
HAL Id: inria-00534135
https://inria.hal.science/inria-00534135v1

Submitted on 8 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Chemical Metaphor to Express Workflow and
Service Orchestration
Chen Wang, Jean-Louis Pazat

To cite this version:
Chen Wang, Jean-Louis Pazat. Using Chemical Metaphor to Express Workflow and Service Orches-
tration. The 10th IEEE International Conference on Computer and Information Technology, Jul 2009,
Bradford, United Kingdom. �inria-00534135�

https://inria.hal.science/inria-00534135v1
https://hal.archives-ouvertes.fr

Using Chemical Metaphor to Express Workflow and
Service Orchestration

Chen WANG and Jean-Louis PAZAT
INRIA/IRISA, Campus de Beaulieu, 35042, Rennes Cedex, France

{chen.wang, jean-louis.pazat}@irisa.fr

Abstract—Nowadays, novel applications, such as personal-
ized e-commerce services, call for cooperation across enter-
prise boundaries. Service-Oriented-Architecture (SOA) forms a
solution to build loosely coupled distributed applications by
composing Web services that are provided by different entities.
Orchestration is a perspective of Web service composition. The
traditional approach to implement orchestration is to use an
executable language such as WS-BPEL to express a workflow.
However, it has some undesirable drawbacks due to its static
nature. This paper explores an unconventional approach known
as chemical programming on expressing workflow and service
orchestration. It has some valuable characteristics such as auto-
mated, dynamic and parallel execution which enable it to be a
competitive candidate for service composition.

Index Terms—Web service; service orchestration; workflow;
chemical programming; HOCL; SOA;

I. INTRODUCTION

Service-Oriented Architecture (SOA), as an architectural
platform, is adopted today by many businesses as an effective
approach for building software applications that promotes
loose coupling between software components [1]. Although
the term “service” is widely used today, it is hard to find a
unique definition. Within the scope of this paper, a service is
a software system designed to support interoperable machine-
to-machine interaction over computer networks. It can be
defined within the scope of an enterprise, implemented in
different programming languages, run on various platforms
and operating systems.

Orchestration [2] is a perspective of Web service composi-
tion. It aims at providing an open, standards-based approach
for connecting Web services together to create higher-level
business processes [3]. An orchestration describes the inter-
action with both internal and external Web services at the
message level. There is a centralized control for message
exchanges and execution logic. This control is always from
one party’s viewpoint.

The most common way to build composite applications is to
use an executable language (such as WS-BPEL [4]) to create a
business process by defining a workflow that specifies business
logic and execution order. A centralized orchestration engine
is implemented to execute this business process. It invokes
and coordinates all the partner services by message passing in
order to achieve its promising goal.

However, WS-BPEL, the most widely used service orches-
tration language, has some undesirable drawbacks. Firstly, it
is naturally static. If a process definition is accepted by the

orchestration engine, it can not be modified during run-time.
Furthermore, it lacks of formal semantics, which makes it
difficult to formally reason a process behavior [5]. Thirdly, a
centralized execution engine is implemented which may cause
the challenge of scalability, reliability and availability. Finally,
its XML-based grammar is complicated and error-prone; it
also has some limitations in expressing sophisticated and
complex business workflow. To deal with all these problems,
this paper explores an innovative approach known as chemical
computing paradigm on expressing Web service orchestration.

Chemical programming [6], [7] is an unconventional pro-
gramming paradigm which is inspired by the chemical
metaphor. Computation can be seen as chemical reactions
where all the molecules involved represent computing re-
sources. The reactions are controlled by a set of rules which
are similar to chemical equations: a chemical equation reflects
a nature law which specifies the reactant and resultant of a
chemical reaction; and a rule defines the input and output of
a certain computation.

Each chemical program creates a multi-set [8] acting as a
chemical reaction container. All the elements such as comput-
ing resources and rules are defined inside as molecules. Once a
rule gets all its required inputs and a certain condition prevails,
it will then be activated - those input elements will be replaced
by new ones according to the rule definition. Using chemical
reaction as a metaphor, once two react-able molecules meet
together and a certain temperature is reached, according to a
certain chemical equation, new substance will be produced.

Compare to the traditional computing paradigms, chemical
computing has the following superiorities: first of all, it is
highly dynamic, when the multi-set reaches a stable state
that is called “inert”, new rules and resources can be added
into the multi-set to trigger new reactions; furthermore, it
is automated and self-coordinated, no intervene is needed
during the computing process. All these characteristics make
us believe that chemical computing model is suitable for
service orchestration programming.

This paper is organized as follows: section II gives a brief
introduction to chemical programming models. In section
III we propose a framework based on chemical program-
ming paradigm to express workflow and service orchestration.
Section IV presents a prototype which implements the pro-
posed framework. In Section V, some of the main existing
approaches to express service orchestration are introduced.
Finally, we draw a conclusion and address the future work

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.268

1504

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.268

1504

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.268

1504

in Section VI.

II. CHEMICAL PROGRAMMING

A. Gamma

Gamma is proposed in [9] as a paradigm for parallel com-
puting through a chemical metaphor. Computation in Gamma
can be seen as a series of chemical reactions; data involved in
the computation is represented by molecules. The multi-set is
the unique data structure that can be regarded as the chemical
reaction container. Multi-set extends the concept of set with
multiplicity. An element can be presented only once in a set
whereas many times in a multi-set. The time of its occurrence
is defined as multiplicity. For example, {1, 3, 1} is a multi-set
while not a set because the multiplicity of element “1” is 2.

Computation in Gamma is performed by multi-set rewriting
[8] which is controlled by a set of rules. A rule is composed of
2 parts: condition and action. If a portion of elements satisfy
the condition, they will be replaced by other elements specified
by action part. These newly produced elements may activate
another rule and trigger new reactions; this “domino process”
will continue until the container become inert - that is to say,
no element in the multi-set can trigger any reactions. When
such a stable state is reached, the final result is obtained.

As a short example, to compute the maximum number in a
non-empty multi-set, the following rule is defined:

replace x, y by x if x>= y

And then add this rule into the following multi-set: {1, 2,
4, 6, 5, 7, 8, 9}. x, y can match any pair of integers, i.e., x=4,
y=1, hence 1 will be removed from the multi-set. In this way,
only the maximum number will be finally left in the multi-set.

B. HOCL

HOCL stands for Higher-Order Chemical Language. It
implements γ-calculus [10] which can be seen as an higher-
order extension of Gamma language. An HOCL program is
composed of two parts: rule definition and multi-set organiza-
tion. A sample HOCL program is defined in Figure 1 to select
eligible scholar for a scholarship. The selected student should
have the best average score among all the candidates whose
average scores are over 18.00. All the rules are defined from
line 1 - line 10 and the elements are organized in a multi-set
from line 11 - line 20.

A rule can be either one-shot or N-shot, the difference lies in
that after the reaction, the one-shot rule will be consumed but
N-shot rules can be reused repetitively. Using HOCL, N-shot
rules are defined by “let...replace...by...if...” expression. This
expression has 4 keywords. “let” specifies a name to a rule.
“replace...by...” defines the multi-set rewriting to perform the
calculation. “if” denotes the condition of the reaction. One-
shot rule is defined in the liked manner by using “replace-
one” key word and it is not needed to specify a name to a
one-shot rule. In this program, two N-shot rules are defined:
selectCandidate selects the qualified candidates whose average
scores are above 18.00 and searchScholar searches the scholar

1 let selectCandidate =
2 replace stu::String:score::double, ?w
3 by w
4 if score < 18.00
5 in
6 let searchScholar =
7 replace stu1::String:score1::double,

stu2::String:score2::double
8 by stu1:score1
9 if score1 >= score2
10 in
11 <
12 <
13 selectCandidate, searchScholar,
14 "Thierry":17.96,
15 "Nicola":16.98,
16 "Ameli":17.26,
17 "Christina":12.89
18 >,
19 replace-one <selectCandidate =x,

searchScholar =y, ?w> by w
20 >

Fig. 1. Sample HOCL code: search eligible scholar

with the highest score; on the other hand, a one-shot rule is
defined at line 19 to extract the final result.

HOCL extends the previous model with pairs, types, empty
solution and naming, we introduce shortly these extensions
here, refer to [11] for a more elaborate introduction.

Naming. In HOCL, a rule can be named (or tagged) to
facilitate its reuse. The “let” key word is used to assign a
name to a rule in the following way:

let RuleName = ... (rule definition)

Once defined with a name, a rule can be easily reused by
calling its name through this program.

Variable types. In HOCL, a variable has to be defined with
a certain type. It can be either a primitive type such as int
or String, or some user defined types [11]. Every variable is
defined within “replace” expression in the following way:

VariableName::Type

Two colons are used together (“::”) to indicate the type of
a variable. Take the program in Figure 1 for example, in the
definition of rule selectCandidate, a pair has been defined at
line 2 (stu::String:score::double). This pair comprises a String
variable stu and a float variable score.

After the definition of variables in “replace” statement, they
can be used in the following parts such as “by” and “if”
statements. The scope of a variable lasts within the definition
of a rule. A rule can never use variables defined by other rules.

Pairs. A pair is denoted by “A1:A2”, a colon is used to
connect two isolated molecules. This is easy to think using the

150515051505

chemical metaphor. A S2O4 compound molecule can be seen
as a simple combination of two SO2 molecules (SO2:SO2).
As a result, a pair can be regarded as a compound molecule
which can also participate in the chemical reactions. In the
program defined in Figure 1, a pair is used to store a student’s
name and his score (i.e..: stu1:score1 at Line 8).

Generally, the notion of pair can be extended by using
several colons to connect multiple fields. As a result, a pair
can be defined in the following form:

field1:field2:...:fieldn

Each field is a variable and has to be defined with a certain
type. In this case, a pair is also called a tuple. A tuple can
be regarded as a struct in C language, which, like an union,
groups multiple variables into a single record.

Universal type. In HOCL, there is a universal pattern
defined by a question mark as “?var name”. It can match
any type of variable, such as an integer, a pair or even
an “empty molecule”. Furthermore, it can match not only
one molecule but many of them. This pattern means: “The
remaining molecule(s)”.

In this program, we have such a variable defined at line 2
(“?w”). When the rule selectCandidate is applied for the first
time, there are four pairs in the solution, stu:score can match
any one of them and w matches the other three. This process
is shown in Figure 2. In this case, w means “all the three
remaining pairs”.

Fig. 2. Universal pattern: match multiple molecules

This process will continue until there is only one pair
left in the multi-set, we assume “Ameli”:17.26 is that pair
(because the execution of a chemical program is highly non-
deterministic, different executions may have different execu-
tion orders. Therefore, another pair can be left to the end for
another execution). Then rule selectCandidate is applied again.
stu:score will match “Ameli”:17.26; at this moment, there is
no more element left in the multi-set, w can only match an
“empty molecule”, as shown in Figure 3. In this case, w refers
to an empty molecule which means “nothing is remained”.

The universal pattern is meaningful since the multi-set
contains a lot of molecules, but rewriting is usually performed
within a certain part of them. Since not all elements need
to participate in the multi-set rewriting, a universal pattern is
used to package all those irrelevant elements that will keep
unchanged during the reaction.

Empty solutions. The notion of empty solution in HOCL

Fig. 3. Universal pattern: match “empty molecule”

is raised since that after reactions, the multi-set might become
empty. This is caused by the universal pattern which can match
any molecules even the empty ones. In the program shown in
Figure 1, rule selectCandidate removes a student pair if his
average score is lower than 18.00; in this case, no student
can meet this requirement. As a result, all the pairs will be
removed in the end. And then a one-shot rule will remove both
N-shot rules (selectCandidate and searchScholar). Therefore,
an empty solution is finally obtained. The execution sequence
is shown in Figure 4.

Fig. 4. Execution order

From this example, we can summarize that as a chemical
programming language, HOCL has the following properties:
firstly, its execution is non-deterministic; different executions
can have different execution sequences, but finally the same
result is obtained. Furthermore, its execution is parallel; var-
ious reactions can be carried out simultaneously. Thirdly, the
execution controlled by a set of rules is automated and self-
coordinated. These characteristics make us believe that HOCL
is suitable for service orchestration programming, which is
also full of uncertainty.

III. SERVICE ORCHESTRATION

In this section, a framework is proposed based on chemical
programming to express workflow and service orchestration.

A. Framework

In chemical programming, each compute unit is represented
by a multi-set. A multi-set is also vividly called a “solution”;
it acts as a membrane which blocks the molecules inside it to
react with the ones outside it. As a result, it is reasonable to
use a solution to represent a component which encapsulates
certain functionalities, such as a service or an activity. Based
on this point of view, a chemical framework is proposed to

150615061506

express service orchestration, as shown in Figure 5. In this
framework, all the elements such as computing resources and
rules are organized into three hierarchical solution levels.

Fig. 5. Chemical Framework for Orchestration

The first level solution is the out-most multi-set of an HOCL
program. It is named as container solution since it provides
a public place for all providers to advertise their services
(in Figure 5, the container solution is represented by the
largest rectangle with rounded corners). It composes multiple
sub-solutions representing services as well as some rules to
perform the message passing between services; therefore, this
level is also called service level.

The second level is workflow level. Workflow is defined
by chemical constructs within a service solution. A service
solution is a sub-solution in the container which represents a
service. In Figure 5, each circle stands for a service solution.
WS-BPEL defines workflow by coordinating activities. In
chemical framework, activities are represented by the sub-
solutions of a service solution. The relationship among the
activities such as execution order are realized by a set of rules
that are defined to coordinate partner services.

Since an activity usually defines an operation, these sub-
solutions are also called operation solutions. In Figure 5, each
solid rectangle stands for an activity, it contains molecules for
carrying out a certain operation. This is the third level of the
framework - operation level.

The HOCL source code in Figure 6 implements the frame-
work in Figure 5. In the container solution, each service is
implemented by a tuple with two fields: the first field is a
string indicating the name of the service and the second field
is a multi-set implementing service solution. The detailed
implementation of “Serv1” service solution is given out, it
composes some “invoke” activities such as “Inv1”. These
activities are also represented by a tuple with two fields: a
string as the name and a multi-set as the operation solution.

In the following sections, based on this implementation
of chemical framework, a set of rules are defined in both

< //Container solution
"Serv1":< //Service solution

"Inv1":< //Operation solution>,
"Inv2":<...>, "Inv3":<...>, ...

>,
"Serv2":<...>,...

>

Fig. 6. Implementation of chemical framework in HOCL

workflow level and service level to express workflow and
service orchestration.

B. Workflow Level Coordination

As introduced, a composite service can be built by compos-
ing a workflow . When receiving an invocation, the execution
will start from the first step(s) of its workflow. A workflow
composes a set of activities to coordinate partner services.
In this section, we introduce how to use HOCL to express
workflow within a service solution. We demonstrate that most
of WS-BPEL constructs can be expressed by using chemical
computing paradigm.

Invoke. Once a service wants invoke a partner service, it has
to compose an “invoke” activity in its workflow. In chemical
computing framework, to invoke a partner service, a service
solution has to generate an operation solution containing a
tuple molecule in the form of "CALL":t, where ”CALL”
is an identification suggesting that this is an invocation tuple
and t stands for the name of the wanted partner service. In the
framework shown in Figure 5, if the activity “Inv1” of “Serv1”
wants to invoke “Serv2”, it has to produce the following tuple
in “Inv1” operation solution, "CALL":"Serv2".

This “CALL” tuple will then react with rule invoke defined
in Figure 7. When the execution reaches a certain activity,
all the input parameters are packaged into an "INPUT" tuple
and passed into the relative operation solution. This "INPUT"
tuple will react with that "CALL" tuple according to the rule
invoke. A new "CALL" tuple with four fields is generated in
service solution, it implies that the activity s generates this
invocation to service t with parameters p. The presence of
this "CALL" tuple in the service solution will activate a pair
of service level rules which implement the message passing
between services (rf. Section III-C).

let invoke =
replace s:<"CALL":t, "INPUT":<?p>,?w>
by s:<w>, "CALL":s:t:<p>

in...

Fig. 7. Chemical rules for “invoke” activity

Receive. On “workflow level”, there are a pair of rules
defined as shown in Figure 8 to perform “receive” activity.
Once a message is arrived, it can be either an invocation or a
reply. If it is an invocation (receive a “CALL” tuple), execution
has to be started from the first step(s). Those starting steps

150715071507

are indicated by a “START” tuple in the service solution.
Rule receiveCall will package parameters into an “INPUT”
tuple and then move it to the operation solution(s) of those
starting step(s). In this way, the execution of workflow starts.
As for the remaining parts of this “CALL” tuple such as
s and f fields, the partner service will create a “CLIENT”
tuple suggesting the invoker who has generated this invocation.
After the calculation, these information will be used to locate
the invoker to return the result.

let receiveCall =
replace "CALL":s:f:<?P>, "START":<t>,

t:<?w>
by t:<w, "INPUT":<P>>,"CLIENT":s:f

in
let receiveReply =

replace "REPLY":s:<?R>, s:<?w>
by s:<w,"RESULT":<R>>

in...

Fig. 8. Chemical rules for “Receive” activity

On the other hand, a message can also be a reply (receive a
“REPLY” tuple, rf. next point). In this case, the parameter
has to be sent to the exact step which has generated the
respective invocation. Rule “receiveReply” defined in Figure 8
will repackage the result in a “RESULT” tuple and send it to
the respective sub-solution(s). Each sub-solution defines rules
to process the result, either to pass it to the next execution
step(s), or package it into a “REPLY” tuple to send back to
the client.

Reply. Once a partner service finishes its calculation for a
client, a “reply” activity is created to return the results. The
“reply” activity is implemented in the same way as “invoke”;
Once a service finishes its calculation, it encapsulates the result
in a “RESULT” tuple in its service solution. Remember when
receiving a message invocation, the invoker’s information
is saved in a “CLIENT” tuple. Rule reply catches these
two tuple and generate a “REPLY” tuple in the form of
"REPLY":s:f:<R>, meaning the result R is prepared to
send back to the activity s of service f. This tuple in the service
solution will then activate a pair of rules to perform message
passing between services.

let reply =
replace "RESULT":<?R>, "CLIENT":s:f
by "REPLY":s:f:<R>

in...

Fig. 9. Chemical rules for “Reply” activity

Structure activities form the “skeleton” of a BPEL process.
A structural activity can be seen as a container to hold
several basic activities. All the basic activities have to be
executed according to the special execution logic defined by
this “container”, such as “sequence” expresses sequential ex-
ecution while “flow” specifies parallel execution. In chemical

computing framework, structural activities are performed by a
set of chemical rules.

Sequence. On “workflow” level, each sub-solution repre-
sents a workflow component. As a result, to express the exe-
cution logic, a “pointer” has to be assigned to each component
indicating next execution step(s). Each component sub-solution
contains a “NEXT”:< step names > tuple. The second fields
employs a multi-set to contain the names of next execution
steps. In the framework shown in Figure 5, if “Inv1” and
“Inv2” have to be executed sequentially, “Inv1” solution must
contain a tuple like “NEXT”:<“Inv2”>.

This tuple will react with “nextStep” rule, its definition is
given out in Figure 10. Once a component s has finished its
calculation, a “RESULT” tuple is generated in its operation
solution (if this is an invoke activity, this “RESULT” tuple can
be received from a partner service). Meanwhile, s specifies its
next execution step as t and the sub-solution of t is inert at that
moment, this rule will encapsulate the result r into an “input”
tuple and pass it to the solution of t. In this way, sequential
execution is performed.

let nextStep =
replace t:<?l>,
s:<"NEXT":<t,?w>, "RESULT":<?r>>

by s:<"NEXT":<w>, "RESULT":<r>>
t:<l,"INPUT":<r>>

in...

Fig. 10. Chemical rules for structure activity

Parallel. Using the same way, it is easy to express par-
allel execution. Suppose that after activity “Inv1”, “Inv2”
and “Inv3” will be executed in parallel, the operation
solution of “Inv1” has to contain the following tuple:
“NEXT”:<“Inv2”,“Inv3”>. In this way, rule nextStep will
pass the result of “Inv1” to both “Inv2” and “Inv3” solutions
simultaneously in order to start the invocations in parallel.

Throw. As error is inevitable during the execution of a
program, especially for such complex distributed applications
as Web service. WS-BPEL employs “throw” activity to alarm
BPEL engine to take measures when error happens. In chem-
ical computing, error checking is performed by rules. These
rules plays the role of a watchdog that monitor the system in a
certain level. Once there is an error detected, a “FAULT” tuple
will be generated in the form of “FAULT”:<fault info>, which
encapsulates the detail of an error. This tuple will activate
respective rules which implement fault handler to treat with
the errors.

Fault Handler. A fault handler defines the response to a
certain type of fault. In chemical model, it is also implemented
by chemical rules. Once a “FAULT” tuple is thrown in a
certain level, the respective fault handler has to take actions
to deal with the error. For example, if a service calculates
the maximum integer number, it requires a set of integers as
inputs. Once a chemical rule checkInput detects that some float
numbers are passed into this service solution as a parameter for

150815081508

this invocation, a tuple “FAULT”:<“Require integer numbers,
get string input”> will be generated. This tuple will activate
the FHTypeError rule which encapsulates this fault tuple in a
“REPLY” tuple and then send it back to the invoker.

C. Service Level Coordination

In chemical framework, the interaction between services is
expressed by writing message molecules into the target service
solution. These molecules can react with some chemical rules
in the partner service solution and the computation starts.
This interaction is performed by a set of rules defined in the
container.

As defined in Figure 11, rule withdrawServiceCall extracts
the “CALL” tuple from the calling service’s solution (ex-
pressed by “f:< >”) to the container. This operation is from
workflow level to service level. And then, rule depositeSer-
viceCall moves the “CALL” tuple from container to the target
service solution (expressed by “t:< >”). This operation is from
service level to workflow level.

let withdrawServiceCall =
replace f:<"CALL":s:t:<?w>,?l>
by f:<l>, "CALL":s:f:t:<w>

in
let depositeServiceCall =

replace t:<?w> "CALL":s:f:t:<?l>
by t:<w, "CALL":s:f:t:<l>>

in...

Fig. 11. Chemical rules for “invoke” activity

The “reply” message is performed in the liked manner.
As defined in Figure 12, rule withdrawServiceReply extracts
the “REPLY” tuple from a partner service’s solution to the
container while depositeServiceReply passes it into the target
service solution.

let withdrawServiceReply =
replace f:<"REPLY":s:t:<?w>,?l>
by f:<l>, "CALL":s:t:<w>

in
let depositeServiceReply =

replace t:<?w> "REPLY":s:t:<?l>
by t:<w, "REPLY":s:<l>>

in...

Fig. 12. Chemical rules for “Reply” activity

Based on the framework proposed in Section III-A, Fig-
ure 13 organizes all the rules introduced above into three
hierarchical levels of solutions. This enriched framework can
implement most of WS-BPEL constructs to express workflow
and perform service orchestration.

IV. IMPLEMENTATION

This is the first study on investigating the possibility to use
chemical programming model on service orchestration. As a

Fig. 13. Organization of rules

result, a simple prototype is developed by implementing the
chemical framework presented in the previous section. This
prototype aims at proving the feasibility of using HOCL as a
“glue” between services. Therefore, instead of using complex
business services to provide commercial functionality, some
basic calculating services are implemented. These services
perform certain mathematical computing and all of them are
developed in HOCL. More elaborate and advanced implemen-
tation will be carried out in the near future.

The context is shown in Figure 14, to calculate the max-
imum and minimum prime numbers included in a set of
integers, a composite service named “MaxMinPrimeNumbers”
is built by coordinating three partner services. The dashed
arrows between the “operation solutions” in the composite
service form the workflow. Firstly, it invokes “Prime” partner
service to get all the prime numbers and in the following steps,
it calls respectively “Max” and “Min” partner services to get
the maximum and minimum value. Those two steps are carried
out in parallel. On receiving the results from both steps, a reply
message is generated in the final step.

Fig. 14. Implementation using chemical model

An HOCL program creates a multi-set acting as the con-
tainer. Each afore-mentioned service is represented by a ser-

150915091509

vice solution in the container. Executing this program, the
whole system is inert at the beginning, no chemical rule is
activated. Imagine that if there is a “client” service which
invokes “MaxMinPrimeNumbers” service, it has to pass a
“CALL” tuple from its service solution to the container. This
tuple will give rise to a series of chemical reactions. We do
not actually implement a “client” service (there is no “client”
service solution in the container); instead, we use the “shell”
to add the following “CALL” tuple directly into the container
to simulate an invocation from a “client” service:

"CALL":"Inv1":"client":"MaxMinPrimeNumber"
:<16,7,8,0,12,3,4,5,7,10>

A shell is a monitoring tool with user interfaces for manag-
ing the container. It provides several commands which operate
on the multi-set. For example, by using the shell, a user
can either print out the container states (its current content)
or add/remove molecules [11]. This “CALL” tuple implies
that the activity “Inv1” of service “client” invokes service
“MaxMinPrimeNumber” with certain parameters. Once it is
presented in the container, the rule “depositeServiceCall” will
be activated to forward parameters into the service solution
of “MaxMinPrimeNumbers”. In this way, the computation in
the composite service starts and it will invoke other partner
services in succession. Finally, the following “REPLY” tuple is
generated in the container which encapsulates the final result:

"REPLY":"Inv1":"client":<7,3>

As we have not implemented the “client” service solution,
this “REPLY” tuple will be finally left in the container for us
to check the computing result. It tells that the result <7,3>
is for the “Inv1” activity of “client” service. We can see
that the expecting result is obtained and the whole process
is automated.

In addition, a fault handler is implemented in the workflow
level of “MaxMinPrimeNumbers” service in case of illegal
input parameters. To check its validation, add another “CALL”
tuple defined as follows into the container through the shell:

"CALL":"Inv1":"client":"MaxMinPrimeNumber"
:<1,1.16,3,21,15,13,19,17,18,16>,

For the composite service, the valid input parameters have
to be uniquely integers. As a result, the float number 1.16 will
be detected as an illegal input, a certain rule can detect this
error and generate a “FAULT” tuple with detailed information.
Once a “FAULT” tuple is presented in its service solution,
the fault handler will then stop the execution of the workflow
and reply to its invoker with error information. Finally, the
following “REPLY” tuple is left in the container:

"REPLY":"Inv1":"client":<"FAULT":<"Require
integers, but get float parameter(s)!">>

Compare to the static nature of WS-BPEL, our approach
is more dynamic. The definition of a business process can
be modified on-the-fly. As shown in Figure 14, if the
“Min” service has to be adapted, it is possible to refer

to another partner service by replacing the “CALL” tuple
in “InvMin” sub-solution. By using the “shell”, the previ-
ous tuple “CALL”:“Min” can be removed and a new tuple
“CALL”:“MinNumber” is added which is used to invoke
“MinNumber” service that provides the same functionalities
as “Min”. In this way, the real time service adaptation can be
performed. In the following work, we are going to implement
service adaptation based on different strategies.

V. RELATED WORKS

The most common way to build composite applications is
to use WS-BPEL. One of the drawbacks of WS-BPEL is
its lack of formal semantics. [5], [12] have addressed this
problem. The authors have formalized a novel service or-
chestration language: Webπ∞, extending from π-calculus [13].
This language can be seen as a simplification of WS-BPEL.
It defines the semantics to WS-BPEL, but the current work
is limited in a subset of the whole WS-BPEL, such as basic
activities, structured activities and error handling. On the other
hand, WS-BPEL lacks monitoring and dynamic (runtime)
adaptation mechanisms, a system “VieDAME” is proposed in
[14] allowing monitor BPEL processes and replace existing
partner services based on various replacement strategies.

Besides this traditional method, some novel approaches
were proposed. An unconventional approach known as “tuple-
space based Web service orchestration” implements a Linda-
tuple [15] liked space to orchestrate web services. This view-
point shares some similarities with chemical programming
paradigm. [16] presents an infrastructure and a set of tools
named TSpaces Services Suite (TSSuite) for the development
and management of Web services. It extends the tuple space
model to handle Web services as first class citizens. Each
service manages a tuple space; If there are some requesting
tuples in the its space, the service will perform the promised
operation. In this way, the workflow is divided up to several
sub-workflows, which are distributed in the internal or external
region of an association. This has greatly enhanced the fault-
tolerant and parallel access.

In [17], authors present xSpace, a tuple space that deals with
XML documents natively and distributed across the internet.
It can serve as a vehicle to orchestrate web services by pro-
viding an asynchronous interaction paradigm. The workflow
controller uses xSpace to put in requests for the next workflow
task and reads the results from xSpace before deciding the
next executing step. The performance can be improved by
integrating a notification system.

Recently, chemical programming is regarded as a suitable
candidate for service coordination. [18] investigates the possi-
bility to apply chemical programming on service orchestration.
Some rules are defined to perform message passing among
services. This work can be integrated into the framework pro-
posed in this paper, the interaction between service solutions
is implemented by a set of rules in service level. But [18]
does not address any idea on how to express workflow using
chemical programming model.

151015101510

[19] provides a coordination framework based on chem-
ical computing paradigm for advanced workow enactment.
The authors proves that most of workflow constructs can
be expressed by γ-calculus. γ-calculus is a formal definition
of the chemical paradigm from which all these chemical
models can be derived. But this work has a limitation in
express workflow. For example, it use higher-order property
to express sequential execution. That means if you have a
thousand sequential execution steps, you have to compose a
nesting solution structure with a thousand levels of nesting
sub-solutions. Our framework provides structural templates for
all kinds of workflow constructs.

VI. CONCLUSION

Nowadays, the hunger for designing loosely-coupled dis-
tributed applications requires service collaboration across or-
ganization boundaries. These applications are based on the
composition of a set of independent software modules that are
spread over computer networks. Service-Oriented Architecture
brings us standards-based, robust and interoperable solutions.
The most common way to build composite applications is to
use WS-BPEL.

In this document we have introduced an unconventional
approach: using chemical computing model to perform the
orchestration of a large number of services for applications
that require self-adaptation and fault-tolerance. A framework is
proposed to define workflow and express service orchestration
using chemical concepts. In this framework, services are
represented by solutions and the orchestration is performed
by a set of rules. We have shown that most of WS-BPEL
constructs can be expressed using HOCL. As a proof of
concept, a prototype is developed in HOCL. A composite
service is created by coordinating the invocations to three pre-
defined partner services and finally the expecting results are
obtained.

Compare to the other traditional methods, our approach
has following superiorities: first and foremost, it is highly
dynamic. A service definition can be modified without stop-
ping the execution of workflow; furthermore, it gets its se-
mantic from chemical metaphor, which enables us to reason
a process behavior; thirdly, the implementation of multi-set
can be distributed that makes the application more scalable
and reliable; finally, by using our chemical framework, an
ongoing research for a GUI based code generator will make
users feel free to deal with complex and error-prone XML-
based grammar. All these advantages make us believe that
chemical programming is a competitive solution for service
orchestration programming.

This chemical framework can be improved in many aspects.
Currently, the container solution is implemented in an HOCL
program. All the services are represented by the sub-solutions
in the container. This highly centralized implementation is
opposed to our intention. We are going to distribute the
implementation of the chemical framework. Each HOCL
program creates a multi-set representing a service solution.
These HOCL programs implement the container solution in a

distributed way. Furthermore, in this prototype, all the services
are developed in HOCL. However, in reality, a service can
be written in various programming languages. In the next
step, we are going to establish the interaction between our
chemical framework with the real Web services. At that
moment, each service solution acts as a representative of a real
service (concrete service) in the chemical level. The chemical
framework works like a middleware which is designed for
service adaptation.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Communitys Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement 215483 (S-
CUBE).

REFERENCES

[1] Y. Vasiliev, SOA and WS-BPEL: Composing Service-Oriented Solutions
with PHP and ActiveBPEL. Packt Publishing, September 2007.

[2] F. Daniel and B. Pernici, “Insights into web service orchestration
and choreography,” INTERNATIONAL JOURNAL OF E BUSINESS
RESEARCH, vol. 2, no. 1, pp. 58–77, 2006.

[3] G. Alonso et al., Web Services - Concepts, Architectures and Applica-
tions. Springer Verlag, 2004.

[4] Web Services Business Process Execution Language, OASIS Standard,
April 2007.

[5] R. Lucchia and M. Mazzara, “A pi-calculus based semantics for ws-
bpel,” Journal of Logic and Algebraic Programming, pp. 96–118,
January 2007.

[6] J. P. Banâtre, P. Fradet, and Y.Radenac, “Principles of chemical program-
ming,” Electronic Notes in Theoretical Computer Science, vol. 124, pp.
133–147, March 2005.

[7] J.-P. Banâtre, P. Fradet, and Y. Radenac, “The chemical reaction model
recent developments and prospects,” Software-Intensive Systems and
New Computing Paradigms: Challenges and Visions, pp. 209 – 234,
2008.

[8] J.-P. Banâtre and D. Le Métayer, “Programming by multiset transfor-
mation,” Commun. ACM, vol. 36, no. 1, pp. 36 98–111, 1993.

[9] J.-P. Banâtre, P. Frade, and D. L. Métayer, “Gamma and the chemical
reaction model: Fifteen years after,” Multiset processing, pp. 17–44,
2001.

[10] J. P. Banâtre, P. Fradet, and Y.Radenac, “Generalized multisets for
chemical programming,” Mathematical Structures in Computer Science,
vol. 16, pp. 557 – 580, August 2006.

[11] C. Wang and T. Priol, HOCL Programming Guide, INRIA Rennes,
September 2009.

[12] M. Mazzara and S. Govoni, A Case Study of Web Services Orchestration.
Springer Berlin / Heidelberg, May 2005, vol. 3454/2005.

[13] D. Sangiorgi and D. Walker, “The pi-calculus: a theory of mobile
processes,” Cambridge University Press, 2001.

[14] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring
and service adaptation for ws-bpel,” International World Wide Web
Conference, Proceeding of the 17th international conference on World
Wide Web, pp. 815–824, 2008.

[15] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and friends,” Computer,
vol. 19, pp. 26–34, August 1986.

[16] M. Fontoura, T. Lehman, D. Nelson, and T. Truong, “Tspaces services
suite: Automating the development and management of web services,”
In Proceedings of the 12th International World Wide Web Conference,
2003.

[17] B. Umesh and B. Siddharth, “xspace: a tuple space for xml & its
application in orchestration of web services,” SAC ’06: Proceedings of
the 2006 ACM symposium on Applied computing, pp. 766–772, 2006.

[18] J.-P. Banâtre, T. Priol, and Y. Radenac, “Service orchestration using
the chemical metaphor,” Software Technologies for Embedded and
Ubiquitous Systems, vol. 5287, pp. 79–89, September 2008.

[19] Z. Nemeth, C. Perez, and T. Priol, “Workflow enactment based on a
chemical metaphor,” Software Engineering and Formal Methods, pp.
127– 136, September 2005.

151115111511

