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For large software systems, refactoring activities can be a
challenging task, since for keeping component complexity under
control the overall architecture as well as many details of
each component have to be considered. Product metrics are
therefore often used to quantify several parameters related to
the modularity of a software system.

This paper devises an approach for automatically suggesting
refactoring opportunities on large software systems. We show
that by assessing metrics for all components, move methods
refactoring can be suggested in such a way to improve modularity
of several components at once, without hindering any other. How-
ever, computing metrics for large software systems, comprising
thousands of classes or more, can be a time consuming task when
performed on a single CPU. For this, we propose a solution that
computes metrics by resorting to GPU, hence greatly shortening
computation time.

Thanks to our approach precise knowledge on several proper-
ties of the system can be continuosly gathered while the system
evolves, hence assisting developers to quickly assess several
solutions for reducing modularity issues.

Index Terms—software engineering; metric; refactoring; GPU;

I. INTRODUCTION

For assessing and enhancing the modularity of existing
object-oriented systems, several techniques have been pro-
posed [1], [2], [3]. Refactoring techniques, e.g. extract snip-
pets of code from a method, move a method to a dif-
ferent class, etc., are a fundamental support for improving
the cohesion of a class, reducing coupling between classes,
shortening long methods/classes, etc. [2], [4]. Accordingly,
code smells, i.e. characteristics indicating that “the code has
to be changed” [2], have been proposed to guide refactoring
activities. Moreover, several well-known metrics have been
proposed to assess the characteristics of software systems and
to guide refactoring [5], [6], [7], [8]. Indeed, using several
metrics at once, for a large software system, with each metric
assessing a different facet, can give the developer a better
understanding of modularity and quality characteristics.

In our view, refactoring should help to meet more than one
modularity need and assessing multiple metrics at once would
be essential when trying to balance several “forces” acting
into a software system.

For crosscutting concerns, i.e. concerns that have been
implemented by spreading the correspondent code across

several modules, refactoring can make good use of aspect-
oriented programming (AOP) [9]. Refactoring to aspects has
been proposed in order to extract method calls, conditional
statements, etc. [10], [11] or in order to have separation be-
tween domain and pattern-related code [12] or non-functional
requirements [13], [14]. Accordingly, some metrics have been
proposed to evaluate how concerns spread over modules (i.e.
classes or aspects) [16], [17].

This paper aims at tackling two issues related to the sugges-
tion of move method refactoring opportunities. Firstly, auto-
matically finding refactoring suggestions that improve several
components at once, which becomes possible by computing
several metrics. E.g. cohesion for a pair of components is
improved at once by carefully selecting a single move method
refactoring, without hindering other characteristics of the
same pair and without negatively affecting other components.
How a change affects components is unclear when having
to cope with a large number of them. Automatic suggestion
of refactoring opportunities is of great importance for large
systems, since the unassisted developer, having to reason
on thousands of classes, could miss the proper refactoring.
Moreover, the number of ways in which perfective changes can
be introduced is dramatically increased in such large systems.
Manual exploration of such changes would be cumbersome or
time consuming.

Secondly, computing metrics should take a tiny amount of
time, when a software system consists of a large number of
methods, attributes, and classes, i.e. in the order of several
thousands, to be considered a useful indication to the developer
while she explores refactoring opportunities. For this, we
have devised a parallel algorithm that runs on a GPU to
compute time consuming product metrics and we have greatly
reduced, even by a factor of 50, the typical CPU computing
time needed. A GPU provides hundreds of computing cores,
whereas a CPU provides a few (typically 8). To effectively
employ hundreds of cores, our solution let threads run without
synchronisation as much as possible.

The remaining part of the paper is organised as follows.
Section II introduces relevant metrics assessing the modularity
of software systems. Section III proposes how to combine
metrics for suggesting the most appropriate refactoring and
how computationally costly this can be. Section IV describes
our solution for collecting data on systems, as well as for
computing metrics on GPUs. Section V reports the results
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of our experiments on some real-world systems. Finally,
concluding remarks are drawn in Section VI.

II. MODULARITY METRICS

Among the most useful modularity metrics, in our approach
we compute the following ones.

A. Structural metrics

Henry and Kafura proposed Fan-in and Fan-out for proce-
dural programming [5], however these are also used for object-
oriented systems. Fan-in counts for a method m the number
of methods calling m. A method having a high value of fan-
in encloses a fragment of code that has been reused many
times within the system itself. For this, a change on it could
trigger many changes on parts of the system relying on it, i.e.
suffer of the ripple effect. A method with high fan-in should
be carefully tested to ensure that calling methods rely on its
correct behaviour. High fan-in values can indicate crosscutting
concerns, and accordingly method calls could be extracted and
implemented as aspects [11].

Fan-out counts for a method m the number of methods
called by m. A method with a high value of fan-out can
be considered complex and having too many responsibilities.
Hence, it is difficult to reuse, because it depends on a large
number of methods. A method exhibiting a large fan-out,
having a large amount of dependencies, should be split into
several methods, each constituting a lower-level abstraction for
the caller [1], [2], [18].

For a pair of entities, Jaccard similarity coefficient measures
the ratio between the intersection cardinality of the sets of
properties for each entity, and the union cardinality of the
two sets [8]. For a method, its properties can be defined as
called methods and accessed attributes. Hence, the similarity
for a pair of methods gives a measure of how close they
should be, i.e. whether it is appropriate to have such methods
on the same class or not [19], [8]. Methods pairs with high
similarity are better handled on the same class. This is because,
in general, a high degree of intra-class interactions suggests
high cohesion for the class, whereas for a pair of methods
belonging to different classes, the high degree of coupling
hinders modularity.

B. Object-oriented metrics

Chidamber and Kemerer have introduced a widely used
suite of metrics that provides several parameters for assessing
the modularity of object-oriented systems [6]. The well-known
suite comprises WMC, NOC, DIT, CBO, RFC and LCOM. In
this paper we focus on CBO and LCOM.

CBO measures coupling between objects by counting for
a class C the number of other classes used by C, hence
method calls or instantiations of classes, etc. performed by C.
Similarly to fan-out, high values of CBO indicate complexity
of classes, i.e. too many dependencies, and as such it would
be better to refactor.

LCOM measures lack of cohesion on methods of a class
C and has been originally defined as the number of method

pairs sharing no attributes minus the number of method pairs
that share at least one attribute. Later, it has been proposed
to measure LCOM as 1 minus the average, among methods
of C, of the ratio beween the number of attributes of C used
by each method and the total number of attributes of C [20].
For a class with a high value of LCOM, its methods have
been incidentally put together, hence some methods should be
moved to another class, or some attributes should be moved
into this class.

III. APPROACH FOR REFACTORING

A. How refactoring is suggested

By evaluating the above metrics simultaneously, we advo-
cate that the modularity of an object-oriented system can be
improved by means of the following indications.

When the similarity between a pair of methods (m1, m2) is
high1 and the methods happen to be on different classes, we
check how LCOM values for classes varies when moving one
method from its origin class to the class of the other method on
the pair, or to other classes holding one of the called methods.
Then, we suggest to move a method, i.e. m1 or m2, from its
origin class to another class when we find that LCOM of both
the origin and destination classes will be improved.

When LCOM for a class is high, hence methods happen to
incidentally be on such a class, then an improvement is given
by taking out one (or more) method from the class and find
another class for it. Tentative destination classes for a method
will be the ones holding methods called (or attribute accessed)
by the method to be moved. Methods with the highest values
of fan-out will be selected as methods to be moved out from
the origin class. The class suggested as a destination for a
method will be the one whose LCOM will be lowered, while
also lowering LCOM of the origin class. Note that, a desired
side-effect is that CBO of the origin class could be lowered
by such a suggested refactoring.

When CBO for a class is high, we check possible methods
relocations, starting with the ones having the highest fan-in and
fan-out, to another class. Candidate destination classes are all
the classes used by the method to be moved. CBO will be
computed for candidate destination classes, for each possible
relocation. The proposed refactoring selects as a destination
for a method, the class whose CBO will be not higher than
its original value, while of course the CBO of the origin class
will be lowered. The granularity of the desired improvement
can be decided by setting a threshold for the desired CBO
(e.g. the threshold could be set as the average value of CBO
for all classes).

For large software systems, computing metrics for all the
tentative methods moves is time consuming unless appropriate
high performance resources are employed.

B. How computing metrics scales

This section estimates the number of metric values com-
puted when using the above approach to suggest refactoring

1Let us say that a threshold is chosen for the similarity value as e.g. the
average among all similarity values for the whole system.
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opportunities. Firstly, fan-in and fan-out will be computed for
every method. Suppose m is the number of methods, then the
number of values for each of the two metrics is the number
of available methods m.

Note that, as far as complexity is concerned, for computing
fan-in for a method mp, all other m−1 methods will have to be
scanned, and each invoked method will have to be compared
with method mp. Let us suppose that maximum km methods
are called by each method, then the worst case is that km ·
(m− 1) comparisons have to be performed.

Secondly, similarity will be computed on all possible com-
binations of methods pairs. From combinatorics, given m
methods, then the number of all pairs, without considering
the ordering, is given by

#Similarity values =
(
m

2

)
=

m · (m− 1)

2

From an analysis likewise the one above would come out that
for a method pair the number of comparisons to be performed
are (km + ka)

2 in the worst case, where ka is the maximum
number of attributes accessed by each method. Computing
similarity sequentially for thousands of methods can be time
consuming, since the number of pairs quickly grows with the
square of the number of methods.

Thirdly, LCOM and CBO will be computed for each class,
as well as on each candidate class that could receive or give
up a method. For c classes, and m methods, the worst case is
to assess LCOM and CBO after having moved into each class
every method, as well as having moved out a method from
each class. The number of LCOM values is

#LCOM values = c+ c ·m = c · (m+ 1)

For thousands of methods and classes the said number of
values grows as c · m, hence computing it sequentially can
be time consuming. The number of CBO values is the same
as the above number of LCOM values, in the worst case.

Therefore, for the whole set of metrics presented above, we
have that the number of values to compute is

#values = 2 ·m+
m · (m− 1)

2
+ 2 · c · (m+ 1)

The second amount of the sum grows quicker than the others
(while the third grows quicker than the first) for increasing
values of m. Note also that, generally, m grows quicker than
c, for practical software systems.

Let us consider a software system having 1, 200 methods
and 231 classes, this is the case for JUnit, which is considered
a small software system. Then, the number of values to
compute are 1.2 millions. Section V shows the number of
classes and methods, as well as measured computing times,
for several real-world software systems.

IV. ANALYSING SOFTWARE SYSTEMS

A. Overview

Figure 1 provides an overview of the architecture for a
tool computing the above metrics. Firstly, the system under
analysis will be explored and for this several filters are needed
to recognise the characteristics of the system. Once exploration

Explorer

Evaluator

Proponent

JavaFilter

Inspector

metrics()

C++Filter.NetFilter

fanin() fanout() cohes()coupl() siml()

ImproveCoupling ImproveCohesion

Fig. 1. Main components of the tool for the proposed approach

has been performed, metrics will be computed, according to
extracted characteristics and the definitions of metrics. Finally,
metrics are used together to suggest some move method
refactoring. Each refactoring could improve a subset of metrics
only, hence a desired characteristic, such as e.g. cohesion
or coupling. The developer could select the characteristic to
improve or ask for refactoring suggestions that improve all of
them. In the latter case, a smaller subset of suggestions would
be given, i.e. the intersection of refactoring suggestions.

The following subsections provide details of both the ex-
ploration of the system and metric computation on a GPU,
whereas the logic for selecting a refactoring has been described
in Section III.

B. Exploring the system under analysis

Metrics described in Section II are mainly based on the
identification of attributes, methods and classes of a soft-
ware system, as well as the number of method calls and
attribute accesses from each method of every class. In order
to compute the above metrics, firstly such data will have to
be gathered. Several approaches can be followed for pursuing
this exploration task, e.g. computational reflection, as in [3],
or supporting libraries. For our experiments, we have used
the Bytecode Engineering Library (BCEL) for gathering data
on the bytecode of a Java software system, hence greatly
simplifying the exploration phase [21]2. BCEL can be consid-
ered as representing the JavaFilter block shown in Figure 1.
Other filters can be built as desired for different languages or
executable code.

We have then built an Inspector that gathers all the classes
names of a software system, and for each class analyses the
method bodies. Firstly, classes names, attributes and methods
names have been found and stored into a list. For attributes and
methods the name of the class they belong to has been stored.
Moreover, methods names have been stored together with their
input parameters, in order to properly consider overloaded
methods.

2http://commons.apache.org/bcel/
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Every method body has been analysed and method calls
and attribute accesses have been stored into another list. Such
a list can be navigated when accessing a method (on the
previous list) in order to have all the called methods and
accessed attributes. This is the main part of Inspector, finding
dependencies between classes and between methods.

C. Computing metrics on a GPU

In CUDA programming model, an application consists of
a host program that executes on the CPU and other parallel
kernel programs executing on the GPU [22]. A kernel program
is executed by a set of parallel threads. The host program
can dynamically allocate device global memory to the GPU
and copy data to (and from) such a memory from (and to)
the memory on the CPU. Moreover, the host program can
dynamically set the number of threads that run on a kernel
program. Threads are organised in blocks, and each block has
its own shared memory, which can be accessed only by each
thread on the same block.

For maximum performances, threads on a GPU should
ideally be given a task that can run unconstrained, i.e. with-
out having to synchronise with others [23]. Moreover, it
is paramount that interactions between CPU and GPU are
minimised, this avoids communication bottlenecks and delays
due to data transfers.

Following such general guidelines, we have developed a
program, realising block Evaluator in Figure 1, that takes as
input the list of classes, their methods and attributes, of the
software system to be analysed. For handling the minimum
possible amount of data, classes, methods and attributes have
been represented by a numerical id. We have used arrays for
holding several ids, since they can be easily and efficiently
passed to the GPU, i.e. the host program allocates memory
and transfers data to such a memory, which CUDA kernel
program can use. For the classes, array cls holds the ids of
each class, as well as the corresponding ids of methods and
attributes. For methods, an array dpnd holds for each method
its dependencies in terms of the ids of methods invoked and
attributes accessed.

By calling the standard cudaMemcpy() function, arrays
cls and dpnd are passed to the GPU memory, hence
they become available to our provided kernel global function
metrics(). This calls other kernel device functions, each
computing one of the different metrics used. Among the
said arrays, only appropriate ones are given to the function
specialised for computing one of the metrics. The values of
arrays are read by each thread, however threads need not write
any value on the arrays, hence no synchronisation has been
used for accesses.

For the function computing the similarity metric, siml(),
each available thread is given a range of method ids, repre-
senting a subset of all the available methods to be analysed.
For the given range of ids, a thread executing inside our
function siml() computes all the similarity values between
one method and all the other methods, by reading values from
array dpnd, providing data representing dependencies. The
selection of the range of methods to be given to a thread is

easily determined by the maximum number of methods avail-
able and ThreadId, available in CUDA programs, indicating
the current working thread.

Each thread stores results into its own local array, i.e.
separately from other threads, hence minimising the need of
synchronisation. Given the large amount method pairs (see the
above analysis III-B, and the the analysed systems V), only
meaningful values are stored, i.e. only similarity values that
are greater than zero (otherwise we risk filling up all available
memory). Once a thread has finished executing, it will have
computed and stored a given amount of results, which likely
differs in number from that of other threads. This is because
each thread will find a different number of zeros as a result.
The meaningful values will have to be stored on a globally
accessed array, so that other functions on the device can use
them. For this, each thread reserves an amount of locations
to store its computed values. Reservation has been performed
by updating a global variable, shared by threads, hence by
using the atomicAdd() function. This is the only moment
for threads to synchronise with each other.

For metric LCOM, our function cohes() is given a range
of ids for classes, hence each thread computes values of
LCOM for a subset of classes by reading values from arrays
cls and dpnd. Like the previous function, siml(), each
thread stores the non zero value of LCOM for a class locally,
before processing the following class. Once all classes have
been processed, relevant results are transferred to the global
array by resorting to a synchronous update of a shared variable.
Similarly, functions have been implemented for each other
metric, i.e. fan-in, fan-out, and CBO.

For assessing the benefits of methods moves refactoring,
candidate classes to be changed, both as an origin or a desti-
nation class for a moved method, will have to be examined and
their relevant changing values, i.e. LCOM and CBO computed
again. This is performed by changing the representation of the
methods belonging to a class, and then by repeating execution
within the said functions.

V. EVALUATION

Table I provides values of several structure characteristics
and the computed the metrics for several software systems,
ranging from small to medium size systems. The size of
analysed systems is given as the number of lines of code
(LOC) as well as the number of lines no comment no blank
(NCNB). The number of total classes is shown along with
the number of attributes and methods for each class. Column
#values shows the amount of values for the several metrics
that have to be computed, according to the analysis given in
Section III. It can be seen that such values grow to the order
of thousands of millions.

The three columns execution time of Table I show measured
wall times when computing metrics for improving cohesion
possibly for all classes, i.e. values of similarity, LCOM,
and again LCOM for classes involved into move method
opportunities, as in block ImproveCohesion within Proponent
in Figure 1. The wall times refer to a single CPU and on
a Tesla GPU, with 448 cores, and their ratio. As we can
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TABLE I
ANALYSED SOFTWARE SYSTEMS

Systems LOC NCNB Classes Attributes Methods #values execution time #move
CPU Tesla ratio methods

1 JUnit 30K 22K 231 265 1,200 1.2M 0.10 0.07 1.53 2
2 JHotDraw 72K 28K 600 1,151 4,814 17.4M 1.61 0.30 5.43 26
3 JavaStyle 69K 26K 600 1,423 6,816 31.4M 5.55 0.24 22.74 54
4 Hammurapi 80K 30K 986 2,595 7,705 44.9M 9.73 0.24 40.54 167
5 Dependometer 75K 32K 907 2,932 7,858 45.1M 7.43 0.41 18.03 632
6 MapperXML 42K 16K 1,146 2,726 8,074 51.1M 10.26 0.31 33.31 687
7 JEdit 183K 77K 1,267 3,804 9,629 70.8M 13.31 0.56 23.93 309
8 Commons-math 276K 115K 1,930 4,196 13,676 146.3M 30.54 1.10 27.86 367
9 Weka 529K 206K 2,138 9,194 22,028 336.8M 80.79 1.63 46.62 435

10 JRefactory 302K 120K 2,775 6,053 23,639 410.6M 66.10 1.65 40.01 864
11 Derby 1174K 403K 3,191 13,900 44,394 1,268.8M 256.51 4.68 54.81 887
12 Libomv 195K 73K 7,134 14,211 43,593 1,572.2M 218.45 4.80 45.51 438
13 ProjectLibre 465K 174K 6,399 28,444 69,751 3,325.4M 569.75 12.94 44.04 2,358
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Fig. 2. Measured computing times for analysed systems

see also from Figure 2, computing times go from minutes
to seconds for larger systems passing from a CPU to a GPU
(from 11 min to 13 secs for the largest system). The plot
comprises computing times needed with both a Tesla and a
GeForce GPUs. Note that when comparing the gain CPU over
Tesla and the gain CPU over GeForce, the latter is smaller,
however still very significant (and with a fraction of the price
for the hardware needed). The gain in performance shows
important improvements ranging from a 1.5 gain for a small
system to a 54.8 gain for one of the largest systems analysed
(see Figure 3). The gain that we have obtained is in good
agreement with previous assessments of other programs, when
we compare an appropriate solution using GPU resources with
an optimised solution on a CPU [24].

Finally, the last column in Table I shows the number
of move methods refactoring that have been automatically
suggested by our tool for each software system under analysis
when considering move methods refactoring that optimise
LCOM values only.

From the number of suggestions, reaching more than 2
thousand for the largest system, it is possible to conclude
that the high-quality systems analysed can be actually further
improved thanks to the selection of move method opportunities
proposed by our approach. By enhancing modularity, we
make systems more prone to incorporate other functional and
non-functional requirements. E.g. less interactions between
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Nvidia Tesla m2070
Nvidia GeForce GTX 480

Fig. 3. Gain ratio between GPUs and CPU computing times

components could facilitate consistent runtime updates [25].

VI. CONCLUSIONS

This paper has proposed several criteria for suggesting
move methods refactoring opportunities that aim at improving
several values of modularity metrics for a software system.
It has been shown that for obtaining a proper view on the
effect of changes for a large software system the number
of values to be calculated grows very quickly. This can
become overwhelming for a single CPU, hence a GPU can
be purposely employed. It is also important to notice that
refactoring opportunities can be more difficult to assess for the
unassisted developer when having to reason on a large system.
Hence, a tool that readily checks thousands of millions of
values is of great help. Experiments have shown that existing
large systems can be further
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