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Abstract—Principal component analysis (PCA) is not only a
fundamental dimension reduction method, but is also a widely
used network anomaly detection technique. Traditionally, PCA
is performed in a centralized manner, which has poor scalability
for large distributed systems, on account of the large network
bandwidth cost required to gather the distributed state at a fusion
center. Consequently, several recent works have proposed various
distributed PCA algorithms aiming to reduce the communication
overhead incurred by PCA without losing its inferential power.
This paper evaluates the tradeoff between communication cost
and solution quality of two distributed PCA algorithms on a
real domain name system (DNS) query dataset from a large
network. We also apply the distributed PCA algorithm in the
area of network anomaly detection and demonstrate that the
detection accuracy of both distributed PCA-based methods has
little degradation in quality, yet achieves significant savings in
communication bandwidth.

Index Terms—Principal component analysis; Distributed PCA;
Data partitioning; Network anomaly detection.

I. INTRODUCTION

Statistical network anomalies are generally defined as net-
work behaviors that deviate in a statistically significantly man-
ner from normal network operation. They may be caused by
malfunctioning network equipment, malicious network attacks,
etc. Timely detection of network anomalies is important to
minimize the damage of a network attack or misconfiguration.
Statistical network anomaly detection (SNAD) detects and
identifies statistical network anomalies, i.e., statistically signif-
icant deviations. Unlike a signature-based intrusion detection
system, which relies on using a library of known attack
signatures to detect anomalies, the advantage of SNAD is its
ability to automatically detect statistically significant patterns
without requiring manual compilation of signatures.

Nowadays, many network attacks are related to or involved
with domain name systems (DNS), such as DNS amplifi-
cation attacks, DNS tunneling, cache poisoning, etc. DNS
holds the critical responsibility to translate domain names into
corresponding IP addresses, enabling users to access network
resources conveniently. DNS is vulnerable to many network
attacks, and it can be utilized as a part of malicious attack
because of its mechanism and protocol. This paper applies
SNAD techniques on a large dataset aggregated from real DNS
traffic data of a large network.

This research has been supported by the National Science Foundation under
award #CNS-1228847.

Among various NAD techniques, the principal component
analysis (PCA) method has been used extensively in detecting
statistical network traffic anomalies [1], [2], [3]. However, the
classic PCA subspace method is centralized, which means it
requires all of the data to be either i) already available at a
single machine, or if this not the case, ii) sent over the network
to a central data fusion center (DFC) for anomaly detection.
For large distributed networked systems with relevant data
collected or stored at different local sites across the network,
the network bandwidth costs incurred in gathering all the
distributed data at the DFC may be prohibitively costly.
This network bandwidth cost will naturally increase in both
the number of records gathered and the number of features
contained in each record. Facing the challenge of leveraging
the power of PCA for NAD for large data sets distributed
over large networks, it is of interest to develop distributed
algorithms that retain the inferential power of centralized PCA
while reducing the network bandwidth costs.

There are two scenarios in anomaly detection for modern
large-scale networks. The first scenario is monitoring data with
a small set of features but a massive number of entries too
large to be stored on a single disk, which instead must be
partitioned across multiple local disks. In this case, the set of
local datasets are homogeneous in the sense that they all have
the same features. We will call this scenario the horizontal
partitioning case. The second scenario is monitoring data with
a large number of features which are collected by multiple
local monitors distributed across the network. Each monitor
collects a distinct subset of features for a given record. It is
often infeasible to colocate all of the features in a single disk.
Such local datasets are heterogeneous in the sense that they
have different set of features on each local disk. We will call
this scenario the vertical partitioning case. In both scenarios,
because large volume, high-dimensional data cannot be easily
colocated, we must use local compression to preprocess the
data and then send the compressed data to the DFC for global
approximate analysis.

Previously, Kargupta et al. proposed a distributed PCA algo-
rithm and its application in K-means clustering on vertically
partitioned data [4]. Guo et al. came up with a covariance-
free iterative distributed PCA algorithm based on gradient
descent in [5]. Qi et al. gave an overview of distributed PCA
of both vertically and horizontally partitioned data in [6]. For
the horizontal partitioning case, Balcan et al. proposed a more
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communication-efficient disPCA algorithm and also derived
an analytical error upper bound of disPCA compared with
centralized PCA [7].

In this work, we use the large DNS dataset mentioned above
to evaluate and compare two of the above distributed PCA
algorithms: the horizontal partitioning method in [7] and the
vertical partitioning method in [4]. The two key figures of
merit in this paper are i) the quality of the approximation to
centralized PCA, measured as the geodesic distance between
the subspace spanned by the centralized data matrix and the
subspace spanned by the approximate data matrix gathered by
the distributed algorithm, and ii) the network bandwidth cost
required by the distributed algorithm. For both algorithms, the
two key design parameters are i) the number of local parti-
tions of the overall dataset, and ii) the level of compression
used at each local site, captured by the number of principal
components sent by the site to the DFC. In addition, we also
compare the two distributed PCA algorithms in terms of their
ability to detect statistical anomalies using the approximate
data matrix gathered at the DFC.

Our key observations and findings include the following.
First, vertical partitioning requires more communication band-
width than horizontal partitioning, but it can achieve higher
accuracy when the number of local principal components
transmitted to the DFC is relatively small. Second, to reach
a target approximation accuracy, the required communica-
tion cost increases with the number of local sites, and the
required number of local principal components sent to the
DFC decreases, with a particularly rapid decrease for the
vertical partitioning case. Third, sending more local principal
components can achieve higher approximation accuracy.

The rest of this paper is structured as follows. §II introduces
the centralized PCA anomaly detection method. §III introduces
distributed PCA methods for horizontally partitioning and
vertical partitioning. In §IV, we introduce a real DNS dataset
and present the experimental results of applying distributed
PCA to this dataset. Finally, §V summarizes our findings.

II. PCA SUBSPACE METHOD FOR ANOMALY DETECTION

The PCA-based subspace method has been widely used in
fault detection, quality control, etc. [8]. Lakina et al. applied
the PCA-based subspace method to detecting anomalies in
traffic volume data [1]. PCA-based subspace decomposition
can capture the major trend of normal traffic patterns in a
high-dimensional dataset, and reveal the anomalous patterns.

Consider a matrix X ∈ Rm×n, where m is the number of
observations, n is the number of features, and m� n. In [1],
X is a matrix of traffic volume data across various network
links. Without loss of generality, in the rest of this paper, we
assume the columns of X have zero mean. The main idea of
PCA is to project a high-dimensional dataset onto a lower-
dimensional subspace, such that the projected data’s variance
is maximized. The i-th dominant principal component (PC)

vi ∈ Rn×1 can be found by

vi = arg max
||v||=1

||(X−
i−1∑
j=1

Xvjv
ᵀ
j )v||

2. (1)

It can be seen that (1) shows that the ith PC is the eigenvector
associated with the ith largest eigenvalue of S = XᵀX. We
can also use singular value decomposition (SVD) to find the
PCs: X = UΣVᵀ, where U ∈ Rm×m is an orthonormal
matrix whose columns are the left singular vectors; V ∈ Rn×n

is an orthonormal matrix whose columns are the right singular
vectors, which are also X’s PCs; Σ is a diagonal matrix
containing the singular values (i.e., square roots of eigenvalues
of S).

Suppose X is a dataset with low intrinsic dimensionality,
meaning the top k (k � n) PCs capture most of X’s variance.
Lakhina et al. [1] assumes that normal traffic patterns mainly
reside in the subspace spanned by the top k PCs, i.e., the
principal subspace. X can be decomposed into two parts: X =
X̂ + X̃. We call X̂ = XVkVᵀ

k the normal part, and X̃ =
X(I−VkVᵀ

k) the residual part, where Vk is a matrix whose
columns are the top k PCs. For x̃ a single row of X̃, the
squared norm of x̃ can quantify how much an observation
deviates from the principal subspace. If this deviation is large
enough, an anomaly may occur. Therefore one critical point
of this subspace anomaly detection is to accurately find the
principal subspace.

III. DISTRIBUTED PCA ANOMALY DETECTION METHOD

Traditional PCA-based anomaly detection is implemented
in a centralized manner, which assumes that the whole data is
stored at a single site, or that all of the data collected at local
monitoring sites can be periodically pushed to a DFC. For
the latter case, the required communication bandwidth may
be very high. In order to reduce the communication cost, we
want to do PCA in a distributed manner. Several distributed
PCA algorithms have been proposed [4], [7], [9], but none of
them have been applied to network anomaly detection. This
paper aims to apply distributed PCA algorithms to detecting
anomalies in DNS traffic data, and evaluate their performance.

Suppose there are s local monitors, and each node i stores
a local dataset Xi. All of the local monitors can communicate
with a DFC. The DFC is responsible for aggregating local
datasets and estimating the principal subspace. Two different
scenarios will be covered in the following sections.

A. Horizontally partitioned dataset

The first case is when observations are distributed across s
local monitors

X =
[
Xᵀ

1 · · · Xᵀ
s

]ᵀ
(2)

where X ∈ Rm×n, Xi ∈ Rmi×n (mi � n), and
∑s

i=1mi =
m. To reduce the amount of data transmitted to the DFC,
we only send compressed information of Xi to the DFC, and
the DFC in turn uses the s compressed signals to construct
an estimate of X and its PCs [7]. We briefly overview



the distributed PCA algorithm in [7]. Each local monitor i
performs SVD on Xi and sends the top r (r � n) largest
singular values {σi,k}rk=1, and matrix V

(r)
i , whose columns

are the corresponding top r right singular vectors, to the DFC.
Next, the DFC computes ΣiV

(r)
i

ᵀ
, and vertically stacks those

local matrices to get

P =


Σ1V

(r)
1

ᵀ

...
ΣsV

(r)
s

ᵀ

 ∈ Rm×n. (3)

We do not need the local left singular vectors to get an
estimation of the global PCs because the right singular vectors
of P are identical to those of the left multiplication of P by a
orthonormal matrix. By performing an SVD on P we can get
the set of right singular vectors V̂ of P. Moreover, we can
use V̂ as an approximation to the PCs of X. The subspace
spanned by the top k PCs is the principal subspace. The DFC
then sends V̂(k) back to each local monitor, and it uses V̂(k)

to perform PCA-based anomaly detection as introduced in §II.
B. Vertically partitioned dataset

The second case is when there is large number of features,
and different subsets of the features are distributively collected
across s local monitors, i.e., the overall dataset is a vertical
concatenation of local datasets

X =
[
X1 · · · Xs

]
(4)

where X ∈ Rm×n, Xi ∈ Rm×ni (m � ni), and
∑s

i=1 ni =
n. For this case, the left singular vectors of each local dataset
Xi also contain useful information for estimation, therefore
we cannot simply omit the left singular vector matrix. To
include information about left singular vectors, the distributed
PCA algorithm proposed in [4] also sends local projections.
As with the horizontal partitioning introduced above, we also
perform SVD at each local monitor i and get the top r right
singular vectors V

(r)
i . Unlike horizontal partitioning, however,

the projection Pi = XiV
(r)
i is also computed. Then, each

monitor sends Pi in addition to V
(r)
i . The DFC concatenates

the local projections and reconstructs P

P = [P1, ...,Ps] = XQ, (5)

where Q ∈ Rn×(sr) is a block diagonal matrix Q =

diag{V(r)
1 , ...,V

(r)
s }. We can use the PCs of P to approximate

those of X [4]. Denote the top k PCs of P as W(k). Then
the approximation to top k PCs of X is

V̂(k) = QW(k). (6)

Since the DFC already has projection P and the column-
wise orthonormal matrix Q, we form an estimation of X by

Xest = PQᵀ. (7)

Then we compute the residual part of Xest as

X̃est = Xest(I− V̂(k)V̂(k)ᵀ). (8)

If the squared norm of a row vector in X̃est is larger than a
certain threshold, this row vector is flagged as an anomaly.
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Fig. 1: Histograms of several basic fields of DNS queries.

IV. EXPERIMENTS AND RESULTS

A. Overview of the DNS dataset

The data we used is DNS query data provided by a single
site from a large network. We used DNS queries instead
of responses. The dataset consists of 46,156,414 raw DNS
query records in a 23 minute (1406 second) time window. We
first present some basic statistics of this dataset such as the
histograms of the query type, domain names, and source and
destination IP addresses.

Fig. 1 shows histograms of some basic information about
our DNS query data. For the histogram of query types, the
figure only shows the top 10 most frequent query types.
More than 94% of the queries are for IPv4 and IPv6 address
records, and 2.39% are domain name pointer queries. His-
tograms demonstrate the distribution of network traffic, and the
anomalous change of histogram can indicate traffic anomalies
[10]. For example, during a DDOS attack, the distribution
of source IP addresses may be more disperse than normal
distributions since during such attack large amount of traffic
are initiated from a large number of unique IP addresses [10].

We next discuss how to aggregate the raw DNS data. We
first group the DNS packets based on the query timestamp
into 1406 bins, one bin for each second in the dataset. In each
time bin, we compute a histogram indicating the distribution of
traffic volume over all possible domain names queried in that
interval. For each histogram, we only kept the frequencies of
the top 300 most frequently queried domain names. Fig. 2a and
Fig. 2b shows the norms and entropies of the histogram versus
various time bins respectively, and Fig. 2c demonstrates the
fraction of queries included in our truncated histograms over
the total number of queries per second. When a histogram
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Fig. 3: Scree plot of DNS dataset.

is more uniformly distributed, it has a corresponding higher
entropy, and vice-versa. In Fig. 2, there is a periodic sharp
increase of the histogram norm and a decrease of the entropy
both with a period of 60 seconds.

One key issue with PCA is to determine the dimension
of the principal subspace. Setting the size of the principal
subspace either too high or too low may degrade the anomaly
detection accuracy. One general approach for determining the
dimension is to set a variance threshold so that a majority
of the variance is captured in the principal subspace. Typical
choices of this threshold are over 90%. Fig. 3 shows the scree
plot of the dataset used in this paper on log scale (note: we
normalized the dataset column-wise before performing PCA
on it). It shows the change of variance captured by the PCs
ordered by rank. The mini-plot inside of the scree plot shows
the cumulative fraction of the variance captured by the PCs.
We can see although the dimension of our dataset is 300, it
has a very low intrinsic dimensionality in that we only need
9% of the PCs to capture more than 90% of the variance. We
set our variance threshold to capture 92% of the variance, and
the corresponding principal subspace dimension is 37.

B. Experiments

Our dataset is a 1406× 300 matrix, each row of which is a
histogram vector of length 300, aggregated using the method
introduced in §IV-A. First, we measure the error of the approx-
imate dominant PCs found by distributed PCA algorithms with
regards to the true PCs found by centralized PCA. Second,
we test the accuracy of distributed PCA anomaly detection
methods compared with the centralized method.

1) Accuracy of subspace estimation: We use geodesic dis-
tance (GD) as a metric to evaluate the difference between the
estimated principal subspace and the true one. As a widely-
used distance metric for quantifying the distance between two
linear subspaces, GD is derived based on the principal angles
[11], which are the angles between two subspaces spanned by
orthonormal matrices V̂ and V:

cos θi = max
ui∈span(V̂)

max
vi∈span(V)

uᵀi vi subject to

||ui|| = ||vi|| = 1

uᵀi uj = 0, vᵀi vj = 0 ∀j = {1, ..., i− 1}.

(9)

Geodesic distance is defined as d(V, V̂) =
√∑k

i=1 θ
2
i .

Cosines of the principal angles are equal to the singular values
of V̂ᵀV [11]. Thus we can use the singular values to find the
corresponding principal angles.

There are two design parameters for distributed PCA: i)
r, the number of local PCs sent to the DFC, and ii) s,
the number of partitions (i.e., local monitors). We want to
investigate how r and s will affect the estimation accuracy. For
the horizontal partitioning experiment, we first horizontally
partitioned the original dataset into s sub-matrices, each of
which is [1406/s]×300 matrix ([·] denotes the nearest integer)
except for the last matrix which may have slightly more
or fewer than [1406/s] rows. For the vertical partitioning
experiment, we partitioned the original dataset into s parts,
each of which is a 1406 × [300/s] matrix. Following the
distributed PCA methods for horizontal and vertical partitioned
matrices, we can approximate the true principal subspace, and
then compute the GD between the approximated principal
subspace and the true one. Fig. 4 shows our results when s
(i.e., the number of partitions) is 2 or 4, and shows the change
of GD with regard to r (i.e., the number of local PCs). As
observed in Fig. 4, the GD decreases as we send more local
PCs to the DFC. This decreasing trend is very sharp at the
start, but it slows down when r reaches a certain level. Notice
that there are two curves in each figure: one is for GD, and the
other one is for normalized communication cost, which will
be covered in the following section.

2) Communication cost of distributed PCA: The normal-
ized communication cost is defined as the communication
cost of using distributed PCA (the number of values sent),
normalized by the number of values in the overall matrix mn,
as the latter is proportional to the cost of simply sending the
matrix to the DFC and doing centralized PCA. For horizontally
or vertically partitioned datasets, the respective costs are

chor =

∑s
i=1(r + nr)

mn
=
sr(n+ 1)

mn
(10)

cver =

∑s
i=1(mr + nir)

mn
=
sr(m+ n/s)

mn
. (11)

It is natural to consider the limiting case of normalized
communication cost in (10) and (11) as n grows large with
s,m, r fixed:

lim
n→∞

chor =
sr

m
and lim

n→∞
cver =

r

m
. (12)
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Fig. 4: Comparing the GD between the approximate principal
subspace and the true principal subspace in horizontal parti-
tioning case and vertical partitioning case.

Likewise, the limits as m grows large for fixed s, n, r are:

lim
m→∞

chor = 0 and lim
m→∞

cver =
sr

n
. (13)

We can see that for a extremely high-dimensional dataset, the
communication cost of vertically partitioning will be lower
than horizontally partitioning. However, when the number of
samples grows large, the communication cost for horizontal
partitioning is negligible compared with sending the whole
dataset, and it is higher than vertical partitioning.

Observed in Fig. 4a, distributed PCA of horizontally par-
titioned case only uses 10% of the centralized approach’s
communication cost to achieve a GD as low as 0.0774 when
s = 2. However, to reach the same accuracy when there
are s = 4 local monitors, we have to spend 22% of the
communication cost of sending the whole dataset. Comparing
the upper two plots with the lower two in Fig. 4, we can see
the normalized communication cost of the vertical partitioning
approach is typically higher than the horizontal partitioning
case. For vertical partitioning case, the communication cost
increases fast as we increase the number of local PCs sent
to the DFC (i.e., r). Also seen in Fig. 4c and Fig. 4d, the
communication cost may grow close to or even above one for
a large r. This is because we include information about the
left singular vectors in the local datasets sent to the DFC.

Next we varied the number of partitions s (i.e., the number
of local monitors) from 2 to 25, and chose a maximum
tolerable GD threshold d∗. For given s and d∗, we then
find the minimum number of local PCs r∗(s, d∗) such that
its corresponding GD is less than or equal to d∗. For each
r∗(s, d∗), we computed the normalized communication cost
as (10) and (11). According to Fig. 5a, the overall trend
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Fig. 5: chor (or cver) and r as a function of s for various d∗.

of communication cost is increasing with s, and a higher
communication cost is required for achieving a lower d∗. It’s
also clear that the required cver is typically higher than chor,
indicating that the vertical case requires more communication
overhead than horizontal case to achieve the same d∗. Fig. 5b
shows the relationship between r∗(s, d∗) versus s. We can
see that for the vertical partitioning case, as the number of
partitions increases, the number of required local PCs sent
to the DFC quickly decreases. Compared with horizontal
partitioning, the number of required local PCs under vertical
partitioning is more sensitive to s.

3) Accuracy of anomaly detection: We tested the perfor-
mance of the two distributed PCA based anomaly detection
methods on the same DNS dataset, with the dataset partitioned
into 4 parts. To set up ground truth, we used centralized PCA-
based subspace method to label anomalies and treat them as
“true” anomalies. We chose three different detection thresholds
to include the top 1%, 5%, and 10% samples with the
largest squared residual norm as three ground truth sets. Next,
using each ground truth set, we implemented the distributed
PCA anomaly detection algorithms of vertical partitioning and
horizontal partitioning, and created three receiver operating
characteristic (ROC) curves for each case with three different
r values, see Fig. 6. On ROC curve, the x-axis and y-axis
shows the false alarm rate (FAR) and the true positive rate
(TPR) respectively. As we send more information to the
DFC, the detection performance becomes better. Fig. 6a and
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Fig. 6: The ROC curves of distributed PCA algorithms.

Fig. 6b show that it is enough to send only the top 20 local
PCs’ information in order to reach a good detection accuracy
with a very low FAR, and the corresponding normalized
communication costs are 0.0571 and 0.2809 for horizontal
partitioning and vertical partitioning respectively. This figure
indicates that we can achieve a large saving in communication
bandwidth, especially for the horizontal partitioning case, with
a extremely small loss of detection accuracy. Equal error rate
(ERR) is the rate at which the false positive rate and the FAR
are equal or have the minimum distance if equality cannot
be achieved. Lower ERR indicates better performance of a
classifier. Table I shows the ERR we computed based on the
ROC curves in Fig. 6. We can see from this table that when
r = 20 and 30, vertical partitioning outperforms horizontal
partitioning in that it has a lower ERR; however when r is large
(i.e., r = 40), horizontal partitioning performs slightly better
than vertical partitioning, which is very interesting. Since we
only experimented with s = 4 in this experiment, we need to
do more experiments for various choices of s before we can
reach a more general conclusion.

r = 20 r = 30 r = 40
Ground truth
threshold

Hor. Ver. Hor. Ver. Hor. Ver.
1% 0.1401 0.0172 0.0180 0.0101 0.0014 0.0014
5% 0.1572 0.0921 0.0861 0.0569 0.0142 0.0284
10% 0.2055 0.1273 0.1020 0.0640 0.0356 0.0419

TABLE I: Equal error rates of the ROC curves in Fig. 6.

V. CONCLUSION

By evaluating the distance between the approximate prin-
cipal subspace of distributed PCA and the true principal sub-
space on a real DNS dataset, we analyzed the tradeoff between
communication cost and the accuracy of distributed PCA, and
the impact of the number of partitions on the communication
cost and accuracy. We have shown that distributed PCA algo-
rithms can significantly reduce the communication cost while
maintaining a high approximation accuracy. We also compared
the performance of horizontal partitioning distributed PCA
and vertical partitioning distributed PCA. For the dataset used
in this paper, the latter one does not have communication
bandwidth reduction as large as the former one. We also
applied distributed PCA algorithms on anomaly detection and
evaluated its detection performance. We have shown that with
a small sacrifice on the detection accuracy, we can largely
reduce the communication cost, especially for the horizontal
partitioning case, compared with the centralized PCA method.
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