 2 and 10, the chance of 8 = 0
drastically increases and is almost certain at n, = 10.

As n, further increases, the regularization effect moves away from promoting the orthogonality
between e, and 6 to focusing more on the individual parameter regularization, and eventually
converges to those in Proposition 1. In practice, n. can be pre-specified if users have prior
knowledge on the sparsity of 8, otherwise be regarded as a tuning parameter, chosen by the
CV procedure or an information criterion (AIC or BIC) for model selection.

2.2 Algorithmic Steps of PANDA

The practical implementation of PANDA starts with some initial values for 8. The estimates of
0 and the variance terms of the pre-specified NGD are updated iteratively until convergence.
The detailed steps are listed in Algorithm 1, along with some remarks on specifying the
algorithmic parameters and convergence criterion (Remarks 1 to 5).

Remark 1 (convergence criterion). We provide several choices to evaluate the convergence
of the PANDA algorithm. First, we may eyeball the trace plots of [*), which is often sufficient.
Second, we can apply a cutoff value, say 7 on the absolute percentage change on () from two
consecutive iterations: if [[+1) —[®)|/I® < 7 then we may declare convergence. T is supposed
to be close-to-0 upon convergence, but being arbitrarily close to 0 would be difficult to achieve
given the fluctuation around [ with finite m or n. due to the randomness of the augmented
noises from iteration to iteration. Finally, we develop a formal statistical test for convergence
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Figure 2: Heat maps of the [y constraint through the orthogonal regularization in PANDA with fixed
ne for 2-dimensional 8 = (61, 63)

based on I¥); but the test should be used with caution as it tends to claim non-convergence.
The details of the test are provided in Sec S.7 of the supplementary materials.

Remark 2 (maximum iteration 7'). T should be set at a number large enough so to
allow the algorithm to reach convergence within a reasonable time period. When n, is large,
we expect the algorithm to converge with a relatively small 7' (in the examples in Sec 4,
convergence is achieved for T' < 20 with a large n.). If n. is small, especially when PANDA
is used to realize the [y regularization, T should be set a large number for convergence.

Remark 3 (m and r). In practical implement, n., no matter how large, is still finite. In
addition, one might not want to set n. at a very large value as it will slow down the per-
iteration computation. With a finite n., there is random fluctuation around the loss function
and parameter estimates since each iteration is based on a different set of finite samples, even
when the PANDA algorithm converges. To mitigate the random fluctuation, we can take the
moving averages of the estimated parameters over multiple (m) iterations. The same rationale
applies to the banking of r estimates after convergence. In addition, taking the averages of the
estimates obtained from the multiple augmented data sets also leads to a small generalization
error due to the ensemble-learning type of effect PANDA brings (see Sec 3.4 for more details).
In our empirical studies, 7 = O(10) seems to be sufficient.

Remark 4 (Bounding at 7j). The bounding at 7y is necessary. Despite the fact that
estimates of zero-valued @ can get arbitrarily close to 0 (see Sec 3.1 for the almost sure
convergence of the minimizers in PANDA), being exactly 0 cannot be achieved computationally
in practice due to the numerical nature of PANDA. In addition, after the convergence of the



Algorithm 1 PANDA for GLM

1: Input: initial parameter estimates 0" = (950), ce 9;0)); NGD; maximum iteration 77
noisy data size n. and moving average (MA) window width m and number of banked
parameter estimates r after convergence; threshold 7 .

A

2: Output: regularized parameter estimates 8 = (01,...,6,)

3: Centerize the observed independent variables x.

4: t <= 0; convergence <— 0

5: While ¢t < T" and convergence = 0

6: t<+t+1

7. Generate i) from NGD N(o, V(é(t_l))) and set e, =y (~Bern(p) for Bernoulli V).

8:  Combine (y,x) with (eg(f),eg)) to obtain the augmented data (7, %®)

9:  Run GLM on (y%,%®) and obtain MLE 6" . For linear regression with Gaussian Y,
ordinary least-squares estimates are obtained.

10:  If t > m, calculate MA 6" — ;! Zfzt_mﬂ é(l); otherwise 8 = é(t). Calculate the

loss function [® with " plugged in Eqn (3).
11:  Calculate the averaged loss function [® = m_lzfztfm 41 1o,
12:  Let convergence « 1 if [(¥) satisfies one of the convergence criteria (Remark 1).
13: End While
14: Run Lines 6 and 9 above for additional m + r iterations, and record 0" for I = t+m+

1,...,t+m+r. Let 0=(0y,...,0,), where 0, = (9§-t+m+1), . ,9§t+m+r)) for k=1,...,p.

15: Set §; =0 if max{|6,|} < 7o; and éj:r_lzglﬂfﬂ éy) 0.W.

PANDA algorithm, there is still mild fluctuation around the parameter estimates due to the
randomness of the augmented noise, especially when n, or m is not large. We suggest bounding
the absolute maximum of the estimates over a sequence of iterations as given in Algorithm 1,
which seems to be a robust criterion in the empirical studies in Sec 4.

Remark 5 (non-convex regularizers). PANDA optimizes a convex objective function in
each iteration of the GLM on the augmented data even when the targeted regularizer itself
is non-convex, such as the SCAD or 5. As such, PANDA does not run into the same type
of computational difficulties that gradient-based techniques often experience for non-convex
optimization (e.g., getting stuck in a local optimum). As a matter of fact, due to the stochastic
nature of PANDA from iteration to iteration, it can escape from a local optimum especially
if it is unstable, and lands at a more stable local optimum or even the global optimum. That
being said, the initial values used in PANDA would also affect the final solutions when the
targeted regularizer is non-convex.

2.3 n.,vs. m

Upon convergence, the expected regularization in Proposition 1 can be realized either by
letting m — oo suggested by lim,, oo m ™ > 1 >0, (el(»t) - eEZ)Qj)Q or by letting n, — oo

suggested by ne limy,, oo notY 0, (egt)—zj 62(1?9]')2 under the constraint n.V(e;) = O(1) V 6;.
The constraint n.V(e;) = O(1) guarantees that injected noise e does not over-regularize



or overwhelm the information about 8 contained in the observed data x even when n. is
large. For example, V(e;) = A|6;|7! in the case of the lasso-type noise, and n.\ can be
treated as one tuning parameter. The targeted regularization implied by the lower-order
term n(Ch Y i 02V(e;)) in Eqn (4) can be approximated arbitrarily well as n. — oo with
n.V(ej) = O(1). When m — oo and n. is fixed, there exists, more or less, other type of
regularization on @ on top of the targeted regularization given that the higher-order term
O( > (QﬁneVQ(ej))) in Eqn (4) does not disappear. If we also require n.V (e;) = O(1) in the
large m and small n, case, then O (2 (01nV?(e;)) = O(>2;(07V(e;)), then the high-order
term would also be ignorable if 67V (e;) is small.

Figure 3 illustrates the differences between the realized regularization effect P(6), when the
targeted regularization is lasso (P(@) = |@|), by letting n, — oo (m is small) vs m — oo
(n. is small) and its relationships with @ for several types of GLM (the regularization effects
when Y follows an exponential distribution are similar to when Y is Poisson and the results
from the former are not provided). For n, — oo (An. = 1 fixed at 1 and m = 50), the
realized penalty is identical to the targeted lasso in all four regression types, and is very close
lasso at n. = 100 except for some very mild random fluctuation. The realized regularization
on @ at m — oo and small n, varies by regression type. When |0| is small, the target
regularization is realized as the higher-order term that involves || in Eqn (4) is ignorable. As
|0| increases, the the higher-order term becomes less ignorable and regularization deviates from
lasso, except for linear regression where the higher-order term is analytically 0. Specifically,
the realized regularization is sub-linear for logistic and NB regression, and super-linear for
Poisson regression.

In summary, to achieve the expected regularization effect in Proposition 1, one can set either
m or n. at a large number. Computationally, a large n. often requires less iterations even
when m is as small as 1. On the other hand, a very large n. slows down the computation per
iteration. Taken together, the actual time taken to reach convergence might not differ that
much between the two cases. In some sense, the choices on n, and m more or less depends on
each other. If a large n, still results in noticeable fluctuation around é, then a large m can be
used to speed up the convergence. For a small n., a relatively large m should be used to yield
stable penalty. Fig 4 shows the parameter estimation trajectories of zero-valued regression
coefficients across with A in linear regression and Poisson regression on simulated data when
the lasso-type noise is used in PANDA There are 30 predictors (p = 30) and n = 100 in
each case. In the linear regression, the predictors were simulated from N(0, 1); in the Poisson
regression, the predictors were simulated from Unif(—0.3,0.5). Out of the 30 coefficients, 9
were set at 0, and the other 21 non-zero coefficients ranged from 0.5 to 1. The estimation
trajectories for the 9 zero-valued parameters look very similar between large n, vs. large m
in both regression settings.

If the targeted penalty is [y (Proposition 2) and n > p, n. can be tuned within [1,p]. There
are other considerations regarding the choices of m and n, when using PANDA to obtain
inference on @. More details are provided in Sec 3.3.
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Figure 4: Estimation trajectories of zero-valued regression coefficients across A in linear regression
(left) and Poisson regression (right) with lasso-type noise in PANDA

3 Theoretical Properties and Statistical Inferences

In this section, we establish the almost sure (a. s.) convergence of the data augmented loss
function to its expectation and the a. s. convergence of the minimizer of the former to the
minimizer of the expected loss function as n, — oo or m — oo (Sec 3.1). We also examine
the Fisher information of the parameters in noise-augmented data (Sec 3.2) and statistical
inferences of the parameters via PANDA (Sec 3.3), and claim that PANDA exhibits ensemble
learning behavior (Sec 3.4).
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3.1 Almost sure convergence of noise augmented loss function and
its minimizer

Let [,(0|%, y) denote the average loss function over m iterations of the PANDA algorithm upon

convergence. Theorem 1 presents the asymptotic properties of [,(8|x, y) under two scenarios:

1) n. — oo while n.V(e;) = O(1) for a given §; and m (> 1) is fixed at a constant; 2) m — oo

when n.(> p) takes a finite constant.

Theorem 1. (asymptotic properties of the noise-augmented loss function and its
minimizer for PANDA) Assume 0 belongs to a compact set. Let [,(0]x) = Ec(1,(0|%,¥)).
1) If n, — oo while n.V(e;) = O(1) for any given #; and m > 1 is held at a constant, then

n”Cr (L,(01%,3) — 1,(0]x)) —= N(0,1) (18)
L(0%,7) 25 1,(0)x) "= 1(0|x)+ P(0) + C (19)
arg i%f L,(0|%,¥) L% arg irolf 1,(0]x), (20)
2) If m — oo while n.(> p) is fixed, then
m' 205 (1,(01%,5) — 1,(8]x)) % N(0,1) (21)
L,(01%,y) 25 1,(0]x) =3 1(0]x) + P(0) + C (22)
arg i%f L,(0)%,y) = arg i%f 1,(0]x). (23)

P(0) in Eqns (19) and (22) is the same as defined in Proposition 1. C} and C5 are functions
of @ and take different forms for different types of Y.

The proof of Theorem 1 is provided in Sec S.3 of the supplementary materials. There are
two important takeaways. First, Theorem 1 states that [,(6|%,y) follows a Gaussian distri-
bution at the rate of \/n. and \/m under the two scenarios, respectively, implying that the
augmented loss function in PANDA is trainable for practical implementation. The fluctuation
of [,(0]%,y) around its expected value due to noise augmentation is controlled and the tail
of the distribution of d = 1,(0|%X,y) — 1,(8]x) decays to 0 exponentially fast in n, and m as
Pr(d>t) <exp(—n.t?/2C?) and Pr(d>t) <exp(—mt?/2C?) for any t > 0. Second, ,(0|X,y)
converges a.s. to its expectation (the penalized loss function given the observed data (x,y)
with the targeted penalty term), guaranteeing that PANDA does what it is designed to do.

When there exists multicollinearity among X, the loss function minimized in PANDA has an
optimum region rather than a single optimum point. To examine the asymptotic properties in
this case, we define the optimum parameter set (Definition 1) and show that the parameters
learned by PANDA fall in the optimum parameter set asymptotically (Proposition 3).

Definition 1. (optimum parameter set) Let the expected loss function /,(6|x) be a contin-
uous function in 6. The optimum set is defined as ©°={6°€© | ,(0°|x) <1,(0|x),V 0 O},
where © is the set containing all possible parameter values. The distance from 8 € © to ®°
is defined as d (6,0") = nin 116 — 6°|)-.

S

Proposition 3. (consistency of parameter estimate in presence of multicollinearity)

Let ég =arg moin 1,(0)%,¥). Given

sup |l_p(0|5<, y)—1p(8]x)] = 0 as ne— o0 nV(e;)=0(1)Vj=1,...,por m — o0;  (24)
0
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and assume 6 is compact, then Pr ( lim sup d(éz, @0) < (5) =1Vd>0.

m—o00 OI ne—o00
The proof is given in Sec S.4 of the supplementary materials. Multicollinearity does not affect
the convergence of the loss functions in PANDA; therefore, Eqn (24) holds per the proof of
Theorem 1.

3.2 Fisher Information in Noise Augmented Data

The augmented noise in PANDA brings endogenous information to observed data x to reg-
ularize the estimation of 8. The expected regularization can be achieved by letting (n. —
00) N (n.V(ej) = O(1)). At the first sight, it seems that a large amount of augmented noisy
data could potentially overshadow the information about the parameters in the observed data,
leading to over-regularization. We claim that this is not the case because of the constraint
n.V(e;) = O(1) V j. In other words, n. combined with the tuning parameters from the
NGD variance term is treated as a single tuning parameter. For example, with the lasso-
type noise, n.A is treated one tuning parameter: if n. is large, then \ takes a small value
so to keep neA = O(1). Proposition 4 provides the theoretical justification that, as long as
n.V(e;) = O(1) for any given 6;, the amount of regularization brought by the augmented data
to 0; remains as constant even for n, — 0o. Proposition 4 is established in the context of
the bridge-type noise; the same conclusion can be obtained for other noise types in a similar
fashion. The proof is provided in Sec S.5 of the supplementary materials.

Proposition 4 (Fisher information in noise augmented data). The regularization on
the coefficients € in GLM introduced through the augmented bridge-type noise is proportional
to n.A|@| 7. Specifically, Ix 3(0), the Fisher information on € contained in the augmented data
(x,¥) is the summation of I (@), the Fisher information on @ contained in the observed data,
and I.(0), the amount of regularization on 6.

Iz5(0) = Ly (8) + (M) B"(6y + 0)Diag{|61] 7, ..., 0,| 7} + O(Ani/Q) J, (25)

where J is a p X p matrix with all elements at 1. The higher-order term O()\ni/ 2) becomes
O(AY2) if An, = O(1) and is ignorable if X is small. Eqn (25) suggests that the information
about @ does not increase with n, as along as An.|@|~7 is kept at a constant. In addition, the
closer 0| is to 0, the stronger the regularization the augmented information brings to 6.

3.3 Asymptotic Distribution of Regularized Parameters via PANDA

Proposition 5 presents the asymptotic distribution of the estimated 0 via PANDA, based
on which we can obtain statistical inferences for 6. The proof is given in Sec S.6 of the
supplementary materials.

Proposition 5 (asymptotic distribution of parameter estimates via PANDA). Let
9(t) denote the estimate of @ in iteration t of the PANDA algorithm. The final estimate
for @ is denoted by 8 = r~1>°7 é(t) from r > 1 iterations after convergence. Assume
n.V(e) = o(y/n) V0.

V(0" —8) % N(0,50) as n — oo, (26)
d

N
V(@ —6) = N (0,£+A) asn — oo;r — o0, (27)
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where ) = I ) 5(0) " [xy(0) Izw £(0) " in iteration ¢, ¥ = r~' 37 ¥ and A = V(é(t))

is the between iteration variability of 9(t).

The regularity condition n.V(e) = o(y/n) takes different forms for different NGDs (e.g., for

A (t
the bridge-type noise, it is An. = o(y/n)). The asymptotic variance of 8" involves the inverse
of Izw 5(0), which always exists given the augmented data. Eqn (27) suggests the overall
variance on @ is the summation of two variance components, Y, the per-iteration variance

of é(t)
be estimated by plugging in 9(t), with the caveat that the uncertainty around é(t) is not

~ (t _
, and A, the between-iteration variance of 0( ). > contains the unknown 6 and can

accounted for. A can be estimated by the sample variance of é(t) over r iterations; that is,

=17, (07 -0)(6" - 0)".

In the case of linear regression, the asymptotic distribution of 9(t) in Eqn (26) becomes
V@ o) 4N (0,0 (M)~ (xTx) (M D)), (28)

where M® = (xTx+n,diag(V(e)). The asymptotic variance in Eqn (28) contains the unknown

o, which can be estimated by 62 = SSE/(n —v) = (y — Xé(t))T(y — Xé(t))/(n — v) with the
degree of freedom v=tr(x(M®)~'xT). 52 converges to o%x2_, in distribution.

When applying PANDA to obtain inference in GLMs, we should set n. at a small number and
m at a large number to achieve valid inference and targeted regularization effect simultane-
ously. We recommend n, = o(n) as long as n. +n > p (e.g., one order of magnitude smaller
than n), especially when n is small. This is different from when the main goal is variable selec-
tion (except for ly), regularized estimation, or prediction without uncertainty quantification,
where a large n., can be used to achieve the targeted regularization effect with fewer itera-
tions per Proposition 1. The reason is that a large n. (relative to n) tends to underestimate
> + A, the asymptotic variance of 6, resulting in a lower-than-nominal coverage rate and an
inflated type I error rate. As mentioned above, ¥ = 7137 %® is estimated by plugging
in @ fort =1,... ,7 upon convergence, pretending that it is the true parameter value and
thus ignoring the uncertainty around it. Though this issue exists regardless of whether a
large or a small n. is used, using a small n. helps to re-capture this lost variability with the
between-iteration variability A. Specifically, 00 is a regularized estimate from minimizing
a loss function summed over the data component x and a penalty term, or equivalently, a
summation of the loss functions constructed from the data component x and the augmented
data component e in the context of PANDA. Instead of focusing on how 8®) changes with
sample data x, which is fixed throughout iterations, we quantify how it changes with e. If a
large n. is used, the ignored sampling variability around 0@ can hardly be recovered through
A as it is close to 0, which is easy to understand as the realized regularization effect with a
large n. is close to its expectation and it is almost like solving the same analytical constrained
optimization at every iteration, leading to very similar 0™ across iterations upon convergence.

3.4 Ensemble Learning Behavior of PANDA with Fixed n,

Ensemble learning methods combine multiple learners to achieve better predictive performance
than that from an individual learner. Let Y be the observed outcome and Y be its prediction
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from an ensemble method. Brown et al. (_2005) suggest that the generalization error of the
ensemble method made of M learners, E(Y — Y)?, can be decomposed as

M2 |(L(B(F) = V) + X B (Vi BOR) + 1, 2,00 B((V: - BE)(T; - B, (29)

where Y; refers to the prediction from the i-th learner in the ensemble for i = 1,..., M. The
success of ensemble methods, in part, can be attributed to the diversity term among the M
learners that is captured by the third term (covariance) in Eqn (29): as the diversity increase,
the covariance decrease, and the overall generalization error decreases. The diversity can be
achieved by perturbing the training data such as taking a subset of observation, or a subset
of attributes to train the learners.

We show that PANDA in addition to achieving the targeted regularization effects, also ex-
hibits some ensemble learning behavior with a fixed n., which may propel it to edge out the
existing constrained regularization approaches with smaller generalization error in prediction.
Intuitively, upon convergence, the final estimates of 8 are averages over the estimates trained
from different sets of noise augmented data from r iterations, generating the diversity among
the learners needed for the ensemble learning.

Claim 1 (Ensemble learning behavior of PANDA with fixed n.). Upon convergence,
the average estimates over the sets of parameter estimates from multiple iterations of PANDA
with a fixed n. can be regarded an ensemble learner.

If the diversity brought by PANDA with a fixed (small) n. and a large m surpasses the
increase in MSE (the sum of the first two terms in Eqn (29)), PANDA would lead to a
smaller generalization error compared to the existing constrained optimization approaches for
penalized GLM regression that don’t promote diversity.

4 Numerical Examples
4.1 [y Regularization via PANDA

We demonstrate the PANDA-[, regularization in linear regression using the prostate cancer
dataset and in logistic regression using the kyphosis dataset (Tibshirani, 1996). The prostate
cancer dataset consists of 8 X’s and 97 observations. We standardized the X’s and centralized
Y prior to the application of the PANDA algorithm. The kyphosis dataset consists of 81
observations (64:17 for Y =0:1). We included both the linear and the quadratic terms of
the three standardized X’s (X4, X5, X¢ are the quadratic terms of X, X5, X3, respectively),
in the logistic regression following Tibshirani (1996). We examine the regression coefficient
estimation trajectories as n, increases from 1 to p and as A increases while holding n. constant.
For comparison, we also run the lasso regression in each case via the R package glmnet.

The results are presented in Fig 5. Column A shows that the PANDA-[; regularization shrinks
only n. coefficients towards 0, leaving the other coefficients unregularized, but lasso shrinks
all coefficients simultaneously. The observations are consistent with Proposition 2 and Eqn
(17), which state the number of selected variables through PANDA-[y is p — n. for n, < p.
In the logistic regression case, due to the high correlations (0.957, 0.969 and 0.974) between
the linear and the quadratic terms, the shrinkage occurs roughly around the same A for a
fixed n, for each linear+quadratic pair in the trajectory. The plots in column B examine the
effect of A on the estimation trajectory fixing n. at p — pg in PANDA-[,, where py is number
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of variables selected by lasso (py = 3 in linear regression and py = 4 in logistic regression).
As )\ increases, n. coefficients shrinks to 0. Further increasing A has no regularization effect
on the remaining non-zero coefficients, despite some minor fluctuation around the non-zero
parameter estimates. The plots in column C are similar to column B but n, is fixed at p. For
small A\, the estimation trajectories are similar to using n. < p as in column B; as A continues
to increase, the non-zero coefficients eventually get shrunk to 0, but in a different manner than
lasso in the sense that its shrinkage process is not gradual but rather abruptly. For n. > p,
the estimation trajectories would be somewhere between column C and the lasso trajectories
(e.g. Fig 4), and eventually become the lasso trajectories as n, becomes very large.

A B C
@
s @
© _ o
o
© lM 14\‘W
| ° =y
o
< | 3 31
© g A A —— 5
NPTV o 2
| on T
Linear - ol7 N\ o7 \\ |
I=h ° V‘{/J"’jvv o J
N o 38 N 3°
@ 9 T T T T 1 Q- T T T T 1
' ) 01 02 03 ,04 05 ' 0 02 04 06 08 1 12
1 1
w w_ w0
— — —
e =2
— -
5 5
w9 w0 w© |
o o o
3 N 3 [[,‘\
o o jj_u_u o j_u_
- o o o
Logistic , o |2 0 |2
T ] =
o olg 1 le)
T 7
0 w4 0 4—J/‘
T T

6§ 5 4 3 3 1 0o ' 6 01 02z 03 04 05 ' 6 02 04 06 08 1 12

Figure 5: Estimation trajectory in linear and logistic regression as n. changes (column A), A changes
at fixed ne < p (column B), and A changes at n. = p (column C). The solid lines in column A are
from the PANDA-[y regularization by varying n. from 1 to p and the dash lines represent the lasso

regression via R package glmnet with the smallest A that yields p — n. non-zero estimates.

4.2 Inference for GLM parameters via PANDA

We investigate the inferential validity for GLM coefficients based on the asymptotic distri-
butions in Proposition 5 via simulation studies. We examine Gaussian (02 = 1), Poisson,
Bernoulli, exponential (exp), and Negative Binomial (NB) (number of failure fixed at r = 5)
outcomes with p = 30 in each case. For the Gaussian and NB outcomes, the predictors
were simulated from N(0, 1); for the Bernoulli, exp, and Poisson outcomes, the predictors
were simulated from Unif(—3,3), Unif(—1,2), and Unif(—0.3,0.5), respectively. We examine
three sample size scenarios n = 50, 70, 100, with 500 repetitions in each simulation case. The
bridge-type noise is employed with v = 1,n, = n,An. € (1.5,7) in logistic regression and
v =2,n.=9,A=n/10 in the other GLMs. The achieved regularization effect is lasso in the
logistic regression and [y in the other GLMs as n, = 9 is set at the number of zero coefficients.
In each repetition, we calculate the 95% ClIs for the 30 regression coefficients (21 are non-

1l i
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zero and 9 are zero) and examine the coverage probabilities (CP) and the CI widths. Tables
3 presents the results, benchmarked against the post-lasso inferential procedure (Lee et al.,
2016; Taylor and Tibshirani, 2017) implemented via the R package selectiveInference.

Table 3: Empirical CP and CI width via PANDA and post-selection procedures with lasso penalty

zero coefficients (9) non-zero coefficients (21)
PANDA post selection PANDA post selection
sample size 50 70 100 50 70 100 50 70 100 50 70 100
mean CP (%) among the 9 coefficients mean CP (%) among the 21 coefficients

Gaussian 98.2 99.5 99.9 NA NA NA 91.4 96.5 97.7 923 93.2 94.2
Bernoulli 100 99.5 96.6 NA NA NA 97.3 884 92.6 65.9 752 829

Exp 95.1 95.5 96.5 - - - 87.1 99.5 944 - - -
Poisson 92.2 95.8 98.5 - - - 87.0 875 94.1 - - -
NB 95.8 994 100 - - - 83.1 954 99.9 - - -
mean CI width among the 9 coefficients mean CI width among the 21 coeflicients
Gaussian 0.28 0.15 0.08 NA NA NA 091 0.74 0.57 29.6 2.01 1.26
Bernoulli 14.6 1.32 0.93 NA NA NA 24.8 2.15 1.46 22.0 10.6 4.64
Exp 0.39 0.23 0.14 - - - 1.07 0.95 0.77 - - -
Poisson 0.76 0.44 0.25 - - - 1.28 1.08 0.91 - - -
NB 0.54 0.28 0.15 - - - 1.19 1.11 1.05 - - -

NA: Not Available. R Package selectiveInference does not provide inference for coefficients whose estimates are 0.

In addition, it only produces CIs for linear and logistic regression with the lasso regularization. Cls obtained by

selectivelInference that have infinite lower/upper bounds are excluded from the summary (4 ~ 18%).
For true zero-valued coefficients, PANDA maintains the nominal 95% coverage for all the
examined outcome types and sample sizes. The R selectivelInference package does not
provide inference for coefficients whose estimates are 0 (that is, not selected by lasso in the
first place). Among these 9 zero-valued coefficients, lasso only selected some of them a few
times out of the 500 repetitions. When the true coefficients are not 0, the CIs from PANDA
have better coverage with much narrower Cls than the post-selection procedure (except for
logistic regression at n=>50). The post-selection procedure experiences severe under-coverage
in the logistic regression for all n. We also examined the case of a larger n. (n. = 2n in
the logistic regression and n.=n for the other GLMs). There was some under-coverage (CP
>~ 90% for zero coefficients; >~ 80% for non-zero coefficients), which improved as n increased.

4.3 Comparison with Existing Regularization in Linear and Logistic
Regression

To examine the regularization effects by PANDA in linear and logistic regression, we use
the same simulation setting as Examples 4.1 and 4.3 in Fan and Li (2001). In the linear
regression, Y =x3 + ¢, where 87 = (3,1.5,0,0,2,0,0,0) (p = 8), zj~N(O,1)forj=1,...,p
with corr(zj, x;) = 0.59771 and € ~ N(0,02). Three sets of (n,c) were examined: (40, 3),
(40, 1), and (60, 1). For the logistic regression, n was set at 200; Y ~ Ber(eXTﬁ/(l + eXTﬂ)),
where the first six components of X were the same as those in linear regression and the last
two components x were drawn from Bernoulli(0.5) independently.

The medians of relative model error (MRME) and the number of correctly and incorrectly
identified zero coefficients (out of 5) over 100 repetitions were obtained in each regression
case. The estimates from the ridge, lasso, adaptive lasso and EN regressions via the existing
approaches were obtained from R package glmnet and those from SCAD were from R package
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ncvreg. We examine two scenarios of PANDA: large n./small m and large n./small m. The
specific values of n, and m, along with other PANDA algorithmic parameters are summarized
in Table ?? in the supplementary materials. The results are presented in Table 4 for the linear
regression and in Table 5 for the logistic regression. In summary, PANDA is either consistent
with or performs better (due to its additional ensemble behaviors) than existing approaches for
the same type of regularizer, per the MRME and the true 0/false 0 counts. The superiority
of PANDA is specially obvious in the logistic regression. In general, PANDA-SCAD and
PANDA-[y have the best performance.

Table 4: PANDA vs. Existing Approaches in Penalized Linear Regression with Various Regularizers

Iridge lasso adaptive EN SCAD I ridge lasso  adaptive EN SCAD lo
| lasso lasso
| MRME # of correctly/incorrectly identified zero coefficients
| n=40,0 =3
Existing |80.09 67.86 68.47 68.24 72.79 0/0 2.78/0.04 2.80/0 2.66/0.03 3.59/0.09
PANDA |80.06 67.70 67.18 68.31 72.50 78.99 | 0.01/0 2.37/0.01 2.69/0.01 2.50/0.01 4.01/0.17 3.83/0.13
| n=40,0 =1
Existing |94.60 68.03 68.32 69.45 44.42 0/0  2.87/0 2.83/0 2.56/0.03 4.72/0
PANDA |95.24 67.38 63.58 68.40 44.87 45.11|0.13/0 2.69/0  3.07/0  2.62/0 4.91/0 4.86/0
| n=60,0=1
Existing |97.40 66.40 68.34 67.92 44.91 0/0  2.61/0  2.66/0 2.55/0.03 4.96/0
PANDA |97.62 66.22 61.48 67.02 44.82 44.77 | 0.19/0 2.55/0  3.06/0  2.43/0  5.00/0  5.00/0

Table 5: PANDA vs. Existing Approaches in Penalized Logistic Regression with Various Regularizers

ridge lasso adaptive EN SCAD [ ridge lasso adaptive EN SCAD ly
lasso lasso
MRME # of correctly /incorrectly identified zero coefficients
Existing | 85.16 68.67 67.96 69.71 48.14 0.07/0 2.10/0 2.05/0 2.09/0 4.31/0
PANDA | 76.50 61.15 58.60 62.14 34.87 37.66 | 0.17/0 2.43/0 2.83/0 2.44/0 4.97/0.02 4.89/0

4.4 Sports Article Objectivity Data

We implemented PANDA in a real-life dataset that contains 1000 sports articles that are
labeled “objective” or “subjective”. The data set is available for download from the UCI
Machine Learning Repository (Rizk and Awad, 2018). There are 59 variables in the original
data. The independent variables X’s are the extracted features from the articles such as the
frequencies of different types of words, (e.g., the objective and subjective SENTIWORDNET
scores, foreign words, subordinating preposition or conjunction) and frequencies of different
types of punctuation (e.g., questions marks, exclamation marks), and text complexity score,
among others. After removing the redundant features (perfectly linear dependent variables)
and the highly imbalanced features (e.g, >99% in one category), and adjusting for the total
word counts, we kept 48 X’s plus Y (365 “subjective” and 635 “objective”). We split the 1000
cases into 800 training samples and 200 testing samples (100 subjective vs. 100 objective).

We learned the logistic regression parameters based on the 800 training samples and make
predictions for the 200 testing samples via the trained model. We run the logistic regression
with lasso, ridge, EN, and adaptive lasso penalties via the R package glmnet, and with the
SCAD penalty via the ncvreg package, and obtained the regularized regression with the same
types of penalty listed the above using PANDA. For the existing approaches, the 10-fold CV
was used for hyper-parameter tuning. For PANDA, we run 100 iterations with n. = 1000 and
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m = 10. The algorithm converged after 10 ~ 15 iterations, and the final parameter estimates
were averaged over the last » = 20 iterations with 75 = 0.01.

Table 6 presents the results on the MSE, classification accuracy rate, and computational time.
Compared to the MLE from the non-regularized logistic regression, the prediction MSE and
the accuracy rate on the testing samples via PANDA are similar or slightly better with the
regularizers realized with the R packages glmnet and ncvreg. Specifically, the prediction MSE
decreases by = 10%; the accuracy increases by 1.5% to 2% for the same regularizer types. The
number of zero coefficients ranges about 10 to 20 (out of a total of 48), depending on which
regularizer is used per glmnet and ncvreg. PANDA took about 1.5 to 2 seconds to run 50
iterations. However, 25 iterations (costing 0.7 to 1 seconds) would also be sufficient for this
application. Suppose t values of tuning parameters are used in a K-fold cross-validation. The
total time including the hyper-parameter tuning would be around 0.7tK to tK seconds. Say
t = 10 and K = 10, then it will take about 1 to 1.5 mins for PANDA. This is significantly
longer than the existing method, which is expected since PANDA involves random sampling
of data points and running GLM for every iteration.

Table 6: PANDA vs Existing Approaches in the Sports Article Objectivity Data

penalty ridge lasso EN adaptive lasso SCAD lo
Prediction MSE (0.1573 with MLE)

Existing 0.1539 0.1561 0.1544 0.1561 0.1629

PANDA 0.1312 0.1260 0.1277 0.1280 0.1340 0.1448

Accuracy Rate/Sensitivity /Specificity (%): 78.5/94/63 with MLE
Existing  78.5/95/62 77.5/95/60 77.5/95/60  78/95/61  77/94/60
PANDA  83.5/91/76 82.5/87/78 84.5/90/79  82/86/78  81.5/85/78 79.5/92/67
# of zero-valued coefficients (0 with MLE)

Existing 0 8 4 10 25

PANDA' 1 8 4 10 25 19
Computational Time (sec)!l

Existing 0.7~ 0.8

PANDA 0.3 ~ 0.4 per 10 iterations ~2.5

 hyperparameters were tuned to match the # of zero-valued coefficients in existing methods.
I'V1.1.463 on PC (Intel Core i7-7660U CPU @ 2.50 GHz)

We also run PANDA using the same tuning parameters selected by the R packages for the
existing approaches for the same type of regularizer. PANDA performs better than the existing
approaches with smaller RMSE, slightly better accuracy rates, and doubled zero coefficients
in most cases.

5 Discussion

PANDA is a regularization technique through noise augmentation. PANDA effectively reg-
ularizes parameter estimation and allows valid inferences for GLMs, and displays ensemble
learning behavior in certain cases. We establish the Gaussian tail of the noise-augmented loss
function and the almost sure convergence to its expectation — a penalized loss function with
the targeted regularizer, providing the theoretical justification for PANDA as a regularization
technique and that the noise-augmented loss function is trainable. For a pre-fixed n. < p, we
show that PANDA is equivalent to imposing n. linear constraints on parameters and can lead
to the [y regularization. PANDA is straightforward to implement. There is no need for sophis-
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ticated optimization techniques as PANDA can leverage existing functions or procedures for
running GLMs in any statistical software. In terms of the computational time, large n. usually
leads to convergence with a small number of iterations, but the per-iteration computational
cost can be high. If PANDA is applied to yield the [y regularization or to obtain inference in
GLMs on top of variable selection, a small n, with a relatively large m should be used.

The PANDA algorithm calculates @, the average of m minimizers of [(8|X,y) from the lat-
est m iterations, so to leverage the existing software for running GLM and to maintain its
computational advantage over the existing approaches that employ sophisticated optimization
techniques. Proposition 1 suggests the average of m noise-augmented loss function [(0|X,y)
yields a single minimizer @, the Monte Carlo version of Eq(1,(]%,¥) as m — oo. We establish
in Corollary S.1 in the supplementary materials that 6 and 0 are first-order equivalent for
large m and n. for PANDA in linear regression, We also present simulation results in the
linear regression and Poisson regression settings to illustrate the similarity between 6 and 6.

For linear regression, the OLS estimator obtained from the noise-augmented data in each iter-
ation of the PANDA algorithm is a weighted ridge estimator on the observed data. Compared
to a regular ridge estimator, where the same constant is added to all the diagonal elements of
xT'x, different constants are used for different diagonal elements in weighted ridge regression.
The formal results and the proof are provided in Sec S.9 of the supplementary materials.

PANDA and the noise augmentation technique, in general, can be extended to regularize
other types of learning problems such as undirected graphical models, where some of the
existing techniques are GLM-based. The realized [y penalty by noise augmentation can be
used to regularize learning problems where such penalty is desired but hard to realize due
to computational constraints. Regarding the ensemble learning behavior of PANDA it is
worthwhile to study further the underlying theory and run more empirical studies to quantify
the benefits of the diversity term enabled by PANDA in generalization error reduction.
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S.1  Proof of Proposition 1

We take the Taylor expansion of [,(0|x,y), which is the negative log-likelihood, around e; =0
for:=1,...,n,., and evaluate its expectation over the distribution of e;.

[p,(0]%,5)) = U(O]x) + [, (Ble) = 1(8]x)) +>7<, li(0]e;)
—1(6]x) =31, (heq) + ei (00+ 35, 05ei5) = B (6045, 0jes5) )
=1(0x)+> 1 i (0]ei)e,=0— D i<y {eizj (0jeij) —>_;(05ei)B' (90+Zj 0;ei;
— Yo (d) Y0 (B5e45) "B (90+Zj 0jei; eij:())}
=10x)+C+320, [(B'(Qo) —ei) Zj(ejeij)+2212(d!)713(d)(QO)Zj(QjeiJ)d} :

where C' = B(y) — Y1, (h(e;) + eib), a constant independent of 6. The expectation of

1,(8]%, %) over the distribution of e;; ~ N(0, V(e;)) is
Eelly(61% 3)) =1(8]x)+C+n (LB"(00) 3,63V () ) +O (n. 3, (615 (e))
=UOIX)+C+ne (1B (80) 2,02V (e5) ) +0 (n 5, (01VA(e,))

= 1(0]x) + n. ((lej 9§V(ej)) +0+0(nezj (e;%v2(ej))) , where Oy = 2-'B"(6y). (1)

eij:O)

There are two ways to realize the expectation in Eqn (1) empirically. One way is to ap-
proximate [,(0]e) by lim,, ,oom™' > 1", >0, li(0|e§t)). The other way, under the constraint
n.V(e;) = O(1), is to let n. — oo, in which case the second term in Eqn (1) becomes
neCy Y2, 03V (ei5) = neCr Y, 03 limy, oo n, ' 07 €1,V (e))). Between the two approaches,

letting n. — oo N [n.V(e;)=0(1)] also leads to the big-O term O (Zj (H?neVZ(ej))» — 0 in

Eqn (1); in other words, the second order Taylor approximation of Ee(1,(0|x,¥y)) is arbitrarily
close to Ee(1,(0|%,y)).

If 6y = 0, then Cy;=B"(0) and Eqn (1) can be simplified to
UBIx) + Co 32,02 1V (e3)) +C+0 (52, (8n V() @)
2

For linear regression, the expectation of [,(6|x,y) = Zf:lne@z =i Tij Hj) over the distribution

of noise e is

Ee(l,(0%,7))=>"1, (ffz'j -2 xiﬂ]) 4E, (Z:-Lil <€i -2 eij9j> 2) (3)
= in1 (%‘ — 2wl ) =220 Ee (Zj %‘@')2 =1(0]x) +ne 3 ; 07V (es). (4)

1



S.2  Proof of Proposition 2
Define Optimization Problem 1 = argming f(0) = arg ming [(8]x) + Cy 3.7, (el-TO)Q. Due

1=

to its convexity in 0, 6 can be solved directly from Vg f (é) = 0.

Define a constrained optimization Problem 2
6 = arg ming [(0|x),
st Y (eT0) < d, 5)
the corresponding Lagrangian for which is L(6) = 1(0]x) + AL (Z?:el (eiTB)Q) - d), and the
KKT conditions are
VL(O*) =0
AL >0

A (S0 (e767) —a) =, (6)
For Problem 2 to have the same solution as Problem 1, that is, 8™ = é, we set A\, = (' and
A\ 2
d=>" <eiT0> . The constraint in Eqn (5) now becomes

N\ 2
Sii (el 0) < 30, (e78) (7)
Given that n. noise data points are independent per the PANDA procedure, Eqn (7) can also
be regarded as n. linear constraints on 6

. o N1/2
J0 < d; < (Z?;l(ef0)2) elO) <dsi=1,....n, 8)

S.3 Proof of Theorem 1

We prove Theorem 1 for linear regression (Y; is Gaussian), Poisson regression, exponential
regression, negative binomial regression, and logistic regression (when Y; is Bernoulli), respec-
tively. WLOG, we use the bridge-type noise e;; ~ N(0,A\|@]|77) to demonstrate the proofs,
which can be easily extended to other types of noises. Prior to the proof of Theorem 1, we
state a theoretical result in Claim 2, on which the subsequent proofs rely on.

Claim 2. If [,(0|x,y) and [,(8]x) are convex functions w.r.t. € and share the same parameter
space 6, then

inf 1,(61%.§) — inf 1,(0]x)| < sup [1,(0]%.,5) — 1,(6])
]

Proof: Since both il’elf l,(0]%,y) and i%f l,(0]x) are convex optimization problems, each has

a global optimum, denoted by 6 and 0, respectively. Therefore, i%f 1,(0]%, y)—ir;f lp(0|x)‘

L(O|X,y) — lp(é]x)’. Consider the following two scenarios,

i). if 1,(8]%,¥) > 1,(8]x), then L,(8|%,¥) > L,(8|x,¥) > 1,(A|x) and
L(OIR,3) — L,(B1x)| = L,(01%,9) ~ L,(01%) < (8%, 3) — 1,(B]x) =




ii). if 1,(8]%,¥) < I,(6]x), then I,(8]%, |x
C

y) < l(
L0, 5) — 1, 0|x’—l Blx) — L,(0%,5) <1,

All taken together, ( %, Sf)—lp(9|x)’ Smax(
< sup [, (6]%, ) = L, (0x)].

S.3.1 Linear regression

In this case the regularization effects with n, — oo and m — oo are the same. The loss
function upon convergence is

_ 2
,(0]%, y):zizl(yi_zj - j) O S (e 3 e0)
Since e = /O] 'YZU , where zl-(;) ~ N(0,1). Therefore,
WAROL

01, 3) U8+ m T, Sy (5, el + 2 20
SICSER b o b v BT wib o - o > B

10,013

Since ) < 12 ~T (  2)and I' (%, 2) = N(n.,2n.) = n.+(2n.)2N(0,1) = n.+(2n.)"/?z
() (t)

as e — 003 Sore 2 A ~ T (%,2) — T (%,2) = N(0,4n.) = 2nd*N(0,1) = 2n!*z, as
ne — oo, where z; ~ N(0,1) and z2 ~ N(0,1). Therefore, the distribution of {,(6|x,¥y) can
be approximated by

1O1x)+ 52, n A6 o
e e (350 ) (e (135
J M3 j<k |9j9k|2 me—
0 T 1/2
= 1,(0]x)+ (mn.)"Y2CyN(0,1) where Cy =n, H (|0‘ ) (\0[ ) ) ’ (10)

where 1,(0]x) = 1(8]x)+ 3, nA|0;1*77 = Ee(1,(0]%,¥)). Exactly the same Eqn (10) can be
obtained by letting m — oo rather than n, — oo.

Per the strong law of large numbers (LLN), Eqn (10) suggests [,(8|X,y) converges almost
surely to its mean for all @ € 8 as m — oo or n, — oo (with n.A = O(1)), assuming |6;| belongs

to a compact parameter space and is bounded by B. Consequently, sup ‘l_p(9|§<, y) — lp(0|x)} a5

0 as m — oo or n, — oo. Per Claim 2, i%f 1,(0)%,¥) a5 1101f [,(0|x), and arg 1nfl (0%, y) — a5

arg i%f 1,(8]x) due to the convexity of the loss function.

S.3.2 Poisson Regression

The averaged noise-augmented loss function over m iterations upon convergence is

m e

L,(0|%,5)=1(6]x) ——Z el<90—|—ZeU >—log el)— exp<00—|—zeg)6j>> (11)

t=1 i=1



={( Hlx——ZelZZH% + ZZGXp(@o—i-Z@e )

t=1 i=1

m Ne

S () i S ) e @

t=1i=1

=l(0]x

~—

=l(0]x) + P(0) + C,

where P(0) refers to the boxed expression in Eqn (12), fj) ~ N(0,1),e;, =n~t> " y; that is

a constant, and C' is a constant not related to 8. The regularizer P(0) is different for n, — oo
vs m — 0o. We thus consider each case separately.

Case 1: ne — 00, nA = O(1) and fized m

Assume m = 1 WLOG, then 2; tA) can be abbreviated as z;;. n. — oo and An. = O(1) implies
that A\ — 0, therefore, Z w 27 — 0in Eqn (12). Apply the second order Taylor expansion
around ) 0;z;; = 0 to Eqn (12), as ne — 00,

— o fj Ne
015, 5) 100~ (3 7y ) ol T B

1012
+%exp(90)z (ZQ ot ZU> +O0(n;Y)CL(O)N(1,1) +C (13)
~U(Ox)+ exp(00) X, (7 S0 28) +exp(60) ., ( z)
+0 (n;") C1(0)N(1,1) + C (14)

—1(0]x) + 22=exp(60) Y, 0,177 +0 (n%%)C2(0)N (0,1)+0 (n;')C1(O)N(1,1)+C.  (15)
For Poisson regression, e; = n~ 'Y " | y;, the average of the observations in the outcome node
(the log of which estimates ) with the canonical log link function. In other words, when
n. — 00 e; = exp(by); therefore, the second and third terms in Eqn (13) cancel out. C;(0)
and C3(0) are functions of @ and the standard deviations associated with the two asymptotic

normality terms in Eqn (15) which result from the summation over n. noise terms per the
CLT, and the C5(0) term is the rate-limiting term and

n T
3 (2esvtean) (16113 ) (1617
2

Note that {(]x) + 22<exp(6o)>_, [6;1*7 in Eqn (15) is 1,(0|x) = Ee(L,(0|%,y) per Proposition
1 and Appendix S.1. Asn, — oo and An. = O(1), per the strong LLN and Eqn (15), [,(0|%,¥)
converges almost surely to [,(0|x). Given the convexity of the loss function and per Claim 2,
arg i%f L,(0)%,y) = arg i%f 1,(0]x).

2

02(9) =

/2
) where An, = O(1). (16)

Case 2: m — oo and fixed n.
The 2nd term in Eqn (12) is the summation of Gaussian variables, and the 3rd term follows
a log-normal distribution. Therefore, we can rewrite Eqn (12) as

T ~ o~ \/>7’Le 7 — m Ne
Lp(0]%,y) = U(6]x)—e:}; ;3 EN(0,1) +m™3 0, o, LogN (90, > 9, |'y) +C. (17)




Applying the CLT to Eqn (17) as m — oo,

7 S < fne J
b(6]%,3) = 1(6]x)— e: 1, mf,N(O ) (18)
1/2

2
+ e exp Z \/Xi] —1 ] exp| 26y + Z \/Xelj N(0,1) + C,
m 7 10512 16512

J

suggesting that [,(0]%,y) follows a Gaussian distribution asymptotically. Per the strong LLN
as m — 00, Eqn (18) converges almost surely to

Be(l,(01%,9)) =1,(0%)=1(6]x)+ P(0)+C
=1(0|x)+n.exp (6p) exp | = (ZW |1_> +C (19)

for all & € © assuming © to be compact. Per claim 2, sup |1,(0]%,y) — 1,(8]x)| 2% 0 as
0

m — oo, which leads to i%f L,(0|%,y) a5 i%f ,(0]x) = arg i%f L,(0|%,¥) a5 argi%f 1,(0]x)

given the convexity of the loss function.

S.3.3 Exponential Regression

The averaged noise-augmented loss function over m iterations upon Convergence is

L (O1%,5) = 1O]x) — m~ S 07 (60 + 50, 0, evexp (00 + 30,66, ) )

where e; =n~' > | y;. The above loss function is equivalent to the loss function in Eqn (11)
in the PGM case except for the constant term that does not involve 8. Therefore, the proof
for PGM also applies in the case of EGM.

S.3.4 Negative Binomial Regression

The averaged noise-augmented loss function over m iterations upon convergence is

05) = 10~ B ) e

—(r+e;)log (r+exp<90+zjeg)9j))> (20)
1(0]x) C——ZZ@IZ ”9 +— ii (r+e; 10g<“+exp(90—|—z € )) (21)

t=11i=1 tlzl

=1(0|x) +C ——Z Z(Ig_f Ze > ZZS (r+1) logé"exp (90—1-2 e Z(])>) (22)

J tlzl

=10|x)+ PO)+C =1,0|x)+C,

where P(6) refers to the boxed expression in Eqn (22), z;/ ~ N(0,1),e; =n~'> " y; is a
constant, and C' is a constant not related to 8. The regularlzer P(0) is different for n, — oo
vs m — co. We thus consider each case separately.

Case 1: ne — oo and n.\ = O(1) and fized m



Let m = 1 WLOG, thus zg) can be abbreviated as z;;. Since n, — oo and An. = O(1),

implying A — 0 and thus exp <Z ; ‘\F'QW Zu) — 1. Applying the second order Taylor expansion

around ) _;0;z;; = 0 to Eqn (12), we have

- VN & (r + e;) exp(6o)
L(0]x,y)= l(OIX)—eiZ <‘g.|§j ZZM + r + exp(fy) : ZZ
- il =1

=1

12"
2

—Z (r + ei)rexp(fo) (Z VA, Zi ) +0 (n;') N(1,C1(8)) + C (23)

(r + exp(p))? 16,1z
rexp(fo) >\9j2- ) rexp(fy) [ A0k x=
1))+ Zij| 7 ) _%ij€oi
(01) Zr—l—exp o) <|0j|7iz1 J kzdr—i-exp(&o) |0j0k|2izl jol
+ 0 (n,") N(1,C1(8)) +C (24)

—U(B]x)+ 330, 22 (LS 22 ) + 0l 1) N(1,C1(6))+0(n; %) Co()N (0, 1)+C' (25)
In NB regression, the logarithm of the average of the observations in the outcome node esti-
mates 0y with the canonical log link function. In other words, when n, — co e; = exp(6p), and
r+exp(fy) = r+e;; therefore, the second and third terms in Eqn (23) cancel out and the forth
term can be simplied as shown above. C1(6) and C5(0) are functions of € and the standard
deviations associated with the two asymptotic normality terms in Eqn (25) that result from
the summation over n, noise terms per the CLT, and the C3(80) term is the rate-limiting term

and oy 0 (Z(Tqﬁgfgz)y (I0|1‘3> <|0|1_;>T 2>1/2, (26)

2
Note that 1(0|x)+ 3> r <p(f) (\9 & Yoy Zj) in Eqn (25) is [,(0|x) =Ee(l,(0|x,¥) per Propo-

J r+exp(6p)
sition 1 and Appendix S.1. As n, — oo and An, = O(1), per the strong LLN and Eqn (25),
1,(0]%,y) converges almost surely to [,(6]x). Given the convexity of the loss function and
Claim 2,
arg i%f 1,(0]%,y) == arg ir;f 1,(0]x).

Case 2: m — oo and fized n,
The second term in Eqn (21) is the summation over Gaussian variables, therefore, the equation
can be written as

il < Y ﬁne@j m Ne
L(01%,y) = 1(0]x) —e; Zj mN(O’ 1)+#Zt:12i=1 Ui(t) +C,

VAneb; ne N\
(9|X) —€ ZJ \/—‘e(t 01)| N(07 1)+Ezt:1U(t) +C, (27>

where Ui( =(r+ e;)log <r+exp (Z e; t)9>>. The second equation holds because Ui(t) is the
same for all i = 1,... ,n.. Applying the CLT to the U-term in Eqn (27) as m — oo,

L(6]%.3) = U6x)— € ) LU N (0, 1) + 1B (U) + 52N (0.00)

= (%) +n B(UY)— ¢ 35, “2uU N (0.1)

+ 2= N(0, 1), (28)



where oy is the standard deviation of Uf”. Since log(r—+exp(x)) — max{log(r), ¥}, as * — +o0,
oy is a finite. Eqn (28) suggests that [,(6|x,y) follows a Gaussian distribution as m — oo.

Additionally, applying the strong LLN to Eqn (21), ,(8|%,y) converges almost surely to its
mean [,(6|x) = E([,(0]%,y)) for all @ € 8 as m — oo, assuming 0 to be compact; that is,

L(0|%,5) = 1,(68]x) + C = 1(8|x)+ nEU") + C. (29)
It follows that sup |1,(8]%,5) — 1,(8]x)| 2% 0 as m — 0o = inf 1,(0/%, 3) a5 inf 1,(6]x) =
6

arg i%f 1,(0]%,¥) &5 arg i%f 1,(0]x) given the convexity of the loss function.

S.3.5 Binomial Regression

The averaged noise-augmented loss function over m iterations upon convergence is

L,(0%,5) = 1(0]x) ——ZZ(@Z%G — log <1+exp (90+Z% >>>

t=1 i=1
which is a special case of Eqn (20) when r = 1, and the proof for NBGM also applies to BGM.

S.4  Proof of Proposition 3

In the case of multicollinearity, PANDA with sparsity regularization might experience difficulty
. . e ~ (1e) - (m)

in learning minimizer 6, * (or 6, °) when n.( or m) — co. In such a case, we prove that
there exists € > 0 and a sub-sequence [n.]; (or [m];), such that letting OZ = é[ el (or é;mh),
then d(Oi @0) > ¢, where @Y is the optimum parameter set. Denote l; —l (9;’X y), then by
Eqn (24), there exists a sub-sequence [i], such that,

Pr (Sup |1,(0]%,y) — 1,(0]x)| > 5) <k keN. (30)
(4

Since 0 is compact, the sub-sequence [i] converges to a point 0 € O,.d (é*, ®0> > €, 0 ¢ 0P
On the other hand, for any 8 € ®, we have
L(0[%,5) — [,(8]x) =(1,(0° %, 5) — 1,8} %, 3)) + (1,(6|%,3) — 111(6}))
+ (1,(8,) = 1,1(0)) + (1;1(8) — ,(8]x)).

By the continuity of the loss function and lim 0[’] = 0* the first term in the above equation
1—00

is arbitrarily small with ¢ — 0o; by equation (30), the second and forth terms are arbitrarily
small with ¢ — oo, and the third term is non-positive. Since 8 € © is arbitrary , we must
have & € @, which is a contradiction. The Proposition is proved.

S.5 Proof of Proposition 4

WLOG, we derive the Fisher information with the bridge-type noise. The proofs for other
types of noise are similar. The Fisher information matrix Ix 3(6) on the augmented data is
obtained by taking the expectation of the negative second derivative of the noise-augmented
loss function in Eqn (3) over the distribution of data x and augmented noise e.

Iz 5(0) = Ex (XTB”(X)X) + E. (ezB”(ex)ex) = I, y(0) + Ee (2?1 esz”( O)ex’i) ,



where B"(x) = diag{B"(x10),...,B"(x,0)} and B(ex) = diag{B"(ex10),..., B"(ex,.0)}.
Let An. = O(1) and V(ex;) denote the covariance matrix of ey ;; take the second-order Taylor
expansion around ey ;0 = 0, we have

Iz5(0) =Icy(0) + n.B"(0)V(ex,) + O(An/?).J,
=Ty (0) + (An.)B"(0)diag{|0;1] 77, .., 105, 7} + O(Ane'*) J,,

where J, is a p X p matrix with all elements equal to 1.

S.6  Proof of Proposition 5

Given n~20'(0]x) % N(0,1;'(8)), where I'(8]x) is the first derivative of the negative log-
likelihood function given the observed data x and I;(0) is the information matrix over one
observation. It follows that

n"Y2(I'(0)x) +1I'(0le)) = n V' (0%, ¥) A N(n=Y21'(0le), 1,(0)) (31)
where e is the augmented noise and '(@le) = > "7, I'(f]e;). Let ¢(e) = n~'/2I'(0le) and it
expectation over the distribution of e can be worked out for different types of noise. For ex-

ample, with the bridge-type noise, ¢(e)=n""2I'(8|e) and Ec(¢) = ’:}“‘f’a sgn(fy) for Gaussian

outcome nodes, é\\’;“isgn(Go) 4+ —7=0(|0o]) for Bernoulli outcome nodes, é\\?isgn(Go) +2 22 0(|60o])

for exponential and Poisson outcome nodes and 2(?«1617“ sgn(fy) + 2 ZeO(|90|) for NB outcome

nodes. If An.=o0(y/n), then Eq(¢p) =0 as n— co.

Upon the convergence of the PANDA algorithm, the MLE of 6 based on (X, y) is the minimizer
8, from solving I'(6;.) = 0, its first-order Taylor expansion around 6 is I'(6.) ~ I'(8|x,¥) +
1"(0]%,5)(8 — 0) = 0. Therefore, 8, — 0 = —(I"(0]%,y)) " I'(0]x,y) and /n (96 — 9) =
—(n7M"(0)x,y)) 7 (nY2U(8]%,y)), where I”(0|%,y) is the Hessian matrix and I”(0]x,y) —
I,(0) as n — oo. Taken together with Eqn (31), assume An. = o(y/n), by the Slutsky’s
theorem, as n — oo

Vit (8o = 0)) = (n 1(01%,5)) " (071 (B1%,3)) 5N (0,1,(6)"T(6)1,(8) ) 2 N (0, ).

When the mean of m > 1 estlmates over consecutive iteration are taken as the final estimate

for @, that is @ = m™! > i, 0., the variability among the m consecutive estimates will need
to be accounted for and be reﬂected in the variance of the final estimate. It is easy to establish
this in the Bayesian framework. Specifically,

E(6]x) = Ee(E(BI%, §)) = Ee(8e) = m~1 Y7, 0 £ 8 as m — o
V(0|x) = Eo(V (0%, §)) + Vo(E(B%,§)) = Eo(Ee) + Va(8e) 2 £ + A

~ _ N/
=m0 =+ (m—1)713", (9(t) - 9) (9(t) 0) as m — oo.
Per the large-sample Bayesian theory, the posterior mean and variance of 8 given x are

asymptotically equivalent (n — o0) to the MLE for 8 and the inverse information matrix of
0 contained in x. In other words,

V(@ —0) — N (0, +A).
In the case of a finite m (as in practical application), V(0]x) is estimated by ¥ + (1 +m™1)A



with the correction for the finite m. Applying Proposition 5 with lasso-type noise, we have
V(0 —0) — N (n*An.sgn(@) M~ * M~ (y'x) M),
where M = (y'x + diag(An.|0|7')) and o2 is the variance of the error term in the linear
regression, and is estimated by
62 =SSE(n —v) ' =(n—v)"'(x0 +¢)(I — H)(x0 +¢)
=n—v) (I - H)e+ (n—v) (0% (I — HO +20'x'(I — H)e)
where H = x(y'x + diag(An.|0|7!)) "'y’ and v = trace(H).

S.7 A Formal Test on the Convergence of the PANDA Algorithm

When presenting the PANDA algorithm in Sec 2.2, we state that a formal statistical test can
be used to test convergence. This test is based on the assumption of n, — oo or m — 0o and
should work well when either n. or m is large in practice. WLOG, we establish the test below
for n.— o0o; the procedure is similar for m — oo by replacing n, with m.

Theorem 1 shows that as n, — 0o, the distribution of the loss function in iteration ¢ converges
to a Gaussian distribution (Eqn (18)). The asymptotic Gaussian distribution involves C(6),

which is unknown and can be estimated by plugging the 9(t) from the current iteration ¢.

Specifically,
1/2
(D)) A (1) — () A () T |2
CY) _ %(/{ <9(t)‘0(t)‘ ﬂ//2> <9(t)|0(t)‘ 7/2> > ’
2

where £ is a constant that depends on the type of Y (k = 8 for Gaussian, 2exp(26y)/(1 +
exp(26p))* for Bernoulli, 2exp(26,) for Poisson, 2 for Exponential and 2r? exp(26y)/(r +
exp(6p))? for NB; see Eqns (10), (16) and (26)). Let d®) = [,(x**,3) — [,(xV),§) denote
the difference in the loss function from two consecutive iterations of the PANDA algorithm,

which is ne I/Q(CYH)Z(':H) — C"2®) per Eqn (18). If the PANDA algorithm converges, the
(t+1)

estimates 0 stabilizes, so does C’ft); in other words, C C(t and a nonzero d® is mostly
due to the randomness of the injected noise with an expected mean of 0; that is,

20 = gt /\/ 1ol 4 o2 (32)

1) (

Since 2 is independent from 2! augmented noises are drawn independently across it-
eration). If |2()] > z_,/, then we may claim the PANDA algorithm has not converged at
iteration ¢ at the significance level of a.

The denominator in Eqn (32) assumes C\” and Cftﬂ) are independent whey are likely to
positively correlated as both use the original data (x,y). With the under-estimated variance,
2 would be over-estimated, and convergence is likely to rejected more often than necessary.

S.8 Minimizer of Averaged noise-augmented Loss Function vs Av-

eraged minimizer of Noise-augmented Loss Functions

Per Proposition 1, one would take the average over m noise-augmented loss function [(O|x, e)
to yield a single minimizer €, which is the Monte Carlo version of E¢(l,(0|x,€) as m —
oo. However, PANDA would lose its computational edge. To maintain the computational



advantage for PANDA, we instead calculate 8, the average of m minimizers of [(0|x, e) from
the latest m iterations, which is the approach that the PANDA algorithm uses. We establish
in Corollary S.1 that 8 and 0 are equivalent under some regularity conditions. We also present
some numerical examples below to illustrate the similarity between 6 and 6.

Corollary S.1 (First-order equivalence between minimizer of averaged noise-aug-
mented loss functions vs averaged minimizers of single noise-augmented loss func-
tions). The average @ of m minimizers of the m perturbed loss functions upon convergence
is first-order equivalent to the minimizer 0 of the averaged m noise-augmented loss functions
as m — oo or as n, — oo while V(0;n.) = O(1). In addition, The higher-order difference
between @ and @ also approaches 0 as n, — oo while V(6,1,) = O(1).

Proof: WLOG, we work with the bridge-type noise. in this proof. The average of the mini-
mizers of the m loss functions is

1 RORCA:
0 m Zt 1 XX+ZZ 1 zx zx Xy7 (33>
where e ~ N(0,Al6;] 7). Let Y7 el el — B (X1 el Eil) + AW = diag(An.|6]7) +

e

i=1 zx foI‘OHl its mean. Let A =

A® . A® can be regarded as the sample deviation of Y 7
m=1Y" AW the elements of Wthh are

Ab’ ] 71 Zt 121 1 z] )‘”ew | ! ~ >‘|m9 | I(Xnem_nem) (34)
Alj, k=m0, 30 1%>ng> ~ MO0 |2 L 30 2
where z; ~ N(0,1) and 2}, ~ N(0,1) independently. Let S = (x'x+ diag()mew\_l))_l
The Taylor expansion of the inverse of the sum of two matrices, assuming A® to be a small
increment, is (S7! 4+ A®)1 =9 - SANS + SAOSADS 1 Therefore, Eqn (33) becomes
6 = Sx'y — S (A+ O(Nn.)) Sx'y. (35)

On the other hand, the minimizer of the average of m loss functions is
N -1
(ot S ) Xy (< dingOn 0]+ A) ey,
=5x'y — S (A + O(A2n€)> Sx'y, (36)

where e;; ~ N(0, \|mf;|~!) for the sake of yielding the same regularization effect as imposed
on 0 and A is defined in a similar manner as A the elements of which are

A[jv]] = Z?ET 62 )\ne‘ej|_l ~ )\’mej‘_l(Xn m nem)
. Ne _1 Nem I
Alg, k] = 305 eijeq ~ %"gjek 2Dl zi%

where z ~ N(0,1) and z/ ~ N(0,1) independently. A and A in Eqn (34) and (37) follow the
same distribution. The expected values of Al[j, j], A[j, k], A[j,j], and 121[ , k] are all equal to
zero; the variance of A[j, 7] and A[j, j] is A2|mb;|~22n.m = 2X(An.)|0;x|~22/m, and that of
Alj, k] and A[j, k] is N2m~2|0,40;1| 'nem = A(An.)|0,5|722/m. As m increases, both variance
terms shrink to 0. As n, increases while O(n.\) = 1, then both variance terms shrinks to 0 as
well. In other words, we expect A and A to be very similar. As such, 6 in Eqn (35) and 0 in
Eqn (36) are also very similar. In addition, as n. increases and An, = O(1), the higher-order
terms also goes to 0.

(37)

To first illustrate the similarity between 6 and 6, we simulated data (n = 30) from linear

10



regression and a Poisson regression models, where the linear predictor is X780 = X, +0.75X5+
0.5X3+0X,. X and the error in the linear regression was simulated from N(0, 1) independently.
The PANDA augmented noises e in both cases were drawn from N(0, A?) with n, = 200. We
examined m = 30,60, 90,120 and A2 = 0.25,0.5, 1,2, calculated 0 and 0, and plotted their
differences in Figure S.1. The results show minimal difference between 6 and 6.

linear regression . .
Poisson regression

0.003

— N 2]
° 8,-6 S A
— A =] o 9,-6
S a4 B,-6, . Y179
g | A 62-6;
S * 83-6 a g oA
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X 0,-0, x _ A +
o A o x -
g o ° + 4 . 6,-6, X +
o 3 X
+ & o + x S 4 X
'y o a A a = a
X B + x N +
<c:>8 i + & a B a X + & . o
\CDO‘ o : ki X X = S x a a A
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% [S4 x o + ) ° " *x
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Figure S.1: Differences between 6 and  in linear regression (top) and in Poisson regression (bottom)

S.9 PANDA in Each Iteration Realizes Weighted Ridge in Linear
Regression

Corollary S.2 (PANDA and weighted ridge regression). The OLS estimator in each
iteration of PANDA on the noise augmented data is equivalent to the weighted ridge estimator
0 = (XT)H—eTe)*1 xy.

The proof is straightforward. Let x = (x,e,)’. In each iteration of PANDA, the OLS
estimator 8 = (X7%)'%” (y, 0) = (x"x+e’e,) 'xy, leading to Corollary S.2. If n, — co, then
ele, — n.V(e;). For example, if the NGD is N(0,A|f];7), then n.V(e,) = diag((n.A)[0];7);

and (An.) can be tuned as one single tuning parameter.
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