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Abstract

This article focuses on the essence and distinctive features

of the AADL behavioral aspects, for which we use the code

generation infrastructure of the synchronous modeling environ-

ment SME. It introduces an effective method for transforming a

behavior specification consisting of transitions and actions into

a set of synchronous equations. We present an approach for this

transformation using SSA as an intermediate formalism. This

interpretation minimizes introducing new state variables and

transitions.

1 Introduction

Nowadays, embedded systems are an integral part of

safety critical systems in various domains, such as avionics,

automotive and telecommunications. Typically, they have

a long life cycle of development and maintenance. In this

process, architecture design and early analysis of embed-

ded systems are two of the major challenges for designers

using modeling languages such as AADL [1] (Architecture

Analysis and Design Language) to describe the systems.

AADL is a language which supports the modeling of

component-based systems as an assembly of software com-

ponents mapped onto execution platforms. The modeling

aspect of system design activity is becoming increasingly

essential, since it allows prototyping and experiments with-

out necessarily having a physical implementation of the sys-

tem. The Behavior Annex is proposed as an extension of

AADL to offer a way to specify the behaviors of compo-

nents. AADL allows a fast design entry and software/ hard-

ware co-design. However, system validation and verifica-

tion is a critical challenge. What we are seeking for is to

use formal methods to ensure the quality of system designs.

Synchronous languages [4], such as Signal [2, 3], have

been used successfully for the design of real-time critical

applications to significantly ease the modeling and valida-

tion of software components. Their associated toolsets pro-

vide formal transformation, automatic code generation, ver-

ification, etc.

Signal is a dataflow relational language that relies on the

polychronous model [3]. Signal handles unbounded series

of typed values ❼xt➁t❃N, called signals, denoted as x and

implicitly indexed by the discrete pace of its clock, noted

x̂. At a given instant, a signal may be present or absent.

Two signals are synchronous if they are always present (or

absent) at the same instants.
In Signal, a process (written P or Q) consists of the syn-

chronous composition (noted P ❙❙Q) of equations (written
x ✂� y f z) over signals. An equation x ✂� y f z defines the
output signal x by the result of the application of operator
f to its input signals y and z. In addition to the extension to
signals of usual functions on values (e.g., boolean or arith-
metic operations), the specific basic Signal equations are
the delay x ✂� y$1 init v, the sampling x ✂� y when z, and
the merging x ✂� y default z. The reader is referred to [3]
for definitions. The process P ⑦x restricts the lexical scope
of the signal x to the process P . The abstract syntax of a
process P in Signal is defined as:

P,Q ✂✂� x ✂� y f z ❙ P ❙❙Q ❙ P ⑦x
Relying on these bases, we propose an approach to au-

tomatically interpret AADL Behavior Annex into the syn-

chronous formalism Signal. We are concerned with a

method to embed notations of the AADL Behavior Annex

in a suitable model of computation for the purpose of formal

verification and code generation. To model and compile all

distinctive programming features of AADL behaviors, tran-

sitions and actions, we use the code generation infrastruc-

ture of the synchronous modeling environment SME [5].

The SME environment is a front-end of Polychrony [7]

(which is a toolset for Signal) in the Eclipse environment

based on Model-Driven Engineering (MDE) technologies.

The model transformation specified here relies on an in-

ductive SSA (static single assignment) [6] transformation

algorithm across transitions/actions, that produces interme-

diate representation. A program is said to be in SSA form

whenever each variable in the program appears only once

on the left hand side of an assignment. Only one new value

of a variable x should at most be defined within an in-

stant. The SSA form of a program replaces assignments

of a program variable x with assignments to new versions

of x, uniquely indexing each assignment. The φ opera-

tor is needed to choose the value depending on the pro-

gram control-flow, where a variable can be assigned in both

branches of a conditional statement or in the body of a loop.

As SSA is an intermediate representation, the introduction



of the φ-function will not consume execution cost. The

compilation will optimize the final execution code. It intro-

duces an effective method for transforming behavior spec-

ifications consisting of transitions and actions into a set of

synchronous equations. This transformation minimizes the

needed state variables and component synchronization.

In this paper, we show how to not only translate the core

imperative programming features into equations, but also

extend it to the mode automata that control the activation

of such elementary transitions and actions. We give an

overview of AADL and Behavior Annex in Section 2.

The principles of the interpretation from AADL Behavior

Annex to Signal are described in Section 3. Experimental

results are provided by a case study. Some related works

and conclusions are given in Section 4 and Section 5.

2 AADL and Behavior Annex

AADL is an SAE standard aimed at high level design

and evaluation of the architecture of embedded systems.

The language employs formal modeling concepts for the de-

scription of software and hardware architecture. It focuses

on the description of systems using the component-based

paradigm. A set of predefined components are offered:

❨ Application software components include process,

thread, thread group, subprogram, and data components.

❨ Execution platform components model the hardware

part of the system. This includes the processor, memory,

device, and bus components.

❨ Composite components model components consisting

of both hardware and software. A system component mod-

els a component containing execution platform, application

software and other composite components.

The AADL Behavior Annex [8] is an extension of the

core of the standard to offer a way to specify the local func-

tional behavior of the components. It supports describing

precisely the behaviors, such as port communication, com-

putation, timing, etc. A Behavior Annex can be attached to

a thread or a subprogram: threads or subprograms start from

an initial state, and a transition to a complete (resp. return)

state ends a thread (resp. subprogram). Transitions may be

guarded by conditions, and actions may be attached.

Figure 1 is a behavior specification of a door handler

thread from a SDSCS (Simplified Doors and Slides Con-

trol System) [9]. It comprises two transitions with an initial

state s0 which is also a complete state. The thread will exe-

cute the transitions depending on the guarded conditions.

We will formalize the semantics of AADL behavior

annex by isolating the core syntactic categories that charac-

terize its expressive capability: transitions and actions.
Behavior specifications The behavior specification

defines a transition system. A behavior specification

behavior spec x A describes system transitions from a

source state s to a destination state t. A transition can be

guarded with events or boolean conditions, and actions S

Figure 1. Behavior Annex example

can be attached. When a behavior spec is first triggered, it

starts execution from an initial state, specified as s : initial

state, and ends with a complete (return for subprogram)

state, specified as t : complete state (return state). From

state si, it may perform a transition A to a new state sj ,

written si

�g✆
� sj➌S➑, if the guard g is true.

behavior spec x A where A ✂✂� si

�g✆
� sj➌S➑ ❙ A1❨A2

and g ✂✂� �on exp✆ �e✆ �when exp✆ ❙ exp,

and s ✂✂� ❼initial ❙ complete ❙ return➁ state

❨ The guard g can either be an expression exp or contain

an optional event or event data receipt e and an optional

boolean condition ([on exp] [when exp]).

❨ The condition may depend on the received data, and it

can be split in two parts: the on part expresses conditions

over the current state, and the when part expresses a condi-

tion over the data to be read.

❨ An event e can be a receipt from an event port (p?), or

from an event data port (p?❼x➁) where x is a state variable

or a data subcomponent.
Actions Actions are sequences of operations on variables
that are performed during the execution of transitions.

(action) S ✂✂� x ✂� f❼y, z➁ ❙ p? ❙ p?❼x➁ ❙ p! ❙ p!❼x➁
❙ if x then S1 else S2 ❙ for ❼x in X➁ S

❙ delay❼min, max➁ ❙ computation❼min, max➁ ❙ S1;S2

❨ An assignment x ✂� f❼y, z➁ defines the value of x from

the function f of the current values of y and z.

❨ The conditional if x then S1 else S2 executes S1 if

the current value of x is true, otherwise executes S2.

❨ The finite loop for ❼x in X➁ S allows iterations over

finite integer ranges or over unparameterized types, which

are specified by a data classifier.

❨ The timing actions delay❼min, max➁ and

computation❼min, max➁ specify non-deterministic

waiting time and computation time intervals. The differ-

ence is that computation❼min, max➁ consumes CPU,

while delay❼min, max➁ does not.



❨ The message sending or receiving actions express the

communication of messages. A statement p! calls the send

service on an event or event data port p. The event is im-

mediately sent to the destination with the stored data if any.

p!❼x➁ writes data x to the event data port p and calls the send

service. p? dequeues an event from event port p. p?❼x➁ de-

queues a data in the variable x.

❨ Sequences of actions S1;S2 are executed in order.

3 Interpretation and semantics of AADL Be-

havior Annex

In this section, we will present general rules to interprete

the AADL Behavior Annex into Signal. This interpretation

uses SSA as an intermediate formalism. The transitions and

actions are transformed into a set of synchronous equations.
In order to distinguish between the transitions of differ-

ent interpretation stage, we use S ❃ S to represent the gen-
eral action in the original transition T ❃ T , B ❃ B to repre-
sent the basic actions attached to the intermediate transition
U ❃ U , and A ❃ A to represent the SSA form actions at-
tached to the SSA form transition W ❃ W . We introduce a
notation def❼A➁ ✂� x referring the left hand side of an as-
signment A (x ✂� f❼y, z➁), and use❼A➁ ✂� f❼y, z➁ referring
the right hand side.

B ❄ B ✂✂� x ✂� f❼y, z➁ ❙ p? ❙ p?❼x➁ ❙ p! ❙ p!❼x➁ ❙ B1;B2

S ❄ S ✂✂� B ❙ if x then S1 else S2 ❙ for ❼x in X➁ S

❙ delay❼min, max➁❙ computation❼min, max➁❙ S1;S2

A ❄ A ✂✂� x ✂� f❼y, z➁ ❙ A1;A2

where ➛x ❃ def❼A➁, x occurs at most once in A

T ❄ T ✂✂� s
c
� t➌S➑ ❙ T1 Õ T2

U ❄ U ✂✂� s
c
� t➌B➑ ❙ U1 Õ U2

W ❄ W ✂✂� s
c
� t➌A➑ ❙ W1 ÕW2

Because actions are attached to transitions, we must take
into consideration the states which they depart from and
enter in, when interpreting the actions. We use ■❼T ➁ to
note the interpretation of a transition T to Signal process.
The transformation ■❼T ➁ of the AADL transitions/actions
to Signal is addressed in three steps:

■❼T ➁ ✂ T
■T

Ð� U
■U

Ð� W
■W

Ð� P

❨ Step 1: T
■T

Ð� U . Each transition T ❃ T with

attached sequence of general actions S ❃ S , is decomposed

into sets of basic transitions U ❃ U , in which all the actions

are basic actions B ❃ B.

❨ Step 2: U
■U

Ð� W . For each intermediate transi-

tion U ❃ U , the basic actions B ❃ B are depicted in SSA

form A ❃ A . Each use of an original variable x is replaced

by a new version, so that the actions can be executed in the

same instant.

❨ Step 3: W
■W

Ð� P . Translate the SSA form actions

A ❃ A to Signal equations.

The interpretation of transitions T1 Õ T2 can be parallel:

■❼T1 Õ T2➁ � ■❼T1➁ Õ ■❼T2➁
■❼T ➁ � ■W ❼W ➁ where W � ■U❼U➁, and U � ■T ❼T ➁
Each step of the interpretation ■T ,■U ,■W will be ex-

plained in detail in the following subsections.

3.1 Actions to basic actions

A transition from a source state s when condition c is
satisfied, to a destination state t, with attached general ac-

tion S, noted as s
c
� t➌S➑, can be decomposed into a set

of intermediate transitions U ❃ U , in which the actions in
each new transition are basic actions B ❃ B.

s
c
� t➌S➑ ■T

Ð� U

where U � si

ci

� sj➌Bi➑ ❙ U1 Õ U2, and Bi ❃ B

We use ■T ❼T ➁ to represent this interpretation from a
general transition T ❃ T to basic transition U ❃ U . The
interpretation of the transitions can be parallel.

■T ❼T1 Õ T2➁ � ■T ❼T1➁ Õ ■T ❼T2➁
We also use the notation ■TS to note this transformation,

the action S is decomposed into B;S➐, where B is the basic
actions from the beginning of S, and S➐ is the rest.

■T ❼s c
� t➌S➑➁ � ■TS❼s, c, t, S➐

,B➁ � U

where S � B;S
➐
, and B ❃ B, and U ❃ U

❨ At the very beginning of the interpretation, there is no
basic action before S.

■T ❼s c
� t➌S➑➁ � ■TS❼s, c, t, S, φ➁

❨ Suppose S➐ � S1;S2 where S1 is the first action of
S➐. If action S1 is a basic action S1 ❃ B, then it can be
merged to the previous basic action set B. Otherwise, if
B is empty, decompose S1 and S2 respectively, and apply
the defined rules for each one. If B is not empty, introduce a
new transition for action B, and decompose S1, S2 similarly
to the previous case.

■TS❼s, c, t, S1;S2,B➁ �

➣➝➝➝➛➝➝➝↕
■TS❼s, c, t, S2,B;S1➁ if S1 ❃ B❼ U1 Õ U2➁ if S1 ➯ B and B � φ

❼s c
� s1➌B➑ Õ U3 Õ U4➁ if S1 ➯ B and B ① φ

where

➣➝➝➝➝➝➛➝➝➝➝➝↕

❼U1, s1➁ � ■ ➐

T ❼S1, c, s➁
U2 � ■TS❼s1, true, t, S2, φ➁❼U3, s2➁ � ■ ➐

T ❼S1, true, s1➁
U4 � ■TS❼s2, true, t, S2, φ➁

The transformation for the composite action S ❃ S and

S ➯ B, noted as ■ ➐

T ❼S, c, s➁ � ❼U, t➁ (where s
c
� t➌S➑ is the

original transition with composite action S, U is the result-
ing basic transition), will be represented in the following
subsections.
■

➐

T ❼S, c, s➁ � ❼U, t➁ where S ❃ S , and S ➯ B, and U ❃ U

❨ If there is no action following S in the interpretation,
which means that the action S is already a basic action S ❃

B, then the resulting transition is the same as the original
one.

■TS❼s, c, t, φ, S➁ � ❼s c
� t➌S➑➁

Next, we will interpret each of the composite actions S,

(S ❃ S and S ➯ B). We write ■
➐

T ❼S, c, s➁ � ❼U, t➁ for

the action S from source state s, with guard c. It returns

an intermediate transition U (the actions in U are the basic

actions), and an exit state t.



3.1.1 Condition
A conditional evaluates S1 with the condition x to U1 and
S2 with condition not x to U2.

■
➐

T ❼if x then S1 else S2, c, s➁ �
➆➊➊➊➊➈

➆➊➊➊➊➈

s
c and x
Ð� s1

Õ s
c and not x
Ð� s2

Õ U1

Õ U2

➇➋➋➋➋➉
, u

➇➋➋➋➋➉
where ■TS❼s1, true, u, S1, φ➁ � U1, ■TS❼s2, true, u, S2, φ➁ � U2

3.1.2 Loop
A loop statement for ❼x in X➁ ➌S➑ allows iterations over

finite integer ranges or over unparameterized enumerated

types, which are specified by a data classifier.

Integer range For an integer range, i in M..N , which
means that M and N are two integers and M ❅ N , the loop
statement can be refined as:

■
➐

T ❼for ❼i in M..N➁ ➌S➑, c, s➁ �

➆➊➊➊➊➊➊➊➈

➆➊➊➊➊➊➊➊➈

s
c
� t➌i ✂� M➑

Õ U

Õ u� v➌i ✂� i ✔ 1➑
Õ v

i❇N
Ð� t

Õ v
i❆N
Ð� w

➇➋➋➋➋➋➋➋➉
,w

➇➋➋➋➋➋➋➋➉
, where ■TS❼t, true, u, S, φ➁ � U

Enumeration range For an iteration over unparameter-
ized enumeration, x in X , in which X is a data classifier of
enumerated type X � ➌x1, x2, ..., xn➑, the loop statement
can be translated as:

■
➐

T ❼for ❼x in X➁ ➌S➑, c, s➁ �

➆➊➊➊➊➊➊➊➈

➆➊➊➊➊➊➊➊➈

s
c
� t➌i ✂� 1;x ✂� x1➑

Õ U

Õ u� v➌i ✂� i ✔ 1;x ✂� xi➑
Õ v

i❇n
Ð� t

Õ v
i❆n
Ð� w

➇➋➋➋➋➋➋➋➉
, w

➇➋➋➋➋➋➋➋➉
where X � ➌x1, x2, ..., xn➑, ❙X ❙ � n, and ■TS❼t, true, u, S, φ➁ � U

3.1.3 Computation(m,n)
Computation(m,n) expresses the use of CPU for a pos-
sibly non-deterministic period of time between m and n.
For this non-deterministic choice, we introduce a function
random❼m,n➁ to choose a random period r (m ❅ r ❇ n)
while translating. In each iteration of i, a synchronization
with a physical tick ms? is performed.

■
➐

T ❼computation ❼m,n➁, c, s➁ �

➆➊➊➈
➆➊➊➈

s
c
� t ✂ ➌i ✂� 1➑

Õ t
i❅r
Ð� t ✂ ➌ms?; i ✂� i ✔ 1➑

Õ t
i�r
Ð� u

➇➋➋➉ , u

➇➋➋➉
where r � random❼m,n➁,
and ms? synchronizes with the physical tick

3.1.4 Delay(m,n)
The difference between delay and computation is that

computation consumes CPU, while delay does not, which

means that, when a thread delays some time interval, other

threads can execute during this time.

The interpretation of delay is more complicated, for it
will request for rescheduling. We can represent the delay
using a finite loop if its period can be determined by a ran-
dom choice:

■
➐

T ❼delay ❼m,n➁, c, s➁ � ■ ➐

T ❼❼for i in 1..r➁➌ms?➑, c, s➁ � ❼U, t➁
where r � random❼m,n➁,
and ms? synchronizes with the physical tick

3.2 Basic actions to SSA form actions

Only one new value of a variable x should at most be

defined within an instant in SSA form. An operation x ✂�

f❼y, z➁ takes the current value of y and z to define the new

value of x by the product with f . A statement p!❼x➁ sends

the value x to p. Execution may continue within the same

symbolic instant unless a second emission is performed. A

statement p?❼x➁ waits a signal from p.
We use the notation ■U to note the intermediate transi-

tion U ❃ U (with actions B ❃ B) to be represented in SSA
form W ❃ W (with actions A ❃ A ).

s
c
� t➌B➑ ■U

Ð� W where

➣➝➝➝➛➝➝➝↕
B ❃ B

W ❄ W � si

ci

� sj➌Ai➑ ❙ W1 ÕW2

Ai ❃ A

We use an environment E to associate each variable with
its definition, an expression that locates it, E ✂ X �X . The
environment of x is noted E❼x➁, and the domain of E is
noted ❱❼E➁. The restriction of a variable x to environment
E is noted E⑦x, which satisfies:

φ⑦x � φ

❼E✬➌y ✭ z➑➁⑦x � ➐ E if y � x❼E⑦x➁✫➌y ✭ z➑ if y ① x

We write useE❼x➁ for the expression that returns the def-
inition of the variable x in environment E, and defE❼x➁
for the environment E storing variable x with its associated
definition.

useE❼x➁ � ➐ E❼x➁ if x ❃ ❱❼E➁
x otherwise

defE❼x➁ � ❼E⑦x➁✬➌x✭ x
➐➑ where x

➐
➯ ❱❼E➁

We depict sequence of basic actions B � B1;B2 attached
to an intermediate transition U defined in environment E to
a set of new SSA form transitions W with an updated envi-
ronment F , in which all the new actions A are in SSA form,
and can be executed in the same instant. We use ■U❼U➁
to note this interpretation from an intermediate transition to
SSA form transition W ❃ W , and we introduce another no-
tation ■ ➐

U to define the transformation rules:

■U❼s c
� t➌B➑➁ � W where ➐ ■

➐

U❼B1,B2, s,E➁ � ❼W, t,F ➁
B � B1;B2

The following transformations can be defined:
❨ For a single assignment basic action x ✂� f❼y, z➁ in a

transition with environment E, the new transition will take
its SSA form assignment: the final version of variable x
and the definition of y and z defined in E are used, the new
environment F only stores the final value of x defined in E.



■
➐

U❼x ✂� f❼y, z➁, φ, s,E➁ � ❼s� t➌a ✂� f❼b, c➁➑, t, F ➁
where a � F ❼x➁, b � useE❼y➁, c � useE❼z➁, F � defE❼x➁
❨ p?❼x➁ transfers a data received from port p to the vari-

able x. If no other action is placed before or after it, convert
it to SSA form action attached to the transition. The envi-
ronment is updated as defE❼x➁.

■
➐

U❼p?❼x➁, φ, s,E➁ � ❼s� t➌F ❼x➁ ✂� p➑, t, F ➁
where F � defE❼x➁

❨ p!❼x➁ writes data x to event or event data port p, and
calls the Send service. A new unique version p➐ of p (➌p ✭
p➐➑) is added to update the original environment E.

■
➐

U❼p!❼x➁, φ, s,E➁ � ❼s� t➌p➐ ✂� useE❼x➁➑, t, F ➁
where F � E✬➌p✭ p

➐➑, and p
➐
➯ ❱❼E➁

In the same way, we have the following transformations:
❨ An assignment can be rewritten in SSA form, and

merged to the previous basic action set B1.
■
➐

U❼B1, ❼x ✂� f❼y, z➁;B2➁, s,E➁

� ■
➐

U ❼❼B1;a ✂� f❼b, c➁➁,B2, s, F ➁ where

➣➝➝➝➝➝➛➝➝➝➝➝↕

a � F ❼x➁
b � useE❼y➁
c � useE❼z➁
F � defE❼x➁

❨ The receive message action is represented in SSA form,
and merged to the previous B1.

■
➐

U❼B1, ❼p?❼x➁;B2➁, s,E➁
� ■

➐

U❼❼B1;F ❼x➁ ✂� p➁,B2, s, F ➁ where F � defE❼x➁
❨ The send message action can be merged if p has not

been defined in E, and ➌p ✭ p➑ is added to update E. Oth-
erwise, create a transition attached with the actions B1 and
the final values of all variables x defined in E. And apply
the transformation rules for the rest of the actions with an
environment ➌p✭ p➑.
■
➐

U❼B1, ❼p!❼x➁;B2➁, s,E➁ �

➐ ■
➐

U❼B➐

1,B2, s,E✫➌p✭ p➑➁ if p ➯ ❱❼E➁❼s� t➌B1;B
➐➑➁ ÕW otherwise

where

➣➝➝➝➝➝➛➝➝➝➝➝↕

B➐

1 � B1;p ✂� useE❼x➁
B➐

�▲➛x❃❱❼E➁ x ✂� defE❼x➁;
where ▲ is the composition of final value of x

■
➐

U❼p!❼x➁,B2, t,➌p✭ p➑➁ � ❼W,u,F ➁
3.3 SSA to Signal

Finally, all the transitions/actions can be represented in
the following form:

W ❄ W ✂✂� s
c
� t➌A➑ ❙ W1 ÕW2

where ➛x ❃ def❼A➁, x occurs at most once in A

A ❄ A ✂✂� x ✂� f❼y, z➁ ❙ A1;A2

The interpretation ■A❼A➁g
E � ❼P,F ➁ of an SSA form ac-

tion A takes as parameters the environment E and the guard
g that leads to it. It returns a process P , and an updated en-
vironment F .
■A❼x ✂� f❼y, z➁➁g

E � ❼x � f❼a when g, b when g➁, F ➁
where

➣➝➝➝➛➝➝➝↕
a � y if y ❃ E, else y$1

b � z if z ❃ E, else z$1

F � E ✽ ➌x➑
■A❼A1;A2➁g

E � ❼P ❙Q,G➁ where ➐ ■A❼A1➁g

E � ❼P,F ➁
■A❼A2➁g

F � ❼Q,G➁

We use the notation ■W ❼W ➁st to represent the interpre-
tation from the SSA form transition W ❃ W to Signal pro-
cess. A local signal st is introduced to represent the state
variable, and nst represents the next state.

■W ❼W1 ÕW2➁st
� ■W ❼W1➁st ❙ ■W ❼W2➁st

■W ❼s c
� t➌A➑➁st

� ❼P ❙ nst � t when g➁
where ➐ ❼P,E➁ � ■A❼A➁g

φ

g � c when ❼st � s➁
Following the three steps’ interpretation, the behavior

specification behavior spec x X , can now be represented
as behavior spec x ❼W Õ initial state s0➁, (W ❃ W ). The
interpretation for the behavior specification can be written
as:

■❼behavior spec x ❼T Õ initial state s0➁➁
� ■W ❼behavior spec x ❼W Õ initial state s0➁➁

where W � ■U❼U➁, and U � ■T ❼T ➁
■W ❼behavior spec x ❼W Õ initial state s0➁➁
� ❼P ❙ st � nst $ init s0➁ ⑦ st, nst, where P � ■W ❼W ➁st

3.4 A Case study

The intermediate generated code of the basic transi-

tions/actions (step T
■T

Ð� U ) for the door handler

thread (previously presented in Figure 1) is depicted in Fig-

ure 2. It contains a transformation of the transitions as

well as their attached actions. The interpretation introduces

two intermediate states: STATE 0, STATE 1. The first three

transitions rewrite the first original one. A transition is in-

troduced for each branch of the condition action.

Figure 2. Intermediate Behavior code

In this example, the SSA form of transitions is the same
as depicted in Figure 2, since all the variables are already
uniquely defined in each of the transitions. Each transition
will then be interpreted to Signal equations. The gener-
ated code for the first SSA form transition is listed here,
the guard and state variables (st, nst) are added.



❙ warn diff pres ✂� true when ❼st � s0➁
when (❼dps ❆ 3➁ and handle)

❙ door info ✂� locked when ❼st � s0➁ when (❼dps ❆ 3➁and handle)

❙ nst ✂� STATE 0 when ❼st � s0➁ when (❼dps ❆ 3➁ and handle)

❙ st ✂� nst $ 1 init s0

The program is translated into Signal following the gen-

eral rules described above. Then simulation code (C code)

is generated with the help of the Polychrony toolset. Traces

can be added to be able to follow the simulation. Properties

can be checked using Sigali which is a Signal companion

model-checker. Similar experiments have been described

in [10] for Signal code obtained through SSA from C/C++

parallel programs.

4 Related Works

A few approaches for defining the semantics or for inter-

preting the behavior annex of AADL have been proposed.

AADL2BIP [11] studies a general methodology for trans-

lating AADL and behavior annex specification into BIP. It

supposes the actual behaviors are described using the im-

plementation language, so the actions are not considered,

while the translation of the transitions is shown roughly. In

our transformation, the transitions and actions are both pre-

sented. [12] proposes a formal semantics for a subset of

AADL behavior annex using Timed Abstract State Machine

(TASM). It defines the synchronization actions (remote sub-

program call) which have not been considered in our ap-

proach, however, it does not present how the basic actions

are translated. In AADL2Fiacre [13], the transformations

from AADL and behavior annex to Fiacre are illustrated on

a small example, but the semantics are not formally defined.

Our approach and tools are based on the studies and ex-

perimental results on the translation of C/C++ parallel codes

into synchronous formalism using SSA transformation [10].

In the ANR project SPACIFY, [14] proposes an approach

to model notations of the Synoptic language and to embed

them in a suitable model of computation for the purpose of

formal verification and code generation. It consists of an

inductive SSA transformation algorithm across a hierarchy

of blocks that produces synchronous equations.

5 Conclusion

We have presented in this paper the principle and imple-

mentation that interpret AADL behavior annex into a syn-

chronous data-flow and multi-clocked model of computa-

tion. This interpretation is based on the use of SSA as an

intermediate format. It gives a thorough description of an

inductive SSA transformation algorithm across a hierarchy

of transitions that produce synchronous equations.

Our technique uses the underlying model of computa-

tion of the SME platform. We obtain an effective method

for transforming a hierarchy of behavior specifications con-

sisting of transitions and actions into a set of synchronous

equations. The impact of this transformation technique has

a big advantage: it minimizes the number of state variables

across hierarchical automata and hence creates a minimal

number of transitions in the generated code.

For future works, we intend to implement an automatic

transformation. Since the intermediate SSA form is very

simple, the implementation can focus on optimizations and

performances. One extension is to model the scheduling

policy as well as a rescheduling algorithm when a system

service is requested. Furthermore, an extension to compos-

ite state specified in Behavior Annex jointly with the actions

would be interesting. Another extension study is the valida-

tion of message communication optimization.

References

[1] SAE. Architecture Analysis & Design Language (stan-

dard SAE AS5506), September 2004, http://www.sae.org
[2] P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire. Pro-

gramming Real-Time Applications with SIGNAL, Pro-

ceedings of the IEEE 79(9), Sep 1991
[3] P. Le Guernic, J.-P. Talpin, J.-C. Le Lann. Polychrony for

System Design, Journal for Circuits, Systems and Comput-

ers, April 2003
[4] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P.

Le Guernic, R. De Simone, The Synchronous Languages

Twelve Years Later, Proceedings of the IEEE, 2003
[5] C. Brunette, J.-P. Talpin, A. Gamatié, T. Gautier. A meta-
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