
Comparison of Two Distinctive Model Driven
Web Service Orchestration Proposals

Konrad Pfadenhauer1, Schahram Dustdar2 , Burkhard Kittl1

1 Vienna University of Technology, Institute for Production Engineering, Karlsplatz 13, 1040
Vienna, Austria

{pfadenhauer, kittl}@mail.ift.tuwien.ac.at
2 Vienna University of Technology, Information Systems Institute, Distributed Systems Group,

Argentinierstraße 8/184-1, 1040 Vienna, Austria
dustdar@infosys.tuwien.ac.at

Abstract

The concept of MDA (model driven architecture)
aims at the goal of longevity (through business logic
and architecture migration between different platforms)
and quality improvement (through raising the level of
abstraction). In the context of business process
modeling and execution a frictionless mapping between
high level, platform independent business process
definition and platform specific, executable code has to
be achieved. In this paper we compare two existing real
world mapping scenarios of IBM and Microsoft
concerning Web Service Orchestration. One “top-
down” approach starting with high-level UML models
down to executable code, the other as a “bottom-up”
approach, with proprietary modeling integrated within
the IDE. We try to answer the question how far both
proposals implemented the MDA concept yet and
discuss how they could support our current project of a
service oriented architecture for the manufacturing
shop floor domain.

1. Introduction

Modeling in the context of information systems
lifecycle management has today one major driving
force: knowledge alignment. If one’s aim is real
process flexibility, then the model has to support the
process user in choosing between alternative flows or
changing control and information flows. The users
should interact with the system at the same level of
abstraction as the domain analysts, who initially set the
static and dynamic structure. Both roles demand for
simplicity [11]. The models should also absorb the
system and IT knowledge about platforms, and finally
the programmer knowledge about development
practices.

Concerning dynamic system behaviour, which is the
focus of this paper, the stakeholders’ diverse
backgrounds reflect a major challenge. For one group,
process modeling is an essential part of overall system
modeling, for the next it is just a graphical vehicle
within the IDE and for the third it is a pure
visualization of their business logic without any IS
context.

The strong focus on architecture dynamic and
adjustability, together with an ever growing analogy
between business- and IS-processes, that is to say the
IS has frictionless control over the process, make a
common view necessary. To achieve this, generally
speaking, two main model driven process design and
execution approaches exist.

The first one postulates the concept of model
enrichment through extensions combined with
elaborate transformation and mapping mechanisms,
most prominent represented by means of OMG’s MDA
(Model Driven Architecture) [17]. This ambitious
concept demands for a strict separation of concerns,
expressed through a layer stack consisting of different
levels of abstraction. To achieve this, the models have
to cover a broad set of requirements. We mention as an
example the complex task of PIM (Platform
Independent Model) to PSM (Platform Specific Model)
mapping, extended by an additional executable UML
layer, introducing mark-ups and languages like ASL
(Action Specific Language. This intermediate step
makes the model executable, especially valuable for
testing before mapping. The benefit is a stringent
process from abstract domain models down to
executable code. Therefore, we call it a “top-down”
approach.

The second is best described as “bottom-up”,
because not the portable architecture model is the
starting point, but the existing process development

and execution possibilities within a certain vendor
environment. The vendor independent visualization is
just an extension of graphical drag & drop interactions
offered by the IDE. In this group we classify MS Biz
Talk 2004/Visual Studio 2003, IBM WebSphere
Studio [14] or the SAP NetWaever Platform [21]. In
addition to platform specific (PSM), the IDE models
have to be called vendor specific (VSM). Only very
recently within this group portability is not only
achieved through the mapping to process mark-up
languages like BPEL4WS, but also at model level
through e.g. UML-XMI mapping [5]. Both paradigms
have the above mentioned knowledge alignment in
mind, but the difference in the realization shall be
described by means of two examples for model driven
Web Service Orchestration.

 The structure of this paper is as follows. We first
introduce in Section 2 our current project shortly and
fix the actual state. For the realization of a Web
Service oriented architecture, we need to make our
platform independent process models executable,
hence we continue with a more detailed discussion of
model driven Web Service Orchestration in Section 3.
We then choose one representative from each group
mentioned above, each has to fulfil the requirement of
real-world proceedings for model driven WS
Orchestration with tool support. For the “top-down
group” notably an IBM-BPWS4J approach, which is at
a rather early testing stage, and the MS-BizTalk
approach, representing the “bottom-up group”. Both
proceedings, together with a theoretical comparison,
are described in Section 4. Having the evaluation
results of both approaches in mind, we define in
Section 5 MDA and SOA requirements for future
model-driven WS Orchestration proposals. With a
conclusion and an outlook at the work to come we will
finish this paper.

2. Problem description and project state

In our current project “Modeling the shop floor for a
service oriented architecture” [19] we use the shop
floor domain to implement a methodology for platform
independent, service oriented model generation. To
overcome a situation of vertical, interrupted processes
and partly unavailable, partly static accessible
functionalities we introduce our concept of a MDSA
(Model Driven Service Architecture) for the shop
floor, together with a top-down methodology and a
tool for user friendly model creation, which in addition
is the basis for automated flow execution. Therefore,
we introduced three levels of model granularity and
completeness which allow for static and dynamic
modeling, starting with generic constructs and ending
with a model of a given shop floor domain.

Fast and easy initial, computation independent
modeling of a given shop floor system has to be
supported, focusing on functionality and connectivity
of the system as a hole. We achieve this by a generic
high level model called “Shop Floor Tool-Box”. The
sophisticated platform independent model (PIM) does
not include detailed information enabling automated
flow execution, but takes into account the socio-
technical structure of the domain. Furthermore, we are
developing a cascade of control loops to specify
platform requirements in a platform specific model
(PSM) and otherwise to maintain the system model and
the service flow definitions (Figure 1).

Strategic Level

goals

Tactical Level
PSM

Service Invocation,
Messaging

Operational Level

Process Master
flow execution

Monitoring

process redesign

INPUT OUTPUT

Information Flow

(Material Flow)

process update

SYSTEM BORDER

CONTROL
INPUT

public service
requirements

CONTROL
OUTPUT

public service
information

Control Flow

Internal Service Provider

External Service
Provider

key
figures

service/
process

repository

PIM

Figure 1. Process life cycle oriented domain modeling

It has to support long term platform, infrastructure and
service provider decisions through PIM as-is and to-be
comparisons. This high level model has to interact with
the PSM concerning process definition. The latter
serves at a tactical level for the (re)design of service
flow definitions which are semantically rich enough
for executable code generation. Both levels interact
with the service repository. It provides patterns
specifying typical system processes, each on the one
hand in a more generic (computation independent)
model form for the use within the PIM and on the other
hand particular process models for the interaction with
the PSM. Alternative service flows, different versions
or diverse technological specifications of one and the
same process are, therefore, separated from the actual
valid PSM. Templates allow for fast process creation,
either directly within the PSM or within the repository.

This proceeding takes into consideration the
necessity of business- and IT-view alignment, allowing
e.g. architectural views or process definition at distinct
levels of abstraction.

The visualized aim made UML the first choice,
because UML is the de facto standard for IT
professionals and, as we demonstrate with our “Shop
Floor Tool-Box” methodology, is well suited for
abstract domain analysis too.

 One of the main platforms of interest is
WS/SOAP/XML, a promising set of technologies for
service oriented architecture implementation. Business
process management within this environment has to
cover the complete range from high-level, graphical
process design down to low-level, coded process
execution [15], [13]. Having a platform independent
UML model of the shop floor with typical process
designs on the one hand and a repository of Web
Service interfaces realized by typical shop floor service
providers on the other hand raises the question how to
develop and implement executable service flows.

3. Model driven WS Orchestration

Figure 2 illustrates the three main areas which have
to be combined for model driven service orchestration.
Alonso et al. [3] mention three main elements for WS
composition middleware: the modeling environment,
the development environment (IDE) and the run-time
environment. The latter one has to execute the coded
composition specification. How this specification is
achieved, i.e. how and within which environment the
necessary specifications and tasks from high level
system model down to code execution are fulfilled, is a
matter of ongoing discussion. Tasks like syntactical
and semantic verifications have to be considered, just
as service discovery and binding. Which type of
composition specification, the composition model, the
model representation language or the executable
composition language, is best suited for which kind of
task, can not be answered definitely yet. The
dependencies between these composition specifications
on the one hand and their integration within the three
environments on the other determine the demand for
mapping and testing functionality.

As one can see in Figure 2, the dependencies
between a single composition specification and an
overall system model are in our opinion a vital part of
a methodology which supports life cycle oriented
service composition.

The challenging factors depicted in Figure 2
establish our collection of criteria for evaluation of
existing approaches. The number of real-world
approaches especially for “top-down” model driven
WS Orchestration with an appropriate tool support is
limited.

Figure 2. Composition challenges

 The reasons, therefore, are amongst others:

• Still a number of process mark-up languages,
the “missing link” between model and
execution, like BPEL4WS or WSCI/BPML
exist. None of them can be called a standard
yet. Worse, the execution engines availability
is limited (one is IBM’s BPWS4J for
BPEL4WS).

• Model mapping and transformation is still

limited to static constructs like classes and
components, the complex task of dynamic
information transcription is just at the
beginning.

• The transformations have to be completely bi-

directional, a requirement which is hard to
achieve.

• Model and code have to support equally

certain control patterns, the evaluation of this
is still in progress (see [6], [1]). By means of
the emergence of second generation Web
Service technologies in conjunction with the
service oriented architecture [8] it is likely
these patterns have to be further expanded.

• Intelligent validation and testing mechanism

between the mapping steps hardly exist yet.

Figure 3. IBM UML-BPEL-BPWS4J proposal

To sum it up, the proceeding from WS composition
graphs to executable service flows is in the state of
lively theoretical discussion, although first
implementations exist. Skogan, Gronmo and Solheim
([20] and [10]) present a very interesting approach.
They introduce not only a technique how to import
WSDL service descriptions into UML, but also how to
use UML activity graphs enriched by means of certain
UML extensions to define WS compositions. In
addition they use XMI in combination with
corresponding XSLTs to achieve a transformation
towards several execution languages, at the moment
BPEL4WS and WorkSCo are supported. In the future,
more theoretical oriented evaluations will have to
consider this and similar approaches.

4. Two model driven Web Service
Orchestration proposals

At this time two rather distinctive approaches can be
observed, one with model environment focus, the other
with IDE focus. Not only due to the need for publicly
available tools have we focused on the two MS and
IBM scenarios. Moreover, they represent two
completely different attempts how the model driven
concept can be interpreted.

Note that the explanation of the two proceedings is
simplified to illustrate the main steps and tasks which
we experienced as determining for usability. Thus
these steps are especially important for our comparison
and strongly influence our overall review.

4.1 PSM “top-down” approach

The IBM approach is illustrated in Figure 3 [see also
[16]). The starting point is an UML model, which is
specific for the BPEL4WS platform through extensions
following the “UML 1.4 Profile for Automated
Business Processes with a mapping to BPEL 1.0” [4].
Modeling according to the profile utilizes the
information within the WS descriptions (porttypes,
operations, messages) of the involved services, but no
WSDL import support is available. Hence, this
information has to be extracted and included into the
class diagrams (static view of data types/messages,
protocols and roles) and activity diagram (dynamic
view) by hand.

After finishing the model gets exported into XMI
format, which then is imported into an IDE java
project. There an add-in performs the mapping to
BPEL4WS v1.0 or v1.1, generating the WSDL, XSD
and BEPL files. Bindings, location paths and service
links are added by means of a WSDL modify tool.
Deployment is separated from the IDE, afterwards the
BPEL process can be executed via the BPWS4J 2.0
runtime engine.

4.2 VSM “bottom-up” approach

Within the Visio Orchestration Designer a
proprietary modeling syntax prevails. It enables the
design of basic flow pattern, allowing fork, join, group,
decide and loop constructs.

Figure 4. MS Visio-XLANG/s-BizTalk Server proposal

An add-in exports this activity graph into a BizTalk
Orchestration XLANG/s .odx format, which can be
imported into the BizTalk Orchestration Designer,
which again runs within the Visual Studio IDE. The
rudimentary flow is now supplemented with ports and
messages, which are created by means of wizards
utilizing the port types and message types retrieved
from the added web references. All WSDL, XSD and
the .odx files are generated and updated with strong
graphical support. The process can be deployed within
the IDE using an administration console (Figure 4).

4.3 Comparison and evaluation

As we mentioned above, both approaches are model
driven Web Service Orchestration implementations,
but with very diverse emphases. In chapter three we
emphasized current challenges on WS Orchestration.
This discussion led to a collection of criteria which in
the following shall be used for comparison purposes
(table 1).

Generally speaking, IBM tries to design the WS
composition at a higher level of abstraction, using an
UML profile for nearly complete process definition.
Therefore, the mapping afford is rather high,
unfortunately no syntax validation takes place before
XMI export, which makes the failure risk during the
BPEL4WS mapping very high. The IBM approach
offers at no level WS discovery or reference
mechanisms. The manual WS description import, i.e.
the WSDL file transformation into different types of
stereotyped classes within UML is tedious. On the
other hand the XMI format containing the whole
business logic and platform specific information offers

theoretically a certain flexibility concerning model
reuse and transformation. In practice the reimport of
created XMI files into Rational Rose, our UML tool,
was not complete, manual adjustments were required.
The necessary support within the IDE is reduced to
WSDL modifications. The XMI mapping to
BPEL4WS itself takes place automatically, but again
without XMI validation. If an error occurs, the
mapping stops without error handling. A BPWS4J
Editor plug-in for the Eclipse IDE offers enhanced
verification functionality and more important
rudimentary graphical support for process editing.
Nevertheless the hierarchical visualization is much less
expressive and functional than the one within the MS
Orchestration Designer.

Table 1. Evaluation results

IBM "top-down" MS "bottom-up"
Environment

Modeling substantial rudimentary
Development code oriented graphical/wizards

Run-time BPWS4J BizTalk Server
Specification

System model no no
Composition model enriched UML poor + proprietary

Model representation
language standardized XMI proprietary

Executable composition
language

standardized
BPEL4WS v1.0/v1.1 proprietary XLANG/s

Tasks
Testing WS links no within IDE

Testing orchestration run-time run-time
Monitoring poor strong

Syntax Verification limited strong
Semantic Verification no no

Discovery not supported search functionality
Binding static static

Deployment isolated integrated
Mapping isolated integrated

Also concerning deployment, monitoring and testing
the MS approach is superior, but that is what we
expected. It should be mentioned here the pointlessness
of a comprehensive IDE comparison. In that case IBM
WebSphere Studio rather than Eclipse would have to
be the challenger, resulting in a comparison between
two IDE centric approaches.

The second proposal places the Web Service
Orchestration at a lower level of abstraction, within the
IDE and, therefore, establishing a tight coupling
between visualization and coding. The initial Visio
modeling in the MS proposal offers very limited
additional value, since beside the control flow no
additional information can be included. Moreover, for
control flow modeling the IDE functionality is as easy
to use. The diagram is not integrated within other
stencils, therefore, the integration in an architecture
model is missing. After the import into the IDE the
model is platform specific twofold (WS/XML and
.NET). Once the basic service flow is set up, the
service binding is very comfortable by means of
drag&drop and wizard functionality. At this level code
and graph are updated real time, a benefit which is
only possible by means of a tight integration into the
IDE. Although the underlying XLANG/s language is
proprietary, restricted BPEL4WS 1.1 import and
export functionality is offered which allows for a
certain degree of portability.

Both approaches are concerned with single process
definition and do not take into account a system model
from which the process may be derived. That is to say,
the UML allows for further extensions referring to this
issue, whereas the Visio model doesn’t offer this
flexibility. Reactive semantic verification mechanisms
should be implemented twofold, firstly concerning the
control logic (e.g. the detection of deadlocks) and
secondly concerning inconsistencies regarding the
semantic at different levels of abstraction after manual
intervention. Both ignore the first requirement, and
only the MS approach inhibits inconsistencies between
code and graphical representation due to the tight
integration within the IDE (but not between the Visio
model and the IDE graph).

5. MDA and SOA considerations for the

future

5.1. Computation and platform independent
modeling

Following the MDA notation, IBM’s UML-BPEL
proposal starts with a UML 1.4 compliant definition of
a PSM (the platform is WS/XML) and transforms (via

separated mapping rules) it into a model specification
language by means of XMI, a standardized XML
language. The core MDA concepts, different levels of
abstraction, separation of concerns and the model
transformation paradigm are, therefore, fulfilled. This
is not true for the MS proposal, where both, the initial
and the BizTalk Orchestration model, are proprietary
and not transformable in a standardized format like
XMI. Both approaches do not take into account the
mappings from computation or even platform
independent process descriptions, in our opinion their
main weakness regarding MDA principles. Enterprises
will not make the same mistake twice like it happened
regarding proprietary ERP (Enterprise Resource
Planning) systems in the past. Often the business logic
was modeled and defined tightly coupled to a certain
platform. The WS/XML platform will be one
integration technology among others in service
oriented architectures, thus platform independent
modeling is crucial.

5.2. Integration of modeling techniques

It is also a fact that concerning process modeling the
use of a unique syntax is last but not least within the
area of WS Orchestration far from becoming true.
Historically, two more or less separated paradigms
have evolved, the business and the information system
view, resulting in two groups of modeling techniques,
one for BPM (Business Process Modeling) containing
IDEF0, Petri Nets, EPC (Event-Driven Process Chain),
Flowcharting, etc., the other for ISM (Information
System Modeling) containing Data flow diagramming,
ER diagramming or UML. Integrated design strategies
rarely have been the case in practice [9]. With the
emergence of Web Service-based process design and
execution an alignment of these two views is more
than ever vital for successful BPM (Business Process
Management). Therefore, and because of the reuse of
process repositories already existing within the
organizations, the integration possibilities of
proprietary business process models within the above
mentioned techniques should play a more important
role.

In the context of a “top-down” approach, mappings
from XML representations of widespread used and
well-defined modeling techniques (EPC Markup
Language in the case of EPC, or PNML Petri Net
Markup Language in the case of Petri Nets) to platform
independent MDA-UML models seem promising.
OMG’s Business Process Definition Metamodel [18],
an UML 2.0 profile, aims at this goal. This proposal
supports the mapping to a common metamodel and
thus facilitates the communication among a variety of
process models. We mention in this context ArcStyler,
which is in the first place a classic MDA tool vendor

for software engineering purposes, but with the MDA-
Business Transformer for ARIS [12], an eEPC
(extended Event-Driven Process Chain) to UML
mapper, they offer an interesting approach of business
and IT view alignment. Unfortunately they do no
support UML to BPEL4WS mapping. Van der Aalst
[2] has successfully undertaken a similar task, that is to
say a mapping between EPC and Petri Nets. Modeling
techniques alignment can also be achieved at a lower
level of abstraction, neglecting platform independent
representation through direct composition language
mappings. This would be a similar, platform specific
solution like the UML-BPEL4WS example from IBM
described above.

For a “bottom-up” approach, mappings to
proprietary modeling syntaxes, embodied e.g. in MS
BizTalk Orchestration Designer or IBM WebSphere
Business Integration Modeler, would be needed.

5.3. System Modeling

As we already mentioned, the dependencies between
a single process model and an overall architectural
model are not considered within the two approaches.
To see the process isolated from its environment has
many disadvantages:

• Inter process dependencies like
synchronization or process hierarchies
(nested sub-processes) are missing. Hence,
appropriate business rules and constraints
have to be coded. Monitoring by model is
no longer possible.

• Service repositories are missing at initial

modeling level. The design of the activities
takes place without knowledge about their
availability according to necessary QoSs
(Quality of Service).

• Within architectures different paths exist

and new evolve to achieve a certain
process aim. Without an architecture model
and the knowledge about the given
connectivity, one has to design a single
process model for every control flow, not
knowing whether the needed
interoperability exists or not.

• The consequences of a change in the

architecture or the introduction of new
service providers for the process designs
can not be monitored accordingly.

Ragarding the MDA approach, OMG’s Business
Process Definition Metamodel [18] again seems

noteworthy, because the final specification is expected
to achieve a metamodel that complements existing
UML metamodels so that business processes
specifications can be part of complete system
specifications to assure consistency and completeness.

5.4. Platform specific model completeness

Recent second generation Web Service Technologies
like WS-Reliable Messaging or WS-Policy [8] are not
embodied within the platform specific modeling
environments, although they are fundamental for
transaction and context implementation regarding
service-oriented inter-organizational integration [7].
Their absence in both modeling approaches means
these concepts have to be included belatedly, an
advancement that jeopardizes model and
implementation congruency. In our opinion a process
lifecycle management without a complete model
covering all relevant interaction aspects is not possible.

6. Conclusion and outlook

Within this paper we compared two general
approaches of process design and execution, one with
strong focus on the abstract, platform and vendor
independent model, which is semantically rich enough
so that an IDE is exclusively needed for (complex)
mapping tasks. The other with the focus on “applied”
modeling within the IDE, supported by a rudimentary
and abstract graph describing the control flow.

The latter “bottom-up” approach, represented by MS
BitzTalk Server, has its main advantage concerning
easy integration of existing Web Service definitions,
which is not possible within the “top-down” approach.
On the other hand the integration of the Visio or the
Biz Talk Orchestration models in an overall,
syntactical homogeneous architecture model is not
possible, thus these directed graphs have to be built
from the scratch. Here the UML-BPEL4WS approach
offers much more possibilities of integration in an
enclosing MDA concept.

Furthermore, we discussed challenges for future
model driven process engineering proposals. We
demand for a platform independent model as the
starting point, which supports not only isolated process
design, but architecture modeling. The behavioural
views within these models have to be the basis for
initial Web Service Orchestration design.

Next steps to come are investigations, whether these
approaches are suited for shop floor domain usage.
Therefore, we plan to implement some of our
processes in a use case scenario, allowing for tests
regarding applicable mechanism for process model and
process specification synchronization, with BPEL4WS
as the main specification of interest. Still another open

question is how the process models have to be
embedded in the overall architecture model e.g. how
mechanisms, which synchronize between static
architecture structure (“the sum of all possible
processes”) and single process lifecycle management,
can be established.

7. References

[1] van der Aalst, W.M.P.: ter Hofstede, A.H.M.,

Kiepuszewski, B., Barros, A.P., Workflow Patterns,
BETA Working Paper Series, WP 47, Eindhoven
University of Technology, Eindhoven, 2000

[2] van der Aalst, W.M.P.: Formalization and Verification
of Event-driven Process Chains.
Information and Software Technology, 41(10), 639-650,
1999

[3] Alonso, G. et al.: Web Services – Concepts,
Architectures and Applications, Springer Verlag, Berlin
Heidelberg, 2004

[4] Amsden, J., Gardner, T. et al.: Draft UML 1.4 Profile
for Automated Business Processes with a mapping to
BPEL 1.0, Version 1.1, IBM, June 9th 2003

[5] Beck, K., Joseph, J., Goldszmidt, G.: Learn business
process modeling basics for the analyst, IBM
developerworks, Februar 22nd 2005, http://www-
128.ibm.com/developerworks/ webservices/library/ ws-
bpm4analyst/index.html

[6] Dumas, M., ter Hofstede, A.H.M.: UML Activity
Diagrams as a Workflow Specification Language, In:
M. Gogolla, C. Kobryn, editors, UML 2001 – The
Unified Modeling Language, Proc. Of the Int.
Conference in Toronto, Canada, October, Springer
Verlag, Berlin Heidelberg, 2001, pp76-90.

[7] Dustdar, S.: Web Services Workflows - Composition,
Coordination, and Transactions in Service-Oriented
Computing, Concurrent Engineering: Research and
Applications, Sage Publications, September 2004, p.
237-246

[8] Erl, T.: Service-Oriented Architecture, Prentice Hall
PTR, New Jersey, 2004

[9] Giaglis, G.M.: A Taxonomy of Business Process
Modeling and Information Systems Modeling
Techniques, International Journal of Flexible
Manufacturing Systems, Volume 13, Issue 2, April
2001, 209 – 228

[10] Grønmo, R., Solheim, I.: Towards Modeling Web
Service Composition in UML, presented at The 2nd
International Workshop on Web Services: Modeling,
Architecture and Infrastructure (WSMAI-2004), Porto,
Portugal, 2004

[11] Haeckel, S.H.: Leading on demand business-Executives
as architects, IBM Systems Journal, Volume 42, Issue 3,
2003, pp405-413.

[12] Interactive Objects Software GmbH: ArcStyler MDA-
Business Transformer Modeling Style Guide For ARIS,
For ArcStyler Version 3.x, November 2002

[13] Kalogeras, A.P. et al.: Vertical Integration of Enterprise
Industrial Systems Utilizing Web Services, in Sauter, T.,
Vasques, F.: Proceedings of the 2004 IEEE International

Workshop on Factory Communication Systems, Vienna,
September 2004

[14] Kloppmann, M., König, D. et al.: Business process
choreography in Websphere: combining the power of
BPEL and J2EE, IBM Systems Journal, Volume 43,
Issue 2, 2004, pp. 270 - 296

[15] Leymann, F., Roller, D., Schmidt, M.-T.: Web services
and business process management, IBM Systems
Journal, Volume 41, Issue 2, 2002, pp198 – 211

[16] Mantell, K.: From UML to BPEL, IBM
developerworks, Sept 9th 2003, http://www-
106.ibm.com/developerworks/webservices/library/ws-
uml2bpel/

[17] Miller, J., Mukerji, J. (Editors): MDA Guide Version
1.0.1, OMG, June 12th 2003

[18] OMG: Business Process Definition Metamodel, Request
for Proposal, OMG document, 2003-01-06,
http://www.omg.org/docs/bei/03-01-06.pdf

[19] Pfadenhauer, K., Kittl, B.: With a system approach
towards a model driven service architecture for the shop
floor, in: Proceedings of the 2004 International
Research Conference on Innovations in Information
Technology (IIT2004), College of Information
Technology, UAE University, Dubai, 2004

[20] Skogan, D., Grønmo, R., Solheim, I.: Web Service
Composition in UML, The 8th International IEEE
Enterprise Distributed Object Computing Conference
(EDOC), Monterey, California, 2004

[21] Woods, D. and Word, J.: SAP NetWeaver for dummies,
Wiley Publishing, Indianapolis, Indiana, USA, 2004

