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Abstract—Most finance studies are discussed on the basis of
several hypotheses, for example, investors rationally optimize
their investment strategies. However, the hypotheses themselves
are sometimes criticized. Market impacts, where trades of in-
vestors can impact and change market prices, making opti-
mization impossible. In this study, we built an artificial market
model by adding technical analysis strategy agents searching one
optimized parameter to a whole simulation run to the prior model
and investigated whether investors’ inability to accurately esti-
mate market impacts in their optimizations leads to optimization
instability. In our results, the parameter of investment strategy
never converged to a specific value but continued to change.
This means that even if all other traders are fixed, only one
investor will use backtesting to optimize his/her strategy, which
leads to the time evolution of market prices becoming unstable.
Optimization instability is one level higher than “non-equilibrium
of market prices.” Therefore, the time evolution of market
prices produced by investment strategies having such unstable
parameters is highly unlikely to be predicted and have stable
laws written by equations. This nature makes us suspect that
financial markets include the principle of natural uniformity and
indicates the difficulty of building an equation model explaining
the time evolution of prices.

Index Terms—Optimization of investment strategy, Instability
of financial market, Market impacts, Agent-based model, Multi-
agent simulation, Artificial market model

I. INTRODUCTION

Most finance studies are discussed on the basis of several
hypotheses, for example, investors rationally optimize their in-
vestment strategies, markets are perfectly efficient, and so on.
However, the hypotheses themselves are sometimes criticized.
The rational optimization of investors’ investment strategies
is criticized in that investors themselves are not rational in
the first place [1]. Also, optimization is impossible due to the
limitations of the investors’ observation range and calculation
ability [2]. Market impacts, where trades of investors can
impact and change market prices, also make optimization
impossible.

Investors usually use “backtesting” to optimize their strate-
gies [3]. Backtesting is where an investors profits are estimated

Note that the opinions contained herein are solely those of the authors and
do not necessarily reflect those of SPARX Asset Management Co., Ltd.

if they were trading at past market prices. As the past time
evolution of market prices was fixed and unchanged, back-
testing cannot handle the market impact. In fact, there is no
method to exactly estimate the market impact before trading.
Therefore, investors cannot estimate their earnings, including
the effect of their market impacts. Furthermore, the changed
market prices cause other investors to change their behaviors,
which leads to more changes in the time evolution of market
prices.

Investors implement optimized investment strategies to earn
the best profits by backtesting. However, since market impacts
change the market prices and other investors’ behaviors from
those in backtesting, such strategies can no longer earn the
best profits. Even if investors re-optimize their strategies,
they will again impact market prices, dooming this process
of re-optimizing strategies to repeat forever. Therefore, the
optimized parameter of an investment strategy is not stable.
We refer to this phenomena as “an optimization that is not
stabilized” or “optimization instability.”

As Fig. 1 shows, the optimization instability is one level
higher than “non-equilibrium of market prices.” In economics,
market prices can either reach equilibrium or not, as shown
in (1) and (2) in Fig. 1, respectively. Many previous agent-
based models for financial markets (artificial market models)1

showed that market prices do not reach equilibrium and
continued to change not explained only by noise when there
are many heterogeneous agents, as shown in (2) in Fig. 1 [10],
[11].

In social sciences, the heterogeneousness of agents has
become more important [12]. In economics, heterogeneous-
ness is also important especially after the financial crisis in
2009, and Stiglitz argued that the dynamic stochastic general
equilibrium (DSGE) model that includes no heterogeneousness
cannot explain real economics [13]. In addition, there is
also the argument that the DSGE model actually includes
heterogeneousness [14]. In any case, heterogeneousness is one
of the most important problem in economics.

1Excellent reviews include [4]–[9]. In the Appendix, we mention “Basic
concept for constructing a model” and “Validation of the model” for an
artificial market model on the basis of [8], [9].
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Fig. 1. Illustrations for (1): The parameter of an investment strategy is stably optimized and market prices reach equilibrium. (2): The parameter of an investment
strategy is stably optimized but market prices are non-equilibrium. (3): The parameter of an investment strategy is unstably optimized and continues to change
cyclically, and market prices are non-equilibrium. (4): The parameter of an investment strategy is unstably optimized and continues to change irregularly and
unexpectedly, and market prices are non-equilibrium.

Optimization instability causes not only market prices but
also the parameters of investment strategies to continually
change like those in (3) and (4) in Fig. 1. A number of previous
artificial market models implemented the learning process of
agents in short-term price variations to modulate the param-
eters of strategies, and they contributed to the investigation
of the mechanism of the market bubble and crash [15], [16].
However, no artificial market model optimized investment
strategies in which an agent searches one optimized parameter
in a whole simulation run in economics and financial studies,
and no model determined whether only market impacts lead
to optimization instability.

Therefore, this study investigated, using an artificial market
model, whether investors’ inability to accurately estimate
market impacts in their optimizations leads to optimization
instability. Artificial market models include agents modeling
investors’ behaviors and show macro phenomena including
market prices as a result of their interactions. Agent behaviors
are simple but interact each other to cause complex macro phe-
nomena, which are not a simple sum of the agent behaviors.
Thus, an artificial market model can provide researchers with
new knowledge. These micro-macro interactions sometimes
give rise to strong phenomena called “micro-macro feedback
loops” or “positive feedback loops,” in which micro processes
strengthen macro phenomena, which in turn strengthen the
micro processes, and these strengthenings continue as a loop.
Effectively handling these loops is an advantage of an artificial
market model. Loops caused by market impacts can potentially
exist, which will lead to a more complex nature.

In this study, we built an artificial market model by adding
two technical analysis strategy agents (TAs), which search one
optimized parameter in a whole simulation run, to the prior
model of Mizuta et al. [17]. The TAs are a momentum TA
(TA-m) and reversal TA (TA-r).

A technical analysis strategy uses a historical market return
of prices. A momentum technical analysis strategy expects a
positive (negative) return when the historical return is positive
(negative). Conversely, a reversal technical analysis strategy
expects a positive (negative) return when the historical return
is negative (positive).

Chen et. al. [5] summarized previous studies on artificial
market models and showed that models have to include
technical strategies to replicate important stylized facts2. As
comprehensively reviewed by Menkhoff and Taylor [19], many
empirical questionnaire studies have found technical strategies
in the real financial markets. An empirical data study gave the
same conclusions [20]. Laboratory markets in experimental
economics have greatly contributed to the aforementioned
discussion. Parameter fitting of the artificial market model
including technical strategies leads to similar results as those
of the laboratory market [21].

After building the artificial market model, we investigated
whether investors’ inability to accurately estimate market
impacts in their optimization leads to optimization instability.

II. MODEL

The model of Chiarella and Iori [22] is very simple but
replicates long-term statistical characteristics observed in ac-
tual financial markets: a fat-tail and volatility clustering. In
contrast, the model of Mizuta et al. [17] replicates high-
frequency micro structures, such as execution rates, cancel
rates, and one-tick volatility, that cannot be replicated with
that of Chiarella and Iori [22]. Only fundamental and technical

2A stylized fact is a term used in economics to refer to empirical findings
that are so consistent (for example, across a wide range of instruments,
markets, and time periods) that they are accepted as truth [18].
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analysis strategies that exist generally for any market at any
time3 are implemented into the agent model.

The simplicity of the model is very important for this study
because unnecessary replication of macro phenomena leads to
models that are overfitted and too complex. Such models pre-
vent the understanding and discovery of mechanisms affecting
price formation because of the increase in related factors. We
explain the basic concept for constructing our artificial market
model in the review article [8], [9] and the Appendix “Basic
Concept for Constructing Model.”

In this study, the artificial market model was built by adding
two technical agents (TAs), a momentum TA (TA-m) and
reversal one (TA-r), to the prior model of Mizuta et al. [17].

This model contains one stock. The stock exchange uses a
continuous double auction to determine the market price [23].
In the auction mechanism, multiple buyers and sellers compete
to buy and sell financial assets in the market, and transactions
can occur at any time whenever an offer to buy and one to
sell match. The minimum unit of a price change is δP . The
buy-order and sell-order prices are rounder down and up to
the nearest fraction, respectively.

The model includes n normal agents (NAs), a TA-m, and

3Many empirical studies using questionnaires found these strategies to be
the majority, which are comprehensively reviewed by Menkhoff and Taylor
[19]. The empirical study using market data by Yamamoto [20] showed that
investors are switching fundamental and technical analysis strategies.

TA-r. The NAs always place an order for only one share, while
the TAs can place a number of orders at once. We implemented
the variable “tick time” t, which increases by one when an NA
orders.

A. Normal agent (NA)

To replicate the nature of price formation in actual financial
markets, we introduced the NA to model a general investor.
The number of NAs is n. The NAs can short sell freely. The
holding positions are not limited, so the NAs can take an
infinite number of shares for both long and short positions.
Similarly to the process shown in Fig.2, at time t = 1, NA
No. 1 first places an order to buy or sell its risk asset, and at
t = 2, 3, , , n, NAs No. 2, 3, , , n then respectively place buy
or sell orders. At t = n+ 1, the TA-m and TA-r place orders
when a trade condition is satisfied (see Section II-B). After
that, the model returns to the first NA and repeats this cycle.
An NA determines the order price and buys or sells using a
combination of fundamental and technical analysis strategies
to form an expectation of a risk asset’s return.

The expected return of agent j for each risk asset at t is

rte,j = (w1,j ln
Pf
P t−1

+ w2,j ln
P t−1

P t−τj−1
+ w3,jε

t
j)/Σ

3
iwi,j

(1)
where wi,j is the weight of term i for agent j and is indepen-
dently determined by random variables uniformly distributed
on the interval (0, wi,max) at the start of the simulation for
each agent. ln is the natural logarithm. Pf is a fundamental
value and is a constant. P t is a mid-price (the average of the
highest buy-order price and the lowest sell-order price) at t,
and εtj is determined by random variables from a normal distri-
bution with average 0 and variance σε at t. τj is independently
determined by random variables uniformly distributed on the
interval (1, τmax) at the start of the simulation for each agent4.

The first term in Eq. (1) represents a fundamental strategy:
the NA expects a positive return when the market price is
lower than the fundamental value, and vice versa. The second
term represents a technical analysis strategy using a historical
return: the NA expects a positive return when the historical
market return is positive, and vice versa. The third term
represents noise.

After the expected return has been determined, the expected
price is

P te,j = P t−1 exp (rte,j). (2)

Order prices are scattered around the expected price P te,j to
replicate many waiting limit orders. An order price P to,j is

P to,j = P te,j + Pd(2ρ
t
j − 1), (3)

where ρtj is determined by random variables uniformly dis-
tributed on the interval (0, 1) at t and Pd is a constant. This
means that P to,j is determined by random variables uniformly
distributed on the interval (P te,j − Pd, P te,j + Pd)

Whether the agent buys or sells is determined by the
magnitude relationship between P te,j and P to,j . When P te,j >

4When t < τj , the second term of Eq. (1) is zero.



P to,j , the NA places an order to buy one share, and when
P te,j < P to,j , the NA places an order to sell one share5. The
remaining order is canceled tc after the order time.

B. Technical agent (TA)

Similarly to that shown in Fig. 2, two TAs exist, a momen-
tum TA (TA-m) and reversal TA (TA-r). After the NA No. n
places an order, the TA-m and TA-r place orders in this order
when the following conditions are satisfied.6.

Trades of the TA-m are as follows. The TA-m places market
buy-orders7 to hold S shares when P t > P t−tm, and it places
market sell-orders to short-sell S shares (hold −S shares)
when P t < P t−tm, where tm is a parameter of the TA-m
trading strategy. The TA-m determines market tendency using
market prices over the past tm.

Trades of the TA-r are as follows. The TA-r places market
buy-orders to hold S shares when P t < P t−tr, and it places
market sell-orders to short-sell S shares (hold −S shares)
when P t > P t−tr, where tr is a parameter of the TA-r trading
strategy. The TA-r determines market tendency using market
prices over the past tm.

Note that if they already have the target shares, they place
no orders.

C. Learning of the TAs

Simulations are repeated like the processes shown in Fig.
3. In the first simulation run, the case without the TAs is
simulated. After that, the TAs optimize tm and tr to earn
the best by backtesting and fixing the market prices of the
simulation result using particle swarm optimization (PSO) [24]
as mentioned in Section II-D.

In the second simulation, the case with the TAs is simulated
using tm and tr and exactly the same random numbers, wi,j ,
τj , εtj , and ρtj as those in the first simulation. Since the market
prices are different from the first simulation, optimizing tm
and tr to earn the best causes different results. Therefore, the
TAs should re-optimize tm and tr using the new market prices
generated by the second simulation.

The third simulation is simulated using the re-optimized
parameters, in which the TAs re-optimize tm and tr again
using the new market prices generated. In this way, the simu-
lations are repeated to determine whether tm and tr converge
to specific figures. Note that because random numbers wi,j ,
τj , εtj , and ρtj are fixed in all runs, when tm and tr are not
changed, no parameters are changed, and the trades of all
agents are also not changed. Thus, exactly the same simulation
result is produced.

5When t < tc, to generate enough waiting orders, the agent places an order
to buy one share when Pf > P t

o,j , or to sell one share when Pf < P t
o,j .

6However, they place no order while t < tmax, which is the maximum of
tm and tr.

7When an agent orders to buy (sell), if there is a lower sell-order price (a
higher buy-order price) than the agent’s order, dealing immediately occurs.
Such an order is called a “market order.”
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D. Optimization of a strategy parameter

After each simulation run, the TA-m optimizes tm and the
TA-r optimizes tr independently between tmin and tmax to
earn the best using PSO [24] in the following steps.

The TA-m and TA-r are independently investigated but in
the same way. Here, the TA-m or TA-r is defined as the TA-x.
In the PSO, there are many particles, and each particle has an
input parameter and outputs result. In this study, a particle k
has an investment strategy parameter tk that corresponds to
tm or tr as input and outputs a profit of backtesting when the
TA-x uses tk. The number of particles is nP . tk is initially
set tk = tmin + (tmax − tmix)(k/nP ). This means that tk is
arranged at the same intervals from tmin to tmax.

First, the profit of the TA-x with tk is calculated using
backtesting. Then, tkbest, which is the tk when the particle
k earns the best ever in the backtesting, is calculated. tbest,
which is the tk when all particles earns the best ever in the
backtesting, is also calculated. tk evolves as the following,

δtk ← wδtk + c1r1(tbest − tk) + c2r2(tkbest − tk)
tk ← tk + δtk

(4)

where r1 and r2 are determined by random variables uniformly
distributed from 0 to 1 and w, c1, and c2 are constants.

The evolution is repeated lP times. tbest, which is the final
output, is optimized by tm or tr.

III. SIMULATION RESULTS

In this study, we set8 δP = 0.01, Pf = 10000, and for
the NAs, n = 1000, w1,max = 1, w2,max = 100, w3,max =
1, τmax = 10000, σε = 0.03, Pd = 1000, tc = 10000,
and Pf = 10000. For the TAs, we set S = 100. The
simulations ran to t = te = 20000000. For the PSO, we
set nP = 200, lP = 50, tmin = 100, tmax = 300000, w =
0.99, c1 = 0.3, andc2 = 0.3.

8We explain how the model was validated in the Appendix “Validation of
the Model.”
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Fig. 4 shows the time evolution of the prices when the TA-
m using tm obtained after the 50th simulation exists and when
it does not exist. The existence of the TA-m enlarged the price
variation.

Fig. 5 shows tm and the profits of the TA-m for the
simulations when the TA-m exists. The profits were calculated
as the final cash they have per Pf 9. The tm never converged
to a specific value, and this behavior corresponds to (3) in Fig.
1.

Fig. 6 shows the mechanism of tm behavior. First, the case
without the TAs is simulated and the TA-m optimizes tm
to earn the best by backtesting and fixing the market prices
of the simulation result. In the next simulation, because the
TA-m trades using tm, the time evolution of market prices
is changed, and the optimized tm is also changed. After a
number of repetitions of the optimizations, tm returns to a
certain historical value. After that, tm changes in a cyclic

9Trades of the TAs leads to increased and decreased amounts of cash, while
they initially have no cash and are permitted to have minus cash. Shares that
the TAs have at the end of the simulation are calculated as Pf per one share.
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manner. Strategies of traders never reach the equilibrium, and
the optimized parameters of strategies are never fixed in time.

As mentioned in Section II-C, because random numbers
wi,j , τj , εtj , and ρtj are fixed in all runs, when tm is not
changed, no parameters are changed, and the trades of all
agents are exactly the same. Thus, exactly the same simulation
result is produced and the time evolution of prices is the same.
Therefore, the optimized tm never stabilizes even when the
whole situation other than the TA-m is exactly same.

This means that even if all other traders are fixed, only one
investor optimizing his/her strategy using backtesting leads to
the time evolution of market prices becoming unstable. Finan-
cial markets are essentially unstable, and naturally, investment
strategies are not able to be fixed. The reason is that, as shown
in Fig. 7, even when one investor selects a rational strategy at
that time, it changes the time evolution of prices, it becomes
no longer rational, another strategy becomes rational, and the
process repeats.

Fig. 8 shows tm, tr for the simulations when both the TA-
m and TA-r exist. The changes of tm, tr were irregular and
unexpected, and the cyclic feature was only present in the
case where only the TA-m exists, as shown in Fig. 5. This
feature corresponds to (4) in Fig. 1. The time evolution of
market prices produced by investment strategies having such
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unstable parameters is highly unlikely to be predicted and
have stable laws written by equations. This nature makes us
suspect that financial markets include the principle of natural
uniformity and indicates the difficulty of building an equation
model explaining the time evolution of prices.

Fig. 9 shows the mechanism of tm, tr behavior. Similarly
to the case where only the TA-m exists (Fig. 6), when the
TAs optimize tm, tr, the time evolution of market prices and
the optimal tm, tr are changed. However, both tmandtr do
not return to certain historical values compared with the case
where only the TA-m exists, so the changes of tm, tr are
irregular and unexpected.

Fig. 10 shows the profits of the TA-m for the simulations
where only the TA-m exists and both the TA-m and TA-r exist.
When both the TA-m and TA-r existed, the TA-m earned more
than that without the TA-r. A profit of one strategy is not stolen
by the trades of another strategy, but both strategies increase
their profits. The result is consistent with the previous study
showing when an opposite strategy exists, another strategy
can earn more without the opposite strategy using an artificial

market model [25]10.

IV. SUMMARY

In this study, we built an artificial market model by adding
technical analysis strategy agents (TAs), which search one
optimized parameter in a whole simulation run, to the prior
model of Mizuta et al. [17]. The TAs are a momentum TA
(TA-m) and reversal TA (TA-r), and we investigated whether
investors’ inability to accurately estimate market impacts in
their optimizations leads to optimization instability.

When only the TA-m exists, the parameter of investment
strategy never converged to a specific value, but changed in
a cyclic manner. This means that even if all other traders
are fixed, only one investor optimizing his/her strategy using
backtesting leads to the time evolution of market prices
becoming unstable. Financial markets are essentially unstable,
and naturally, investment strategies are not able to be fixed.
The reason is that even when one investor selects a rational
strategy at that time, it changes the time evolution of prices, it
becomes no longer rational, another strategy becomes rational,
and the process repeats.

When both the TA-m and TA-r exist, the parameters of
investment strategies were changing irregularly and unexpect-
edly, and the cyclic feature was only present in the case where
only the TA-m exists. Optimization instability is one level
higher than “non-equilibrium of market prices.” Therefore,
the time evolution of market prices produced by investment
strategies having such unstable parameters is highly unlikely
to be predicted and have stable laws written by equations.
This nature makes us suspect that financial markets include
the principle of natural uniformity and indicates the difficulty
of building an equation model explaining the time evolution
of prices.

V. APPENDIX

A. Basic concept for constructing a model

An artificial market model, which is a kind of agent-based
model, can be used to investigate situations that have never
occurred, handle regulation changes that have never been
made, and isolate the pure contribution of these changes to
price formation and liquidity [8], [9]. These are the advantages
of an artificial market simulation.

However, the outputs of this simulation would not be
accurate or be credible forecasts of the actual future. The
simulation needs to reveal possible mechanisms that affect
price formation through many simulation runs, e.g., searching
for parameters or purely comparing the before and after states
of changes. The possible mechanisms revealed by these runs
provide new intelligence and insight into the effects of the
changes in price formations in actual financial markets. Other
methods of study, e.g., empirical studies, would not reveal such
possible mechanisms.

Artificial markets should replicate the macro phenomena
that exist generally for any asset at any time. Price variation,

10In [25], the parameters of each strategy are fixed and the learning process
is not implemented.



which is a kind of macro phenomenon, is not explicitly
modeled in artificial markets. Only micro processes, agents
(general investors), and price determination mechanisms (fi-
nancial exchanges) are explicitly modeled. Macro phenomena
emerge as the outcome of interactions from micro processes.
Therefore, the simulation outputs should replicate existing
macro phenomena to generally prove that simulation models
are probable in actual markets.

However, it is not the primary purpose for an artificial mar-
ket to replicate specific macro phenomena only for a specific
asset or period. Unnecessary replication of macro phenomena
leads to models that are overfitted and too complex. Such
models would prevent us from understanding and discovering
mechanisms that affect price formation because the number of
related factors would increase.

In addition, artificial market models that are too complex are
often criticized because they are very difficult to evaluate [5].
A model that is too complex not only would prevent us from
understanding mechanisms but also could output arbitrary
results by overfitting too many parameters. It is more difficult
for simpler models to obtain arbitrary results, and these models
are easier to evaluate.

Therefore, we constructed an artificial market model that
is as simple as possible and does not intentionally implement
agents to cover all the investors who would exist in actual
financial markets.

As Michael Weisberg mentioned [26], “Modeling, (is) the
indirect study of real-world systems via the construction and
analysis of models.” “Modeling is not always aimed at purely
veridical representation. Rather, they worked hard to identify
the features of these systems that were most salient to their
investigations.”

Therefore, effective models are different depending on the
phenomena they focus on. Thus, our model is effective only
for the purpose of this study and not for others. The aim of
our study is to understand how important properties (behav-
iors, algorithms) affect macro phenomena and play a role in
the financial system rather than representing actual financial
markets precisely.

The aforementioned discussion holds not only for artificial
markets but also for agent-based models used in fields other
than financial markets. For example, Thomas Schelling, who
received the Nobel Prize in economics, used an agent-based
model to discuss the mechanism of racial segregation. The
model was built very simply compared with an actual town to
focus on the mechanism [27]. While it was not able to predict
the segregation situation in the actual town, it was able to
explain the mechanism of segregation as a phenomenon.

Harry Stevens, a newspaper writer, simulated an agent-based
model to explain the spread of COVID-19 and to determine
how to prevent infection [28]. The model was too simple to
replicate the real world, but its simplicity enabled it to reveal
the mechanism behind the spread.

Michael Weisberg studied what mathematical and simula-
tion models are in the first place and cited the example of a
map [26]. Needless to say, a map models geographical features

TABLE I
STYLIZED FACTS WITHOUT THE TAS

kurtosis or returns 18.341
lag
1 0.060

autocorrelation 2 0.050
coefficient for 3 0.047
square returns 4 0.038

5 0.036

on the way to a destination. With a simple map, we can
easily understand the way to the destination. However, while
a satellite photo replicates actual geographical features very
well, we cannot easily find the way to the destination.

The title page of Michael Weisberg’s book [26] cited a
passage from a short story by Jorge Borges [29], “In time,
those Unconscionable Maps no longer satisfied, and the Car-
tographers Guilds struck a Map of the Empire whose size was
that of the Empire, and which coincided point for point with
it...In the Deserts of the West, still today, there are Tattered
Ruins of that Map, inhabited by Animals and Beggars.” The
story in which a map was enlarged to the same size as the real
Empire to become the most detailed of any map is an analogy
to that too detailed a model is not useful. This story give us
one of the most important lessons for when we build and use
any model.

B. Validation of the model

In many previous artificial market studies, the models were
validated to determine whether they could explain stylized
facts, such as a fat-tail or volatility clustering [4], [5], [8], [9].
A fat-tail means that the kurtosis of price returns is positive.
Volatility clustering means that square returns have a positive
autocorrelation, which slowly decays as its lag becomes longer.

Many empirical studies, e.g., that of Sewell [18], have
shown that both stylized facts (fat-tail and volatility clustering)
exist statistically in almost all financial markets. Conversely,
they also have shown that only the fat-tail and volatility
clustering are stably observed for any asset and in any period
because financial markets are generally unstable. This leads
to the conclusion that an artificial market should replicate
macro phenomena that exist generally for any asset at any
time, fat-tails, and volatility clustering. This is an example of
how empirical studies can help an artificial market model.

The kurtosis of price returns and the autocorrelation of
square returns are stably and significantly positive, but the
magnitudes of these values are unstable and very different
depending on the asset and/or period. Very broad magnitudes
of about 1 ∼ 100 and about 0 ∼ 0.2, respectively, have been
observed [18].

For the aforementioned reasons, an artificial market model
should replicate these values as significantly positive and
within a reasonable range. It is not essential for the model
to replicate specific values of stylized facts because the values
of these facts are unstable in actual financial markets.



Table I lists the statistics showing the stylized facts, kurtosis
of price returns for 100 tick times (ln(P t/P t−100)), and
autocorrelation coefficient for square returns for 100 tick
times without TAs. This shows that this model replicated
the statistical characteristics, fat-tails, and volatility clustering
observed in real financial markets.
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