
Goal-Driven Dynamics Learning via Bayesian Optimization

Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J. Tomlin

Abstract— Real-world robots are becoming increasingly com-
plex and commonly act in poorly understood environments
where it is extremely challenging to model or learn their true
dynamics. Therefore, it might be desirable to take a task-
specific approach, wherein the focus is on explicitly learning the
dynamics model which achieves the best control performance
for the task at hand, rather than learning the true dynamics. In
this work, we use Bayesian optimization in an active learning
framework where a locally linear dynamics model is learned
with the intent of maximizing the control performance, and
used in conjunction with optimal control schemes to efficiently
design a controller for a given task. This model is updated
directly based on the performance observed in experiments
on the physical system in an iterative manner until a desired
performance is achieved. We demonstrate the efficacy of the
proposed approach through simulations and real experiments
on a quadrotor testbed.

I. INTRODUCTION

Given the system dynamics, optimal control schemes such
as LQR, MPC, and feedback linearization can efficiently
design a controller that maximizes a performance criterion.
However, depending on the system complexity, it can be
quite challenging to model its true dynamics. Moreover, for a
given task, a globally accurate dynamics model is not always
necessary to design a controller. Often, partial knowledge
of the dynamics is sufficient, e.g., for trajectory tracking
purposes a local linearization of a non-linear system is often
sufficient. In this paper we argue that, for complex systems,
it might be preferable to adapt the controller design process
for the specific task, using a learned system dynamics model
sufficient to achieve the desired performance.

We propose Dynamics Optimization via Bayesian Opti-
mization (aDOBO), a Bayesian Optimization (BO) based
active learning framework to learn the dynamics model that
achieves the best performance for a given task based on
the performance observed in experiments on the physical
system. This active learning framework takes into account
all past experiments and suggests the next experiment in
order to learn the most about the relationship between the
performance criterion and the model parameters. Particularly
important for robotic systems is the use of data-efficient
approaches, where only few experiments are needed to obtain
improved performance. Hence, we employ BO, an optimiza-
tion method often used to optimize a performance criterion

All authors are with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley. {somil, roberto.calandra,
t.xiao, svlevine, tomlin}@eecs.berkeley.edu

∗This research is supported by NSF under the CPS Frontiers VehiCal
project (1545126), by the UC-Philippine-California Advanced Research
Institute under project IIID-2016-005, and by the ONR MURI Embedded
Humans (N00014-16-1-2206).

Actual	SystemCurrent	Linear	
Dynamics Controller	

Cost	Function

Bayesian	
Optimization

Cost	
Evaluator

Output

Cost
New	Linear	
Dynamics

Optimal	Control	
Scheme

Fig. 1: aDOBO: A Bayesian optimization-based active learn-
ing framework for optimizing the dynamics model for a given
cost function, directly based on the observed cost values.

while keeping the number of evaluations of the physical
system small [1]. Specifically, we use BO to optimize the
dynamics model with respect to the desired task, where the
dynamics model is updated after every experiment so as to
maximize the performance on the physical system. A flow
diagram of our framework is shown in Figure 1. The current
linear dynamics model, together with the cost function (also
referred to as task/performance criterion), are used to design
a controller with an appropriate optimal control scheme. The
cost (or performance) of the controller is evaluated in closed-
loop operation with the actual (unknown) physical plant. BO
uses this performance information to iteratively update the
dynamics model to improve the performance. This procedure
corresponds to optimizing the linear system dynamics with
the purpose of maximizing the performance of the final
controller. Hence, unlike traditional system identification
approaches, it does not necessarily correspond to finding the
most accurate dynamics model, but rather the model yielding
the best controller performance when provided to the optimal
control method used.

Traditional system identification approaches are divided
into two stages: 1) creating a dynamics model by minimizing
some prediction error (e.g., using least squares) 2) using
this dynamics model to generate an appropriate controller.
In this approach, modeling the dynamics can be considered
an offline process as there is no information flow between
the two design stages. In online methods, the dynamics
model is instead iteratively updated using the new data
collected by evaluating the controller [2]. Our approach is
an online method. Both for the online and the offline cases,
creating a dynamics model based only on minimizing the
prediction error can introduce sufficient inaccuracies to lead
to suboptimal control performance [3]–[8]. Using machine
learning techniques, such as Gaussian processes, does not
alleviate this issue [9]. Instead, authors in [3] proposed
to optimize the dynamics model directly with respect to
the controller performance, but since the dynamics model
is optimized offline, the resultant model is not necessarily

ar
X

iv
:1

70
3.

09
26

0v
2 

 [
cs

.S
Y

] 
 2

2 
Se

p 
20

17



optimal for the actual system. We instead explicitly find the
dynamics model that produces the best control performance
for the actual system.

Previous studies addressed the problem of optimizing a
controller using BO. In [10]–[12], the authors tuned the
penalty matrices in an LQR problem for performance op-
timization. Although interesting results emerge from these
studies, tuning penalty matrices may not achieve the desired
performance when an accurate system model is not available.
Our approach overcomes these challenges as it does not rely
on an accurate system dynamics model. In [13], the authors
directly learn the parameters of a linear feedback controller
using BO. However, a typical controller might be non-linear
and can contain hundreds of parameters; it is not feasible
to optimize such high-dimensional controllers using BO [1].
Since aDOBO does not aim at directly learning the controller,
it is agnostic to the dimensionality of the controller. It
can leverage the low-dimensional structure of the dynamics
to optimize the high-dimensional controllers. Moreover, it
does not need to impose any structure on the controller
and can easily design general non-linear controllers as well
(see Sec. IV). The problem of updating a system model
to improve control performance is also related to adaptive
control, where the model parameters are identified from
sensor data, and subsequently the updated model is used
to design a controller (see [14]–[18]). However, in adaptive
control, the model parameters are generally updated to get a
good prediction model and not necessarily to maximize the
controller performance. In contrast, we explicitly take into
account the observed performance and search for the model
that achieves the highest performance.

To the best of our knowledge, this is the first method
that optimizes a dynamics model to maximize the control
performance on the actual system. Our approach does not
require the prior knowledge of an accurate dynamics model,
nor of its parameterized form. Instead, the dynamics model is
optimized, in an active learning setting, directly with respect
to the desired cost function using data-efficient BO.

II. PROBLEM FORMULATION

Consider an unknown, stable, discrete-time, potentially
non-linear, dynamical system

zk+1 = f(zk, uk), k ∈ {0, 1, . . . , N − 1} , (1)

where zk ∈ Rnx and uk ∈ Rnu denote the system state and
the control input at time k respectively. Given an initial state
z0, the objective is to design a controller that minimizes the
cost function J subject to the dynamics in (1)

J∗0 = min
uN−1

0

J0(zN0 ,u
N−1
0 ) = min

uN−1
0

N−1∑
i=0

l(zi, ui) + g(zN , uN ) ,

subject to zk+1 =f(zk, uk) ,
(2)

where zNi := (zi, zi+1, . . . , zN ). uN−1i is similarly defined.
One of the key challenges in designing such a controller is
the modeling of the unknown system dynamics in (1). In this
work, we model (1) as a linear time-invariant (LTI) system

with system matrices (Aθ , Bθ ). The system matrices are
parameterized by θ ∈M ⊆ Rd, which is to be varied during
the learning procedure. For a given θ and the current system
state zk, let πk(zk, θ) denote the optimal control sequence for
the linear system (Aθ , Bθ ) for the horizon {k, k+1, . . . , N}

πk(zk, θ) := ūN−1k = arg min
uN−1

k

Jk(zNk ,u
N−1
k ) ,

subject to zj+1 =Aθzj +Bθuj .
(3)

The key difference between (2) and (3) is that the con-
troller is designed for the parameterized linear system as
opposed to the true system. As θ is varied, different matrix
pairs (Aθ , Bθ ) are obtained, which result in different con-
trollers π(·, θ). Our aim is to find, among all linear models,
the linear model (Aθ∗ , Bθ∗) whose controller π(·, θ∗) mini-
mizes J0 (ideally achieves J∗0 ) for the actual system, i.e.,

θ∗ = arg min
θ∈M

J0(zN0 ,u
N−1
0 ) ,

subject to zk+1 = f(zk, uk) , uk = π1
k(zk, θ),

(4)

where π1
k(zk, θ) denotes the 1st control in the se-

quence πk(zk, θ). To make the dependence on θ explicit, we
refer to J0 in (4) as J(θ) here on. Note that (Aθ∗ , Bθ∗) in (4)
may not correspond to an actual linearization of the system,
but simply to the linear model that gives the best performance
on the actual system when its optimal controller is applied
in a closed-loop fashion on the actual physical plant.

We choose LTI modeling to reduce the number of param-
eters used to represent the system, and make the dynamics
learning process data efficient. Linear modeling also allows
to efficiently design the controller in (3) for general cost
functions (e.g., using MPC for any convex cost J). In
general, the effectiveness of linear modeling depends on both
the system and the control objective. If f is linear, a linear
model is trivially sufficient for any control objective. If f
is non-linear, a linear model may not be sufficient for all
control tasks; however, for regulation and trajectory tracking
tasks, a linear model is often adequate (see Sec. V). A
linear parameterization is also used in adaptive control for
similar reasons [18]. Nevertheless, the proposed framework
can handle more general model classes as long as the optimal
control problem in (3) can be solved for those classes.

Since f is unknown, the shape of the cost function, J(θ),
in (4) is unknown. The cost is thus evaluated empirically
in each experiment, which is often expensive as it involves
conducting an experiment. Thus, the goal is to solve the
optimization problem in (4) with as few evaluations as
possible. In this paper, we do so via BO.

III. BACKGROUND

In order to optimize (Aθ , Bθ ), we use BO. In this section,
we briefly introduce Gaussian processes and BO.

A. Gaussian Process (GP)

Since the function J(θ) in (4) is unknown a priori, we
use nonparametric GP models to approximate it over its
domain M. GPs are a popular choice for probabilistic non-
parametric regression, where the goal is to find a nonlinear



map, J(θ) : M → R, from an input vector θ ∈ M to the
function value J(θ). Hence, we assume that function values
J(θ), associated with different values of θ, are random vari-
ables and that any finite number of these random variables
have a joint Gaussian distribution dependent on the values
of θ [19]. For GPs, we define a prior mean function and
a covariance function (or kernel), k(θi, θj), which defines
the covariance between any two function values, J(θi) and
J(θj). In this work, the mean is assumed to be zero without
loss of generality. The choice of kernel is problem-dependent
and encodes general assumptions such as smoothness of the
unknown function. In the experimental section, we employ
the 5/2 Matèrn kernel where the hyperparameters are op-
timized by maximizing the marginal likelihood [19]. This
kernel function implies that the underlying function J is
differentiable and takes values within the 2σf confidence
interval with high probability.

The GP framework can be used to predict the distribution
of the performance function J(θ∗) at an arbitrary input θ∗

based on the past observations, D = {θi, J(θi)}ni=1. Condi-
tioned on D, the mean and variance of the prediction are

µ(θ∗) = kK−1J ; σ2(θ∗) = k(θ∗, θ∗)− kK−1kT , (5)

where K is the kernel matrix with Kij = k(θi, θj), k =
[k(θ1, θ

∗), . . . , k(θn, θ
∗)] and J = [J(θ1), . . . , J(θn)]. Thus,

the GP provides both the expected value of the performance
function at any arbitrary point θ∗ as well as a notion of the
uncertainty of this estimate.

B. Bayesian Optimization (BO)

Bayesian optimization aims to find the global minimum
of an unknown function [1], [20], [21]. BO is particularly
suitable for the scenarios where evaluating the unknown
function is expensive, which fits our problem in Sec. II. At
each iteration, BO uses the past observations D to model
the objective function, and uses this model to determine
informative sample locations. A common model used in BO
for the underlying objective, and the one that we consider,
are Gaussian processes (see Sec. III-A). Using the mean and
variance predictions of the GP from (5), BO computes the
next sample location by optimizing the so-called acquisition
function, α (·). Different acquisition functions are used in
literature to trade off between exploration and exploitation
during the optimization process [1]. For example, the next
evaluation for expected improvement (EI) acquisition func-
tion [22] is given by θ∗ = arg minθ α (θ) where

α (θ) = σ(θ)[uΦ(u) + φ(u)]; u = (µ(θ)− T )/σ(θ). (6)

Φ(·) and φ(·) in (6), respectively, are the standard normal
cumulative distribution and probability density functions.
The target value T is the minimum of all explored data.
Intuitively, EI selects the next parameter point where the
expected improvement over T is maximal. Repeatedly eval-
uating the system at points given by (6) thus improves the
observed performance. Note that optimizing α (θ) in (6) does
not require physical interactions with the system, but only
evaluation of the GP model. When a new set of optimal

Algorithm 1: aDOBO algorithm

1 D ←− if available: {θ, J (θ)}
2 Prior ←− if available: Prior of the GP hyperparameters
3 Initialize GP with D
4 while optimize do
5 Find θ∗ = arg minθ α (θ); θ

′ ←− θ∗
6 zN0 = {}, uN−10 = {}
7 for i = 0 : N − 1 do
8 Given zi and (Aθ′ , Bθ′ ), compute πi(zi, θ

′
)

9 Apply π1
i (zi, θ

′
) on the real system and

measure zi+1

10 zN0 ←− (zN0 , zi+1)

11 uN−10 ←− (uN−10 , π1
i (zi, θ

′
))

12 Evaluate J(θ
′
) := J0(zN0 ,u

N−1
0 ) using (2)

13 Update GP and D with {θ′ , J(θ
′
)}

parameters θ∗ is determined, they are finally evaluated on
the real objective function J (i.e., the system).

IV. DYNAMICS OPTIMIZATION VIA BO (aDOBO)

This section presents the technical details of aDOBO, a
novel framework for optimizing dynamics model for maxi-
mizing the resultant controller performance. In this work, θ ∈
Rnx(nx+nu), i.e., each dimension in θ corresponds to an entry
of the Aθ or Bθ matrices. This parameterization is chosen
for simplicity, but other parameterizations can easily be used.

Given an initial state of the system z0 and the current
system dynamics model (Aθ′ , Bθ′ ), we design an optimal
control sequence π0(z0, θ

′
) that minimizes the cost function

J0(zN0 ,u
N−1
0 ), i.e., we solve the optimal control problem

in (3). The first control of this control sequence is applied
on the actual system and the next state z1 is measured.
We then similarly compute π1(z1, θ

′
) starting at z1, apply

the first control in the obtained control sequence, measure
z2, and so on until we get zN . Once zN0 and uN−10 are
obtained, we compute the true performance of uN−10 on
the actual system by analytically computing J0(zN0 ,u

N−1
0 )

using (2). We denote this cost by J(θ
′
) for simplicity. We

next update the GP based on the collected data sample
{θ′ , J(θ

′
)}. Finally, we compute θ∗ that minimizes the cor-

responding acquisition function α (θ) and repeat the process
for (Aθ∗ , Bθ∗). Our approach is illustrated in Figure 1 and
summarized in Algorithm 1. Intuitively, aDOBO directly
learns the shape of the cost function J(θ) as a function
of linearizations (Aθ , Bθ ). Instead of learning the global
shape of this function through random queries, it analyzes the
performance of all the past evaluations and by optimizing the
acquisition function, generates the next query that provides
the maximum information about the minima of the cost
function. This direct minima-seeking behavior based on the
actual observed performance ensures that our approach is
data-efficient. Thus, in the space of all linearizations, we
efficiently and directly search for the linearization whose
corresponding controller minimizes J0 on the actual system.



Fig. 2: Dubins car: mean and standard deviation of η during
the learning process (over 10 trials). aDOBO reaches within
the 10% of the optimal cost in just 100 iterations, starting
from a random dynamics model. Using a log warping on the
cost function further accelerates the learning.

Since the problem in (3) is an optimal control problem
for the linear system (Aθ′ , Bθ′ ), depending on the form
of the cost function J , different optimal control schemes
can be used. For example, if J is quadratic, the optimal
controller is a linear feedback controller given by the solution
of a Riccati equation. If J is a general convex function, the
optimal control problem is solved through a general convex
MPC solver, and the resultant controller could be non-linear.
Thus, depending on the form of J , the controller designed
by aDOBO can be linear or non-linear. This property causes
aDOBO to perform well in the scenarios where a linear
controller is not sufficient, as shown in Sec. VI-B. More
generally, the proposed framework is modular and other
control schemes can be used that are more suitable for a
given cost function, which allows us to capture a richer
controller space.

Note that the GP in our algorithm can be initialized with
dynamics models whose controllers are known to perform
well on the actual system. This generally leads to a faster
convergence. For example, when a good linearization of the
system is known, it can be used to initialize D. When no
information is known about the system a priori, the initial
models are queried randomly. Finally, note that aDOBO can
also be used when the real system is stochastic. In this case,
aDOBO will minimize the expected cost.

V. NUMERICAL SIMULATIONS

In this section, we present some simulation results on the
performance of the proposed method for controller design.

A. Dubins Car System

For the first simulation, we consider a three dimensional
non-linear Dubins car whose dynamics are given as

ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω , (7)

where z := (x, y, φ) is the state of system, p = (x, y) is
the position, φ is the heading, v is the speed, and ω is the
turn rate. The input (control) to the system is u := (v, ω).
For simulation purposes, we discretize the dynamics at a
frequency of 10Hz. Our goal is to design a controller that
steers the system to the equilibrium point z∗ = 0, u∗ = 0
starting from the state z0 := (1.5, 1, π/2). In particular, we

0 10 20 30
-2

-1

0

v

Control inputs

0 10 20
Horizon (N)

-2

-1!

Learned Optimal

0 10 20 30

0.5
1

1.5

x

States

0 10 20 30
Horizon (N)

0.5

1

y

Fig. 3: Dubins car: state and control trajectories for the
learned and the true system. The two trajectories are very
similar, indicating that the learned dynamics model repre-
sents the system behavior accurately around the desired state.

want to minimize the cost function

J0(zN0 ,u
N−1
0 ) =

N−1∑
k=0

(
zTk Qzk + uTkRuk

)
+zTNQfzN . (8)

We choose N = 30. Q, Qf and R are all chosen as identity
matrices of appropriate sizes. We also assume that the
dynamics are not known; hence, we cannot directly design
a controller to steer the system to the desired equilibrium.
Instead, we use aDOBO to find a linearization of dynamics in
(7) that minimizes the cost function in (8), directly from the
experimental data. In particular, we represent the system in
(7) by a parameterized linear system zk+1 = Aθzk +Bθuk,
design a controller for this system and apply it on the actual
system. Based on the observed performance, BO suggests
a new linearization and the process is repeated. Since the
cost function is quadratic in this case, the optimal control
problem for a particular θ is an LQR problem, and can
be solved efficiently. For BO, we use the MATLAB library
BayesOpt [23]. Since there are 3 states and 2 inputs, we learn
15 parameters in total, one corresponding to each entry of
the Aθ and Bθ matrices. The bounds on the parameters are
chosen randomly asM = [−2, 2]15. As acquisition function,
we use EI (see eq. (6)). Since no information is assumed
to be known about the system, the GP was initialized with
a random θ. We also warp the cost function J using the
log function before passing it to BO. Warping makes the
cost function smoother while maintaining its monotonic
properties, which makes the sampling process in BO more
efficient and leads to a faster convergence.

For comparison, we compute the true optimal controller
that minimizes (8) subject to the dynamics in (7) using the
non-linear solver fmincon in MATLAB to get the minimum
achievable cost J∗0 across all controllers. We use the per-
centage error between the true optimal cost J∗0 and the cost
achieved by aDOBO as our comparison metric in this work

ηn = 100× (J∗0 − J(θn))/J∗0 , (9)

where J(θn) is the best cost achieved by aDOBO by itera-
tion n. In Fig. 2, we plot ηn for Dubins car. As learning
progresses, aDOBO gathers more and more information
about the minimum of J0 and reaches within 10% of J∗0



in just 100 iterations, demonstrating its effectiveness in
designing a controller for an unknown system just from
the experimental data. Fig. 2 also highlights the effect of
warping in BO. A well warped function converges faster
to the optimal performance. We also compared the control
and state trajectories obtained from the learned controller
with the optimal control and state trajectories. As shown
in Fig. 3, the learned system matrices not only achieve
the optimal cost, but also follow the optimal state and
control trajectories very closely. Even though the trajectories
are very close to each other for the true system and its
learned linearization, this linearization may not correspond
to any actual linearization of the system. The next simulation
illustrates this key property of aDOBO more clearly.

B. A Simple 1D Linear System

For this simulation, we consider a simple 1D linear system

zk+1 = zk + uk , (10)

where zk and uk are the state and the input of the system
at time k. Although the dynamics model is very simple, it
illustrates some key insights about the proposed method. Our
goal is to design a controller that minimizes (8) starting from
the state z0 = 1. We choose N = 30 and R = Q = Qf = 1.
We assume that the dynamics are unknown and use aDOBO
to learn the dynamics, where θ := (θ1, θ2) ∈ R2 are the
dynamics parameters to be learned.

Fig. 4: Cost of the actual
system in (10) as a function
of the linearization parameters
(θ1, θ2). The parameters ob-
tained by aDOBO (the pink
X) yield to performance very
close to the true system pa-
rameters (the green ∗). Note
that aDOBO does not neces-
sarily converge to the true pa-
rameters.

The learning process
converges in 45 iterations
to the true optimal
performance (J∗0 = 1.61),
which is computed using
LQR on the real system.
The converged parameters
are θ1 = 1.69 and
θ2 = 2.45, which are
vastly different from the
true parameters θ1 = 1 and
θ2 = 1, even though the
actual system is a linear
system. To understand
this, we plot the cost
obtained on the true
system J0 as a function
of linearization parameters
(θ1, θ2) in Fig. 4. Since
the performances of the
two sets of parameters are very close to each other, a direct
performance based learning process (e.g., aDOBO) cannot
distinguish between them and both sets are equally optimal
for it. More generally, a wide range of parameters lead
to similar performance on the actual system. Hence, we
can expect the proposed approach to recover the optimal
controller and the actual state trajectories, but not necessarily
the true dynamics or its true linearization. This simulation
also suggests that the true dynamics of the system may

not even be required as far as the control performance is
concerned.

C. Cart-pole System

We next apply aDOBO to a cart-pole system

(M +m)ẍ−mlψ̈ cosψ +mlψ̇2 sinψ = F ,

lψ̈ − g sinψ = ẍ cosψ ,
(11)

where x denotes the position of the cart with mass M , ψ
denotes the pendulum angle, and F is a force that serves
as the control input. The massless pendulum is of length l
with a mass m attached at its end. Define the system state as
z := (x, ẋ, ψ, ψ̇) and the input as u := F . Starting from the
state (0, 0, π6 , 0), the goal is to keep the pendulum straight
up, while keeping the state within given lower and upper
bounds. In particular, we want to minimize the cost

J0(zN0 ,u
N−1
0 ) =

N−1∑
k=0

(
zTk Qzk + uTkRuk

)
+ zTNQfzN

+ λ

N∑
i=0

max(0, z − zi, zi − z),

(12)
where λ penalizes the deviation of state zi below z and
above z. We assume that the dynamics are unknown and
use aDOBO to optimize the dynamics. For simulation, we
discretize the dynamics at a frequency of 10Hz. We choose
N = 30, M = 1.5Kg, m = 0.175Kg, λ = 100 and
l = 0.28m. The Q = Qf = diag([0.1, 1, 100, 1]) and
R = 0.1 matrices are chosen to penalize the angular
deviation significantly. We use z = [−2,−∞,−0.1,−∞]
and z = [2,∞,∞,∞], i.e., we are interested in controlling
the pendulum while keeping the cart position within [−2, 2],
and limiting the pendulum overshoot to 0.1. The optimal
control problem for a particular linearization is a convex
MPC problem and solved using YALMIP [24]. The true J∗0
is computed using fmincon.

As shown in Fig. 5, aDOBO reaches within 20% of
the optimal performance in 250 iterations and continue to
make progress towards finding the optimal controller. This
simulation demonstrates that the proposed method (a) is also
applicable to highly non-linear systems, (b) can handle gen-
eral convex cost functions that are not necessarily quadratic,
and (c) different optimal control schemes can be used within
the proposed framework. Since an MPC controller can in
general be non-linear, this implies that the proposed method
can also design complex non-linear controllers with an LTI
parametrization.

VI. COMPARISON WITH OTHER METHODS

In this section, we compare our approach with some other
online learning schemes for controller design.

A. Tuning (Q,R) vs aDOBO

In this section, we consider the case in which the cost
function J0 is quadratic (see Eq. (8)). Suppose that the actual
linearization of the system around z∗ = 0 and u∗ = 0 is



Fig. 5: Cart-pole system: mean and standard deviation of η
during the learning process. The learned controller reaches
within 20% of the optimal cost in 250 iterations, demonstrat-
ing the applicability of aDOBO to highly non-linear systems.

known and given by (A∗, B∗). To design a controller for the
actual system in such a case, it is a common practice to use
an LQR controller for the linearized dynamics. However, the
resultant controller may be sub-optimal for the actual non-
linear system. To overcome this problem, authors in [10],
[11] propose to optimize the controller by tuning penalty
matrices Q and R in (8). In particular, we solve

θ∗ = arg min
θ∈M

J0(zN0 ,u
N−1
0 ) ,

sub. to zk+1 = f(zk, uk), uk = K(θ)zk ,

K(θ) = LQR(A∗, B∗,WQ(θ),WR(θ), Qf ) ,

(13)

where K(θ) denotes the LQR feedback matrix obtained for
the system matrices (A∗, B∗) with WQ and WR as state and
input penalty matrices, and can be computed analytically. For
further details of LQR method, we refer interested readers to
[25]. The difference between optimization problems (4) and
(13) is that now we parameterize penalty matrices WQ and
WR instead of system dynamics. The optimization problem
in (13) is solved using BO in a similar fashion as we solve
(4) [10]. The parameter θ, in this case, can be initialized by
the actual penalty matrices Q and R, instead of a random
query, which generally leads to a much faster convergence.
An alternative approach is to use aDOBO, except that now
we can use (A∗, B∗) as initializations for the system matrices
A and B. Actual penalty matrices Q and R are used for
aDOBO.

When (A∗, B∗) are known to a good accuracy, (Q,R)
tuning method is expected to converge quickly to the optimal
performance compared to aDOBO as it needs to learn
fewer parameters, i.e., (nx+nu) (assuming diagonal penalty
matrices) compared to nx(nx+nu) parameters for aDOBO.
However, when there is error in (A∗, B∗) (or more generally
if dynamics are unknown), the performance of the (Q,R)
tuning method can degrade significantly as it relies on an
accurate linearization of the system dynamics, rendering the
method impractical for control design purposes. To compare
the two methods we use the Dubins car model in Eq. (7).
The rest of the simulation parameters are same as Section
V-A. We compute the linearization of Dubins car around
z∗ = 0 and u∗ = 0 using (7) and add random matrices
(Ar, Br) to them to generate A′ = (1 − α)A∗ + αAr and
B′ = (1−α)B∗+αBr. We then initialize both methods with
(A′, B′) for different αs. As shown in Fig. 6, the (Q,R)
tuning method outperforms aDOBO, when there is no noise

0 100 200 300 400 500
Iteration

0

10

20

30

40

Pe
rc

en
ta

ge
 e

rro
r i

n 
J 0

,= 0
,= 0.1
,= 0.2

Fig. 6: Dubins car: Comparison between tuning the penalty
matrices (Q,R) [10] (dashed curves), and aDOBO (solid
curves) for different noise levels in (A∗, B∗), the true lin-
earized dynamics around the desired goal state. When the
true linearized dynamics are known perfectly, the (Q,R) tun-
ing method outperforms aDOBO because fewer parameters
are to be learned. Its performance, however, drops signifi-
cantly as noise increases, rendering the method impractical
for the scenarios where system dynamics are not known to
a good accuracy.

in (A∗, B∗). But as α increases, its performance deteriorates
significantly. In contrast, aDOBO is fairly indifferent to the
noise level, as it does not assume any prior knowledge of sys-
tem dynamics. The only information assumed to be known
is penalty matrices (Q,R), which are generally designed by
the user and hence are known a priori.

B. Learning K vs aDOBO

When the cost function is quadratic, another potential ap-
proach is to directly parameterize and optimize the feedback
matrix K ∈ Rnxnu in (13) [13] as

θ∗ = arg min
θ∈M

J0(zN0 ,u
N−1
0 ) ,

sub. to zk+1 = f(zk, uk), uk = Kθzk .
(14)

The advantage of this approach is that only nxnu param-
eters are learned compared to nx(nx + nu) parameters in
aDOBO, which is also evident from Fig. 7a, wherein the
learning process for K converges much faster than that for
aDOBO. However, a linear controller might not be sufficient
for general cost functions, and non-linear controllers are
required to achieve a desired performance. As shown in
Sec. V-C, aDOBO is not limited to linear controllers; hence,
it outperforms the K learning method in such scenarios.
Consider, for example, the linear system

xk+1 = xk + yk, yk+1 = yk + uk , (15)

and the cost function in Eq. (12) with state zk = (xk, yk),
N = 30, z = [0.5,−0.4] and z = [∞,∞]. Q, Qf and R are
all identity matrices of appropriate sizes, and λ = 100.

As evident from Fig. 7b, directly learning a feedback
matrix performs poorly with an error as high as 80% from
the optimal cost. Since the cost is not quadratic, the opti-
mal controller is not necessarily linear; however, since the
controller in (14) is restricted to a linear space, it performs
rather poorly in this case. In contrast, aDOBO continues
to improve performance and reaches within 20% of the
optimal cost within few iterations, because we implicitly
parameterize a much richer controller space via learning A



(a) Dubins car (b) System of Eq. (15)

Fig. 7: Mean and standard deviation of η obtained via directly learning the feedback controller K [13] and aDOBO for
different cost functions. (a) Comparison for the quadratic cost function of Eq. (8). Directly learning K converges to the
optimal performance faster because fewer parameters are to be learned. (b) Comparison for the non-quadratic cost function
of Eq. (12). Since the optimal controller for the actual system is not necessarily linear in this case, directly learning K leads
to a poor performance

Iteration aDOBO Learning Control Sequence
200 53 ± 50% 605 ± 420%
400 27 ± 12% 357 ± 159%
600 17 ± 7% 263 ± 150%

TABLE I: System in (15): mean and standard deviation of η
for aDOBO, and for directly learning the control sequence.
Since the space of control sequence is huge, the error is
substantial even after 600 iterations.

and B. In this example, we capture non-linear controllers
by using a linear dynamics model with a convex MPC
solver. Since the underlying system is linear, the true optimal
controller is also in our search space. Our algorithm makes
sure that we make a steady progress towards finding that
controller. However, we are not restricted to learning a linear
controller K. One can also directly learn the actual control
sequence to be applied to the system (which also captures the
optimal controller). This approach may not be data-efficient
compared to aDOBO as the control sequence space can
be very large depending on the problem horizon, and will
require a large number of experiments. As shown in Table I,
the performance error is more than 250% even after 600
iterations, rendering the method impractical for real systems.

C. Adaptive Control vs aDOBO

In this work, we aim to directly find the best linearization
based on the observed performance. Another approach is
to learn a true linearization of the system based on the
observed state and input trajectory during the experiments.
The underlying hypothesis is that as more and more data
is collected, a better linearization is obtained, eventually
leading to an improved control performance. This approach
is in-line with the traditional model identification and the
adaptive control frameworks. Let (jz

N
0 , ju

N−1
0 ) denotes the

state and input trajectories for experiment j. We also let Di =
∪ij=1(jz

N
0 , ju

N−1
0 ). After experiment i, we fit an LTI model

of the form zk+1 = Aizk+Biuk using least squares on data
in Di and then use this model to obtain a new controller for
experiment i+1. We apply the approach on the linear system
in (15) and the non-linear system in (7) with the cost function
in (8). For the linear system, the approach converges to the
true system dynamics in 5 iterations. However, this approach

Iteration aDOBO Learning via LS
200 6 ± 3.7% 166.7 ± 411%
400 2.2 ± 1.1% 75.9 ± 189%
600 1.8 ± 0.7% 70.7 ± 166%

TABLE II: Dubins car: mean and standard deviation of η
obtained via learning (A,B) through least squares (LS), and
through aDOBO.

performs rather poorly on the non-linear system, as shown in
Table II. When the underlying system is non-linear, all state
and input trajectories may not contribute to the performance
improvement. A good linearization should be obtained from
the state and input trajectories in the region of interest, which
depends on the task. For example, if we want to regulate the
system to the equilibrium (0, 0), a linearization of the system
around (0, 0) should be obtained. Thus, it is desirable to
use the system trajectories that are close to this equilibrium
point. However, a naive prediction error based approach has
no means to select these “good” trajectories from the pool
of trajectories and hence can lead to a poor performance.
In contrast, aDOBO does not suffer from these limitations,
as it explicitly utilizes a performance based optimization.
A summary of the advantages and limitations of the four
methods is provided in Table III.

VII. QUADROTOR POSITION TRACKING EXPERIMENTS

Fig. 8: The Crazyflie 2.0

We now present the re-
sults of our experiments on
Crazyflie 2.0, which is an
open source nano quadro-
tor platform developed by
Bitcraze. Its small size, low
cost, and robustness make it
an ideal platform for testing
new control paradigms. Recently, it has been extensively
used to demonstrate aggressive flights [26], [27]. For small
yaw, the quadrotor system is modeled as a rigid body with
a ten dimensional state vector s :=

[
p, v, ζ, ω

]
, which

includes the position p = (x, y, z) in an inertial frame I ,
linear velocities v = (vx, vy, vz) in I , attitude (orientation)
represented by Euler angles ζ, and angular velocities ω.
The system is controlled via three inputs u :=

[
u1, u2, u3

]
,

where u1 is the thrust along the z-axis, and u2 and u3 are



Method Advantages Limitations
(Q,R) learning [10] Only (nx + nu) parameters are to be learned so

learning will be faster.
Performance can degrade significantly if the dynamics are not
known to a good accuracy.

F learning [13] Only nxnu parameters are to be learned so learning
will be faster.

Approach may not perform well for non-quadratic cost functions.

(A,B) learning via least
squares

Can lead to a faster convergence when the underlying
system is linear

Approach is not suitable for non-linear system.

aDOBO Does not require any prior knowledge of system
dynamics. Applicable to general cost functions.

Number of parameters to be learned is higher, i.e., (n2
x+nxnu).

TABLE III: Relative advantages and limitations of different methods for automatic controller design.

rolling, pitching moments respectively. The full non-linear
dynamics of a quadrotor are derived in [28], and its physical
parameters are computed in [26]. Our goal in this experiment
is to track a desired position p∗ starting from the initial
position p0 = [0, 0, 1]. Formally, we minimize

J0(̄sN0 ,u
N−1
0 ) =

N−1∑
k=0

(
s̄TkQs̄+ uTkRuk

)
+ s̄TNQf s̄ , (16)

where s̄ :=
[
p− p∗, v, ζ, ω

]
. Given the dynamics in [28], the

desired optimal control problem can be solved using LQR;
however, the resultant controller may still not be optimal for
the actual system because (a) true underlying system is non-
linear and (b) the actual system may not follow the dynamics
in [28] exactly due to several unmodeled effects, as illustrated
in our results. Hence, we assume that the dynamics of vx and
vy are unknown, and model them as[

fvx
fvy

]
= Aθ

[
φ
ψ

]
+Bθu1 , (17)

where A and B are parameterized through θ. Our goal is to
learn the parameter θ∗ that minimizes the cost in (16) for
the actual Crazyflie using aDOBO. We use N = 400; the
penalty matrix Q is chosen to penalize the position deviation.
In our experiments, Crazyflie was flown in presence of a
VICON motion capture system, which along with on-board
sensors provides the full state information at 100Hz. The
optimal control problem for a particular linearization in
(17) is solved using LQR. For comparison, we compute
the nominal optimal controller using the full dynamics in
[28]. Figure 9 shows the performance of the controller
from aDOBO compared with the nominal controller during
the learning process. The nominal controller outperforms
the learned controller initially, but within a few iterations,
aDOBO performs better than the controller derived from the
known dynamics model of Crazyflie. This is because aDOBO
optimizes controller based on the performance of the actual
system and hence can account for unmodeled effects. In
45 iterations, the learned controller outperforms the nominal
controller by 12%, demonstrating the performance potential
of aDOBO on real systems.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we introduce aDOBO, an active learning
framework to optimize the system dynamics with the intent
of maximizing the controller performance. Through sim-
ulations and real-world experiments, we demonstrate that

0 10 20 30 40 50 60
Iteration

-10

0

10

%
 im

pr
ov

em
en

t i
n 

J Percentage error in cost wrt the nominal controller

Fig. 9: Crazyflie: percentage error between the learned and
the nominal controller. The nominal controller is obtained
by using the full 12D non-linear dynamics model of the
quadrotor. As learning progresses, aDOBO outperforms the
nominal controller by 12% on the actual system, indicating
the capability of aDOBO to overcome modeling errors.

aDOBO achieves the optimal control performance even when
no prior information is known about the system dynamics.

Several interesting future directions emerge from this
work. The dynamics model learned through aDOBO max-
imizes the performance on a single task. The obtained
dynamics model thus may not necessarily perform well on a
similar but different task. It will be interesting to generalize
aDOBO to optimize the dynamics for a class of tasks, e.g.,
regulating to different states. Leveraging the state and input
trajectory data, along with the observed performance, to
further increase the data-efficiency of the learning process
is another promising direction. During the learning process,
aDOBO can query parameters which might lead to an
unstable behavior on the actual system and can cause safety
concerns. In such cases, it might be desirable to combine
aDOBO with the exploration methods that explicitly take
safety into account, e.g., such as SafeOpt [29], [30]. Finally,
since BO is not scalable to higher-dimensional systems
(roughly beyond 30-40 parameters) [1], exploring alternative
ways to scale aDOBO to more complex non-linear dynamics
models is another interesting direction.

REFERENCES

[1] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of Bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[2] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 2015.

[3] J. Joseph, A. Geramifard, J. W. Roberts, J. P. How, and N. Roy, “Rein-
forcement learning with misspecified model classes,” in International
Conference on Robotics and Automation, 2013, pp. 939–946.

[4] P. L. Donti, B. Amos, and J. Z. Kolter, “Task-based end-to-end model
learning,” arXiv preprint arXiv:1703.04529, 2017.

[5] C. G. Atkeson, “Nonparametric model-based reinforcement learning,”
in Advances in neural information processing systems, 1998, pp. 1008–
1014.



[6] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models
in reinforcement learning,” in International conference on Machine
learning, 2006, pp. 1–8.

[7] M. Gevers, “Identification for control: From the early achievements to
the revival of experiment design,” European journal of control, vol. 11,
no. 4-5, 2005.

[8] H. Hjalmarsson, M. Gevers, and F. De Bruyne, “For model-based
control design, closed-loop identification gives better performance,”
Automatica, vol. 32, no. 12, 1996.

[9] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.

[10] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
LQR tuning based on Gaussian process global optimization,” in
International Conference on Robotics and Automation, 2016.

[11] S. Trimpe, A. Millane, S. Doessegger, and R. D’Andrea, “A self-
tuning LQR approach demonstrated on an inverted pendulum,” IFAC
Proceedings Volumes, vol. 47, no. 3, pp. 11 281–11 287, 2014.

[12] J. W. Roberts, I. R. Manchester, and R. Tedrake, “Feedback controller
parameterizations for reinforcement learning,” in Symposium on Adap-
tive Dynamic Programming And Reinforcement Learning (ADPRL),
2011, pp. 310–317.

[13] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Annals of Mathe-
matics and Artificial Intelligence, vol. 76, no. 1, pp. 5–23, 2015.

[14] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpo-
ration, 2013.

[15] M. Grimble, “Implicit and explicit LQG self-tuning controllers,”
Automatica, vol. 20, no. 5, pp. 661–669, 1984.

[16] D. Clarke, P. Kanjilal, and C. Mohtadi, “A generalized LQG approach
to self-tuning control part i. aspects of design,” International Journal
of Control, vol. 41, no. 6, pp. 1509–1523, 1985.

[17] R. Murray-Smith and D. Sbarbaro, “Nonlinear adaptive control using
nonparametric Gaussian process prior models,” IFAC Proceedings
Volumes, vol. 35, no. 1, pp. 325–330, 2002.

[18] S. Sastry and M. Bodson, Adaptive control: stability, convergence and
robustness. Courier Corporation, 2011.

[19] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[20] H. J. Kushner, “A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise,” Journal of Basic
Engineering, vol. 86, p. 97, 1964.

[21] M. A. Osborne, R. Garnett, and S. J. Roberts, “Gaussian processes
for global optimization,” in Learning and Intelligent Optimization
(LION3), 2009, pp. 1–15.

[22] J. Močkus, “On bayesian methods for seeking the extremum,” in
Optimization Techniques IFIP Technical Conference, 1975.

[23] R. Martinez-Cantin, “BayesOpt: a Bayesian optimization library for
nonlinear optimization, experimental design and bandits.” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 3735–3739, 2014.

[24] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in International Symposium on Computer Aided Control
Systems Design, 2005, pp. 284–289.

[25] D. J. Bender and A. J. Laub, “The linear-quadratic optimal regulator
for descriptor systems: discrete-time case,” Automatica, 1987.

[26] B. Landry, “Planning and control for quadrotor flight through cluttered
environments,” Master’s thesis, MIT, 2015.

[27] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin,
“Learning quadrotor dynamics using neural network for flight control,”
in Conference on Decision and Control, 2016, pp. 4653–4660.

[28] N. Abas, A. Legowo, and R. Akmeliawati, “Parameter identification
of an autonomous quadrotor,” in International Conference On Mecha-
tronics, 2011, pp. 1–8.

[29] Y. Sui, A. Gotovos, J. Burdick, and A. Krause, “Safe exploration for
optimization with Gaussian processes,” in International Conference on
Machine Learning, 2015, pp. 997–1005.

[30] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with Gaussian processes,” in International
Conference on Robotics and Automation, 2016, pp. 491–496.


	I Introduction
	II Problem Formulation
	III Background
	III-A Gaussian Process (GP)
	III-B Bayesian Optimization (BO)

	IV Dynamics Optimization via BO (aDOBO)
	V Numerical Simulations 
	V-A Dubins Car System 
	V-B A Simple 1D Linear System 
	V-C Cart-pole System 

	VI Comparison with other methods 
	VI-A Tuning (Q,R) vs aDOBO
	VI-B Learning K vs aDOBO
	VI-C Adaptive Control vs aDOBO

	VII Quadrotor Position Tracking Experiments 
	VIII Conclusions and Future Work
	References

