Verifying Access Control Properties with Design by
Contract: Framework and Lessons Learned

Carlos E. Rubio-Medrano and Gail-Joon Ahn
Ira. A. Fulton Schools of Engineering
Arizona State University
Tempe, AZ, USA
{crubiome, gahn}@asu.edu

Abstract—Ensuring the correctness of high-level security prop-
erties including access control policies in mission-critical ap-
plications is indispensable. Recent literature has shown how
immaturity of such properties has caused serious security
vulnerabilities, which are likely to be exploited by malicious
parties for compromising a given application. This situation gets
aggravated by the fact that modern applications are mostly
built on previously developed reusable software modules and
any failures in security properties in these reusable modules
may lead to vulnerabilities across associated applications. In
this paper, we propose a framework to address this issue by
adopting Design by Contract (DBC) features. Our framework
accommodates security properties in each application focusing on
access control requirements. We demonstrate how access control
requirements based on ANSI RBAC standard model can be
specified and verified at the source code level.

Index Terms—security, access control, formal verification

I. INTRODUCTION

Recent literature has shown severe consequences of
mission-critical applications containing serious security vul-
nerabilities, which are believed to be caused by the misuse
of the several reusable software modules such as application
programming interfaces (APIs) that modern software appli-
cations rely on to provide security-based functionality [1],
[2]. For instance, a secure communication channel is realized
as a set of APIs in the software applications. Among the
possible causes of this misuse problem, researchers have found
the overall design and the informal specifications of such
modules are often insufficient or complicated for developers
to understand correctly. Consequently, they even fail to fully
understand what the modules do and how their configuration
parameters should be manipulated. Hence, the integration of
their self-developed code and reusable modules may not be
fully achieved. The problem gets aggravated by the fact that
modern software applications are expected to make use of
these reusable modules as much as possible, in an effort to
reduce both the development costs and the production time.
Unfortunately, this situation opens the door for the propagation
of security vulnerabilities among several applications as a
result of the incorrect enforcement of security properties in
reusable software modules and threatens the security and
safety of applications as a whole.

Karsten Sohr
Center for Computing Technologies (TZI)
Universitit Bremen
Bremen, Germany
sohr@tzi.de

In order to cope with this problem, we propose a framework
tailored for use of specification techniques, such as design by
contract (DBC) [3], to provide high-level abstract descriptions
of the security properties devised for a reusable software
module, in such a way they can be found easy to understand
and follow by future developers. In addition, we believe
these specifications can be also used for providing automated
verification techniques so the correct implementation of the
security properties at the source code level can be verified.
In this paper, we focus on security properties intended to
provide access control guarantees for sensitive resources by
means of a well-known role-based access control (RBAC)
model [4]. As RBAC has emerged as the leading access
control model for defining access control constraints, e.g.
who is allowed to access what, correct implementation of
these constraints becomes crucial to effectively enforce the
access control model devised for a given software application.
Throughout this paper, we adopt DBC which is an effective
technique for defining, communicating and verifying the cor-
rect enforcement of RBAC constraints specified with the Java
Modeling Language (JML), a DBC-based behavioral interface
specification language for Java [5]. Using JML features, we
model a set of classes from the main components of RBAC,
as defined in ANSI RBAC standard model [6]. Using this new
set of classes, we show how RBAC constraints can be defined
in JML, relating them to other behavioral specifications also
written in JML, in such a way it helps developers understand
what a JML-specified software module is expected to do at
runtime as well as corresponding RBAC constraints. Moreover,
since our approach is mostly based on a well-defined standard,
the RBAC constraints defined in our JML classes become
independent of any supporting software module that is used to
implement security features at the source code level. In other
words, it also enables a seamless integration when the JML-
specified module is reused to implement RBAC constraints
differently. In order to verify that the RBAC constraints are
correctly enforced at the source code level, we also propose an
extension to JET [7], a JML-based tool providing automated
runtime testing for Java modules. The contributions of this pa-
per are as follows: First, it proposes a solution to the problem
of misusing mission-critical software modules, by introducing
a framework tailored for the specification and verification of

RBAC constraints based on the RBAC ANSI standard model
(Section III). Second, using our approach, we introduce a
set of different ways to specify RBAC constraints, in such
a way that the specific RBAC requirements for applications
can be better handled by both policy architects and software
developers (Sections III-C1 III-C2 III-C3). Third, we provide
a methodology to formally map these RBAC constraints with
source code level constructs, in such a way the verification
of the JML-based constraints against the source code can be
achieved (Section III-D). Finally, we provide a customization
of an existing tool to automatically carry out the verification
task with the runtime testing (Section IV). We provide a
summary of future work and concluding remarks in Sections
V and VL

II. BACKGROUND
A. Design by Contract and JML

Design by Contract (DBC) [3] has been extensively ex-
plored in literature as a software development methodology
based on the assumption that implementers and clients of a
given software module establish a contract between each other
in order for the module to be used correctly. Commonly, such
a contract is defined in terms of pre and post conditions,
among other related constructs. Before using a DBC-specified
software module M, clients must make sure M’s preconditions
hold. In a similar fashion, implementers must make sure M’s
postconditions hold once M has finished execution and M’s
preconditions were satisfied. The Java Modeling Language
(JML) [5], is a behavioral interface specification language
(BISL) for Java, with a rich support for DBC contracts. Using
JML, the behavior of Java modules, e.g., what a Java class or
interface is expected to do at runtime, can be specified using
pre, post conditions, and class invariants, which are commonly
expressed in the form of assertions, and are added to Java
source code as comments of the form //@ or /+@...@x/.

B. RBAC ANSI standard

Role-based Access Control (RBAC) is nowadays regarded
as the leading access control model for defining and enforcing
access control properties in software systems, mainly due
to its flexibility, manageability and economy of use [4]. As
RBAC started gaining popularity as a suitable solution for
access control, there was a need to precisely define its main
features and components, in an effort to allow for both
research and commercial products to rely on a standardized
reference other than in custom-made solutions. With this in
mind, the American National Standards Institute (ANSI) [8]
released a standard model that provides a well-defined yet
flexible definition of RBAC, which is mostly based on the
ideas collected throughout the years from researchers in both
industry and academia. Such a standard model, referred as the
RBAC ANSI standard [6], provides well-defined descriptions
of the main RBAC features, including components, system
and administrative functions, as well as a description of the
different types of RBAC systems that have been discussed in
literature.

III. OUR APPROACH: PROBLEM STATEMENT AND
DBC-BASED VERIFICATION FRAMEWORK

A. Problem Description

As modern software increases in both size and complexity,
developers have turned into using pre-fabricated software
modules that encapsulate some of the functions devised for
their target software to reduce the overall costs and the time of
the development process as well as to leverage the experience
and knowledge invested in developing such modules, thus
possibly reducing the existence of software bugs in their final
products [9]. If such modules are to be used correctly, that is,
they indeed contribute to the objectives just described above,
it must be clear to developers about what a given module does
(runtime behavior), how the module communicates with other
modules, and what security constraints, if any, exist for it. This
is particularly true for modules implementing highly-sensitive
security functionality. Recently, lack of proper understanding
of the runtime behavior of software modules has been regarded
as the main cause for the existence of security vulnerabilities,
as shown by Georgiev, et.al. [1], who discovered that a series
of major software products failed to correctly use their sup-
porting APIs for implementing security-sensitive functionality
such as a secure communication channel. The main cause for
these pitfalls was identified as both the poor design as well
as the lack of proper specifications of the supporting APIs,
in such a way that their intended behavior as well as the
security constraints attained to them were easily understood
by developers.

B. Model RBAC Classes

Figure 1 shows a snapshot of our proposed JML-based
implementation of the RBAC ANSI standard. Following such
a document, class JMLRBACAbstractRole defines both
the basic data and functionality devised for roles in a RBAC
model, and it is later refined by classes IMLRBACCoreRole
and JMLRBACHierarchicalRole. The former is intended
to model RBAC core settings, whereas the latter defines
the functionality devised for hierarchical ones. The relation-
ship between a given protected object (JMLRBACResource)
and an operation (JMLRBACOperation) that can be per-
formed over it is modeled by means of a first-class ob-
ject of type JMLRBACPermission. Separation of duty
constraints are modeled by class JMLRBACAbstractSOD,
and proper refinements for both static (JMLRBACSSD) and
dynamic (JMLRBACDSD) constraints are provided as well.
Users, e.g. human agents, are modeled by means of class
JMLRBACUser. For the brevity, formal verification of the
adherence of our proposed approach and the RBAC ANSI
standard is omitted.

C. Defining Model RBAC Constraints

As described in Section I we strive to present different
ways to specify RBAC constraints based on the model classes
described in Section III-B, in order to allow for RBAC policy
architects to choose the approach that better fits both the
RBAC and the behavioral requirements of their applications.

edu.asu.sefcom. rbac

JMLRBACUSser >

[imMLrBACSSD

V
|JMLRBACAbstractSOD

JMLRBACDSD |

JMLRBACResource

[/MLRBACADStractRole k>—[)MLRBACPermission jk>—

JMLRBACSession <> ,% JMLRBACOperation

[iMLRBACCOreRole] [JMLRBACHierarchicalRole |

Fig. 1: JML Model Classes depicting the RBAC ANSI standard

First, we introduce our role-based constraints, which restrict
access to a given Java method M by specifying a role, or set of
roles, the caller of M must have before M is executed. Then,
we present our so-called session-based constraints, which
establish RBAC access restrictions based on the properties
of a given session, as defined in the RBAC ANSI standard.
Examples of these session-based constraints may include re-
quiring a given user session to have several roles active at the
time method M is called. Finally, we present our permission-
based constraints, which restrict access to M by enlisting a
set of RBAC permissions that must be granted before the
method is executed successfully. Figure 2 shows examples of
the proposed approach discussed in this section.

1) Role-based Constraints: Figure 2a shows an example
of a role-based constraint , which is intended to restrict
access to the security-sensitive transfer () method to
only callers who manage to be granted the role Manager.
We start by declaring the JML model field role, of type
JMLHierarchicalRole (lines 5-6). As described in Sec-
tion III-B, such a class is intended to model roles that may be
organized in a role hierarchy, as defined in the RBAC ANSI
standard. Next, we make use of such a JML model field to
specify the need for such a role to be senior to role Manager
(lines 11-12), which is in turn defined by means of the custom-
made class JMLRBACBankManagerRole (not shown), a
subclass of JMLRBACHierarchicalRole. Based on the
semantics of the hierarchical RBAC component defined in the
RBAC ANSI standard, any role that happens to be senior
to the specified role Manager should satisfy this constraint
correctly '. We outline how to map the model field role to an
actual implementation construct in Section III-D.

2) Session-based Constraints: Figure 2b shows an exam-
ple of a session-based constraint . Following the example
discussed in the previous section, we require the activation
of role Manager (JMLRBACBankManagerRole) during the
current RBAC session defined by the JML model field of
the same name (lines 5-6), of type JMLRBACSession. The
RBAC constraint, which is in turn defined in lines 11-13,
requires the current session to have the Manager role activated
before a method transfer () is executed. The pure method

'Our implementation of class JMLRBACHierarchicalRole guarantees
that all roles defined by means of this class are both junior and senior roles
of themselves.

containsActiveRole () of class JMLRBACSession
returns true if the provided parameter has been activated as
a role in the session object. As defined in the RBAC ANSI
standard, a RBAC session S can have their roles activated
dynamically if needed, as soon as the set of currently active
roles is a subset of the roles assigned. We believe this kind
of session-based constraints are useful when the concept of a
session has been identified as a central feature required for a
given software application. For instance, banking applications
usually rely on session-based transactions, e.g. requiring a user
to be authenticated before a subset of his/her assigned roles
can be activated. Later on, operations on the system, e.g. trans-
ferring money between bank accounts, become available if the
activated roles within the session contain proper permissions
authorizing them.

3) Permission-based Constraints: Figure 2c shows the
definition of a permission-based RBAC constraint requiring
a given role, defined in lines 5-6, to have been autho-
rized a permission regarded as TransferPermission of type
JMLRBACPermission. Recall that in the RBAC ANSI hi-
erarchical component, a permission P is said to be authorized
to a given role R if it was explicitly assigned to R, or it
has been assigned to another role that happens to be junior
to R. Method containsAuthorizedPermission () of
class IMLRBACHierarchicalRole first calculates the set
of all authorized permissions for the receiving role object, by
first retrieving all permissions assigned to roles that happen
to be junior to it, even directly or as a result of exploring
a given role hierarchy. Later, each of the retrieved permis-
sions is compared against the provided permission parameter
for equivalence, by using the equals () method of class
JMLRBACPermission, which is overridden to better com-
pare two given instances of such a class.

D. Mapping Model Constraints and Implementation Code

As described in previous sections, we aim to provide an
approach for the runtime verification of the RBAC model
constraints. As the first step, we provide a way to relate
our model approach with the actual source code of a given
application. For such a purpose, we leverage the existing
JML features for relating model and source code constructs.
As demonstrated in [10], JML provides a way to define
proper source code values for model constructs by using the
represents keyword. For Java reference types, e.g. our pro-
posed JMLRBACHierarchicalRole, references to a JML
model field are substituted by a reference to an implementation
field of equivalent type. Moreover, in JML, it is also possible
to define model methods, so the value of a model field gets
assigned the result of evaluating a model method at runtime.
Commonly, model methods providing an implementation value
for a model field are regarded as abstraction functions. Figure
2d shows the mapRole () model method (lines 12-30) that
is used in the represents clause for model field role (line
10). This model method serves as an abstraction function
providing the mapping between our model field role and
the actual source code implementation intended to enforce

1 //@ model import edu.asu.sefcom.rbac.x;
2 public interface BankAccount {
3
4 //@ public instance model int balance;
5 //@ public instance model
6 //@ JMLRBACHierarchicalRole role;
7
8 /+Q@ public normal_behavior
9 @ requires acc != null && amt > 0 &&
10 @ amt <= acc.balance &&
11 Q role.isSeniorRoleTo (
12 @ new JMLRBACBankManagerRole ("Manager"));
13 @ assignable
14 @ ensures
15 @x/
16 public void transfer (BankAccount acc, int amt);
17 }
(a) Role-based RBAC constraints
1 //@ model import edu.asu.sefcom.rbac.x;
2 public interface BankAccount {
3
4 //@ public instance model int balance;
5 //@ public instance model
6 //@ JMLRBACAbstractRole role;
7
8 /*Q@ public normal_behavior
9 @ requires acc != null && amt > 0 &&
10 @ amt <= acc.balance &&
11 @ role.
12 @ containsAuthorizedPermission (
13 @ new
JMLRBACPermission ("TransferPermission"));
14 @ assignable ...
15 @ ensures
16 @x/
17 public void transfer (BankAccount acc, int amt);
18 }

(c) Permission-based RBAC constraints

//@ model import edu.asu.sefcom.rbac.x;
public interface BankAccount {

//@ public instance model int balance;
//@ public instance model
//@ JMLRBACSession session;

/+@ public normal_ behavior
@ requires acc != null && amt > 0 &&
10 @ amt <= acc.balance &&
11 Q@ session.containsActiveRole (
12 [c] new JMLRBACBankManagerRole ("Manager"));
13 @ assignable ...
14 @ ensures
15 @x/
16 public void transfer (BankAccount acc,
17 }

O 01U W —

int amt);

(b) Session-based RBAC constraints

1 import org.apache.shiro.x;

2 //@ model import edu.asu.sefcom.rbac.x;

3

4 public class CustomerAccount implements BankAccount {

5

6 //@ private represents role <— mapRole();

7

8 /*Q@ private model pure

9 @ JMLRBACHierarchicalRole mapRole () {
10 JMLRBACHierarchicalRole newRole =

11 new JMLRBACHierarchicalRole ("DefaultRole");

12

13 Subject currentUser = SecurityUtils.getSubject();
14

15 if (currentUser.hasRole ("manager")) {

newRole = new JMLRBACBankManagerRole ("Manager");
newRole.addPermission (

new JMLRBACPermission ("TransferPermission"));

}

return newRole;

—_
[=2)
PEE®EE®®®®®®® @®

}
*/

(d) Mapping Role-based constraints of Figure 2a to an implemen-
tation

Fig. 2: Approaches for specifying RBAC constraints using DBC

the constraints defined in the JML specifications. Figure 2d
presents a case when the Apache Shiro [11] security API
is used for implementation purposes. Using such an API,
information about the externally-defined RBAC settings for
the CustomerAccount application can be obtained and
used to create proper JML model constructs depicting our
approach in the body of the mapRole () abstract func-
tion. First, an instance of the Apache Shiro class Subject
(currentUser), which contains information about the current
executing user at runtime, is obtained (lines 19-20). Later,
information contained on this currentUser reference is used
to populate a freshly created instance of our model class
JMLRBACHierarchicalRole (lines 22-28), in such a way
the object returned by the mapRole () abstract function can
be used every time a RBAC constraint using the role field is
encountered as illustrated in Figure 2a (lines 11-13). Even
though this running example has been mostly focused on
our proposed role-based model constraints, a similar approach
can be used to provide a mapping between our session and

permission-based constraints and a corresponding source code
implementation.

1V. EVALUATION
A. Supporting Tool

JET [7] is a dedicated tool tailored for providing automated
unit testing of JIML-specified Java modules. Using JET, testers
can verify the correctness of a Java module by checking the
implementation of each of its methods (either public, protected
or private) against their corresponding JML specifications.
More details can be found at [7]. We have modified JET to
allow for both initialization and finalization routines to be exe-
cuted before and after a unit test is performed. An initialization
routine is defined in such a way it retrieves all information
regarding the RBAC settings devised for an application and
creates proper data structures so that our abstraction functions
discussed in Section III-D can effectively provide a mapping
between the implementation constructs and the RBAC con-
straints. In a complementary way, a finalization routine is
expected to perform some cleanup work, e.g. disposing data

structures, that better fits the testing process needs. As an
example, in Figure 2d, an initialization routine would populate
the necessary data structures such that the Subject class
(lines 19-20) can effectively contain the RBAC information
required by the mapRole () abstraction function (lines 12-
31).

B. Experimental Process

We conducted a series of experiments tailored to measure
the runtime performance as well as the effectiveness of both
our approach and our supporting tool, which we describe in
previous sections. For such a purpose, we provide a sam-
ple banking application based on the running example we
have described throughout this paper. Such an application
is distributed within 20 Java classes containing 833 lines
of code and 861 lines of JML specifications, and depicts
an RBAC model for restricting access to security-sensitive
operations, e.g. transfer, withdraw, and deposit, which are
implemented as Java methods. In addition, it makes use of
the Apache Shiro API [11] for implementing security-related
functionality. We performed our experiments on a PC equipped
with an Intel Core Duo CPU running at 3.00 GHZ, with 4
GB of RAM, running Microsoft Windows 7 64-Bit Enterprise
Edition. The Java JRE used was Java SE 1.7.0_06 as provided
by Oracle Inc. Our first experiment was intended to measure
the impact of our approach in the runtime performance of
our sample application. As described in [7], our supporting
tool JET translates our proposed model classes into RAC
code, which is used to provide runtime verification for RBAC
constraints. We executed a sample trace of the Java methods
exposed by our sample application and calculated the average
execution time over 1,000 repetitions. Figure 3 presents our
experimental results. The notation R-X refers to an execution
of our sample trace by using a RBAC setting with a X number
of roles. The term W/RAC refers to the sample application
compiled with a standard Java compiler, whereas RAC denotes
the same application compiled with our supporting tool. All
running times are measured in milliseconds. As expected,
the introduction of RAC code has a noticeable impact on
performance. This is mostly due to the RAC code generated
to process both the JML contracts as well as the abstraction
functions (Section III-D) mapping our model classes with
implementation constructs. In addition, increasing the number
of roles in the sample RBAC setting also increases execution
time, as more processing time is needed for the abstraction
functions to process a larger number of roles.

A second experiment was designed to measure the effective-
ness of our supporting tool to detect faulty implementations
of RBAC constraints. For such a purpose, we augmented
our banking application with an auxiliary method, called
checkRoles () (not shown), intended to check at runtime
if a list of roles, received as a parameter, includes any role
allowed to execute a given banking method under test. If
so, checkRoles () returns quietly, otherwise, a security
exception is thrown. Information about the roles allowed to
execute a given method is provided by our RBAC constraints,

Role-based

Fig. 3: Performance measurements for a sample banking
application

Round 1 = Round 2

Role-based

Fig. 4: Effectiveness measurements for a sample banking
application

whereas information on the executing roles at runtime is
provided by the Apache Shiro API, in an approach similar
to the one shown in Figure 2d. Based on this, we followed
an approach based on mutation testing [12], by deliberately
inserting changes, also known as mutants, to the list or
roles taken by checkRoles () as a parameter: first, we
introduced a technique calling adding mutants, which would
insert additional role names to the forementioned parameter
list. In a similar fashion, we introduced our changing and
removing techniques, which would change and remove role
names for the parameter list, respectively. We applied these
three techniques to different methods of our sample application
and recorded the results obtained by our tool: In an initial first
round, we observed the performance of our tool to detect our
manually-inserted mutants when provided with our original
set of RBAC constraints as JML specifications. We run each
method separately, activating a single mutation at a time. Later,
in a second round, we introduced some changes in our JML
specifications in an effort to increase the amount of faulty
implementation cases detected by the tool, and executed the
testing process once again. Changes in the JML specifications
included both the refinement of the RBAC constraints, e.g.
adding specification cases, and the implementation of the
abstraction functions introduced in Section III-D. We repeated

the experimental process several times and collected the results
shown in Figure 4 2 Qur results show the effectiveness rate,
that is, the number of successfully-detected user cases divided
by the total number of use cases produced by the tool. As it
can be observed in Figure 4, initial effectiveness rates detected
during round 1 are significantly improved after round 2, due
to the fact the JML specifications are strengthened to better
handle previously undetected cases.

V. RELATED AND FUTURE WORK

Formal verification of RBAC properties has been already
discussed in literature [13] [14] [15]. These approaches are
mostly focused on verifying the correctness of RBAC models
without addressing their corresponding verification against an
implementation at the source code level. The works closely
related to ours involve the use of DBC for security-related
purposes, which was explored by Dragoni, et.al. [16] and
Nico, et.a. [17]. In addition, Belhaouari, et.al. [18] introduce an
approach for the verification of RBAC properties using a DBC-
like approach. Approaches similar to ours are presented by
Mustafa and Sohr [19] and Rubio and Cheon [20]. A summary
of our future work comes as follows: first, we plan to work on
a refinement of the JIML model classes introduced in Section
III-B, in an effort to better accommodate for a new kind of
RBAC constraints using JML specifications, as well as for a
better implementation of the RBAC ANSI standard. Second,
we plan to extend the capabilities of our proposed extension
to the JET tool in such a way the efficiency of the tool for
discovering faulting implementations can be increased. Finally,
we also plan to explore the suitability of our model classes to
accommodate for other JML-tools, e.g. tools based on static
analysis, as it was discussed in [19], so we can leverage the
benefits offered by using both dynamic and static approaches
for source code verification.

VI. CONCLUSIONS

In this paper, we have introduced a solution for the problem
of misusing reusable software modules, e.g. APIs, which has
been found to cause serious vulnerabilities in mission-critical
software applications. In order to cope with this problem, we
have introduced a framework for the abstract specification of
security constraints based on ANSI RBAC, a formal model
for providing access control guarantees in software systems.
The approach described in this paper is mostly based on the
Java Modeling Language, a DBC-based specification language
for Java, and includes both a set of model classes based on
the RBAC ANSI standard as well as a supporting tool to
carry out the runtime verification of the implementing source
code against a set of JML-based specifications. Based on the
results presented throughout this work, we believe DBC and
JML are effective tools to allow for software designers, policy
architects, and developers to better communicate, implement,
and verify the correct enforcement of the RBAC constraints
devised for software applications.

2The terms C, A and R stand for the changing, adding and removing
techniques described above.

[1]

[2

—

[3]

[4]

[5

[t}

[6

=

[7]

[8

[9

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security, ser. CCS *12.
New York, NY, USA: ACM, 2012, pp. 38-49.

S. Fahl, M. Harbach, T. Muders, L. Baumgirtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: an analysis of android ssl
(in)security,” in Proceedings of the 2012 ACM conference on Computer
and communications security, ser. CCS "12. New York, NY, USA:
ACM, 2012, pp. 50-61.

C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576-580, October
1969.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
Based Access Control Models,” IEEE Computer, vol. 29, no. 2, pp.
38-47, 1996.

L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.-T. Leavens,
K. Leino, and E. Poll, “An overview of JML tools and applications,”
in Proc. 8th Int’l Workshop on Formal Methods for Industrial Critical
Systems (FMICS 03), 2003, pp. 73-89.

American National Standards Institute Inc., “Role Based Access Con-
trol,” 2004, ANSI-INCITS 359-2004.

Y. Cheon, “Automated random testing to detect specification-code in-
consistencies,” in Proceedings of the 2007 International Conference on
Software Engineering Theory and Practice, 2007.

American National Standards Institute, “ANSI Website,” 2013, http://
WWW.ansi.org.

F. Foukalas, Y. Ntarladimas, A. Glentis, and Z. Boufidis, “Protocol
reconfiguration using component-based design,” in Proceedings of the
5th IFIP WG 6.1 international conference on Distributed Applications
and Interoperable Systems, ser. DAIS’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 148-156.

Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards, “Model variables:
cleanly supporting abstraction in design by contract: Research articles,”
Softw. Pract. Exper., vol. 35, no. 6, pp. 583-599, May 2005.

T. A. S. Foundation, “Apache shiro 1.2.1,” 2013, http://shiro.apache.org/.
Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649 —678, sept.-oct. 2011.

T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: a proof
assistant for higher-order logic. Berlin, Heidelberg: Springer-Verlag,
2002.

M. Drouineaud, M. Bortin, P. Torrini, and K. Sohr, “A first step
towards the formal verification of security policy properties of rbac,”
in Proceedings of the 4th International Conference on Quality Software
(QSIC), H.-D. Ehrich and K.-D. Schewe, Eds., 2004.

H. Hu and G. Ahn, “Enabling verification and conformance testing for
access control model,” in Proceedings of the 13th ACM symposium on
Access control models and technologies, ser. SACMAT ’08. New York,
NY, USA: ACM, 2008, pp. 195-204.

N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan, “Security-by-
contract: Toward a semantics for digital signatures on mobile code,”
in Public Key Infrastructure, ser. Lecture Notes in Computer Science,
J. Lopez, P. Samarati, and J. Ferrer, Eds. Springer Berlin Heidelberg,
2007, vol. 4582, pp. 297-312.

P. L. Nico, C. S. Turner, and K. K. Nico, “Insecurity by contract,” in
Proceedings of the IASTED Conference on Software Engineering and
Applications, November 9-11, 2004, MIT, Cambridge, MA, USA, M. H.
Hamza, Ed. TASTED/ACTA Press, 2004, pp. 269-274.

H. Belhaouari, P. Konopacki, R. Laleau, and M. Frappier, “A design
by contract approach to verify access control policies,” in Engineering
of Complex Computer Systems (ICECCS), 2012 17th International
Conference on, july 2012, pp. 263 -272.

T. Mustafa, M. Drouineaud, and K. Sohr, “Towards Formal Specification
and Verification of a Role-Based Authorization Engine using JML
(Position Paper),” in 5th ACM ICSE Workshop on Software Engineering
for Secure Systems (SESS10), South Africa, May 2010.

C. Rubio and Y. Cheon, “Access control contracts for java program
modules,” in Proceedings of the 5th IEEE International Workshop on
Security, Trust, and Privacy for Software Applications, ser. STPSA 2010,
July 19-23 2010.

