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Abstract

This paper deals with the problem of finding a low-complexity estimate of the impulse response of a linear time-invariant
discrete-time dynamic system from noise-corrupted input-output data. To this purpose, we introduce an identification criterion
formed by the average (over the input perturbations) of a standard prediction error cost, plus a weighted `1 regularization
term which promotes sparse solutions. While it is well known that such criteria do provide solutions with many zeros, a critical
issue in our identification context is where these zeros are located, since sensible low-order models should be zero in the tail
of the impulse response. The flavor of the key results in this paper is that, under quite standard assumptions (such as i.i.d.
input and noise sequences and system stability), the estimate of the impulse response resulting from the proposed criterion is
indeed identically zero from a certain time index nl (named the leading order) onwards, with arbitrarily high probability, for a
sufficiently large data cardinality N . Numerical experiments are reported that support the theoretical results, and comparisons
are made with some other state-of-the-art methodologies.

Key words: FIR identification, `1 regularization, Elastic Net, Lasso, Sparsity

1 Introduction

A large part of the literature on identification of linear
time-invariant (LTI) dynamic systems follows a statis-
tical approach (Ljung [1999a], Söderström and Stoika
[1989]), where probabilistic assumptions are made, at
least on the noise corrupting the measurements. The
techniques available in this context may be classified
in two main categories: parametric and nonparametric.
Parametric techniques are mainly based on the predic-
tion error methods (PEMs) or on the maximum likeli-
hood approach, if Gaussian noise is assumed. The identi-
fied models belong to finite-dimensional spaces of given
order, like FIR, ARX, ARMAX, OE, Laguerre, Kautz
or orthonormal basis function models. In order to limit
the model complexity and to avoid possible overfitting,
a tradeoff between bias and variance is usually consid-
ered, and the model order selection is performed by
optimizing some suitable cost function – such as the
Akaike’s information criterion AIC (Akaike [1974]), the
Rissanen’s Minimum Description Length MDL, or the
Bayesian information criterion BIC (Rissanen [1978],
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Schwarz [1978]) – and by applying some form of cross
validation (CV), like hold-out or leave-one-out. Possible
limits of these parametric methods have been pointed
out in Pillonetto and De Nicolao [2010], Pillonetto et al.
[2011], Chen et al. [2012], where it is shown that the sam-
ple properties of PEM approaches equipped with, e.g.,
AIC and CV, may be rather unsatisfactory and quite far
from those predicted by standard (i.e., without model
selection) statistical theory.
The nonparametric techniques aim to obtain the overall
system’s impulse response as a suitable deconvolution of
observed input-output data. In particular, very promis-
ing approaches have been recently developed, based
on results coming from the machine learning field, see,
e.g., Pillonetto et al. [2014] and the references therein.
Rather than postulating finite-dimensional hypothesis
spaces, the estimation problem is tackled in an infinite-
dimensional space, and the intrinsical ill-posedness of
the problem is circumvented by using suitable regular-
ization methods. In particular, the system’s impulse re-
sponse is modeled as a zero-mean Gaussian process, and
the prior information is introduced by simply assign-
ing a specific covariance, named kernel in the machine
learning literature. This procedure can be interpreted
as the counterpart of model order selection in the para-
metric PEM approach and, in some cases, it is shown to
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be much more robust.
In the present paper, a novel nonparametric method is
presented, whereby an estimate of the system’s impulse
response is obtained by minimizing a suitable cost func-
tion that directly takes into account the resulting model
complexity. The aim is indeed to obtain a low-complexity
model of the system, in the form of a reduced-order FIR
(in this sense, the approach is not so far from paramet-
ric techniques). A key feature of the proposed approach,
representing a relevant improvement over the state of
the art, is that it allows for an effective model order se-
lection, without using strong a-priori information on the
true system. More specifically, we propose the use of an
identification criterion which is a weighted combination
of (a) a standard prediction error term, (b) an `2 reg-
ularization term, and (c) a weighted `1 penalty term
which promotes sparse solutions; a full justification for
such criterion is given in Section 3.2. This type of crite-
rion corresponds to the so-called Elastic Net cost, which
recently became popular in the machine learning com-
munity, see, e.g., Zou and Hastie [2005], De Mol et al.
[2009]. Notice that, while it is well known that the use of
`1 regularization leads to sparse solutions, sparsity alone
is not a very interesting feature in our identification con-
text. Indeed, reduced-order models are obtained only if
the sparsity of the solution follows a specific pattern,
whereby the zeros are all concentrated in the tail of the
impulse response. Obtaining such a pattern is not obvi-
ous, nor a-priori granted by the `1 regularization. One
of the key contributions of this paper is to prove that,
under standard assumptions, the impulse response esti-
mated via our Elastic-Net type of criterion has the prop-
erty of being indeed nonzero only on the initial part of
the impulse response (which we shall name the leading
response), with arbitrarily high probability, if the num-
ber of data N is sufficiently large.
The present paper is organized as follows. In Section 2
the notation is set, and some preliminary results on a
Chebyshev’s type of convergence for random variables
are stated. Section 3 describes the linear identification
problem of interest, and contains the derivations of the
Elastic Net cost. The main results on the recovery of the
leading part of the impulse response are contained in
Section 4. Section 5 illustrates a practical procedure for
implementing the proposed identification scheme. Nu-
merical experiments, including a comparative discussion
with other identification methods, are given in Section 6.
All proofs are contained in the Appendix.

2 Notation and preliminaries

2.1 Notation

For a vector x ∈ RN , we denote by [x]i the i-th entry
of x, and we define its support as

supp(x)
.
= {i ∈ {1, . . . , N} : [x]i 6= 0}.

The notation ‖x‖p represents the standard `p norm of
x, and ‖x‖0 denotes the cardinality of supp(x), that is
the number of nonzero entries of x.
For a matrix X ∈ RN,M (with M possibly equal to∞),

we denote by [X]i,j the entry ofX in row i and column j.
For n ≤ M , we denote by X↑n ∈ RN,n the sub-matrix
formed by the first n columns ofX, withX↓n ∈ RN,M−n
the sub-matrix formed by the columns of X of indices
n + 1, . . . ,M , and with X]n the n × n principal sub-
matrix of X. The identity matrix is denoted by I, or by
In, if we wish to specify its dimension. We denote by
X† the Moore-Penrose pseudo-inverse of X; if X has full
column rank, then X† = (X>X)−1X>.
If x is a random variable, thenE{x} denotes the expected
value of x, and var{x} denotes its variance: var{x} =
E{(x− E{x})2}. P denotes a probability measure on x.
The symbol ; implies almost sure convergence, and it
is formally defined in Section 2.2.1.

2.2 Chebyshev’s inequality for certain empirical means

Let xi, i = 1, . . . , be a sequence of (not necessarily in-
dependent) random variables such that E{xi} = µ <
∞ for all i, var{xi} = σ2

i ≤ σ2 < ∞ for all i, and
E{(xi − µ)(xj − µ)} = 0 for all i 6= j. For given N ≥ 1,
define the empirical mean

x̂N
.
= 1

N

∑N
i=1 xi.

Obviously, from linearity of the expectation, it holds that
E{x̂N} = µ. Further, we have that

σ2 .= var{x̂N}=E
{
(x̂N−µ)2

}
=

1

N2
E
{[∑N

i=1(xi−µ)
]2}

=
1

N2

[
N∑
i=1

E
{
(xi−µ)2

}
+
N∑
i=1

N∑
j=1, j 6=i

E {(xi−µ)(xj−µ)}
]

=
∑N
i=1 σ

2
i

/
N2 ≤ σ2

/
N,

where the last passages follow from the fact that the xis
are uncorrelated, and have first moment µ and variance
σ2
i ≤ σ2. Chebyshev’s inequality applied to the random

variable x̂N thus states that, for any η>0,
P{|x̂N − µ| ≥ ησ} ≤ 1/η2. (1)

Since ησ ≤ ησ/
√
N , we have that P{|x̂N − µ| ≥

ησ/
√
N} ≤ P{|x̂N −µ| ≥ ησ}, whence, from (1), we ob-

tain that P{|x̂N − µ| ≥ ησ/
√
N} ≤ 1/η2. Equivalently,

we can state that, for any ε > 0, it holds that
P{|x̂N − µ| ≥ ε} ≤ σ2

/ (
Nε2

)
.

We thus conclude that, for any given accuracy ε > 0 and
probability β ∈ (0, 1), it holds that

P{|x̂N − µ| ≥ ε} ≤ β, ∀N ≥
⌈
σ2
/ (
βε2
)⌉
.

Notice that (1) implies that P{|x̂N − µ| > ησ} ≤ 1/η2;
hence, by considering the complementary event, it also
holds that P{|x̂N − µ| ≤ ησ} ≥ 1− 1/η2, from which it
follows that

P{|x̂N − µ| ≤ ε} ≥ 1− σ2
/ (
Nε2

)
.

2.2.1 Meaning of the convergence symbol ;
For a random variable zN that depends on N and for
a given real value z̄, the notation zN ; z̄ means that
for any given ε > 0 and β ∈ (0, 1) there exists a finite
integer Nε,β such that

P{|zN − z̄| ≥ ε} ≤ β, ∀N ≥ Nε,β . (2)
Notice that zN ; z̄ implies that zN converges to z̄ al-
most surely (that is, with probability one), as N tends

2



to infinity. However, we are specifically interested in the
property in (2), that holds for possibly large, but finite,N.

2.3 Lipschitz functions of random variables

If zN is the empirical mean of N uncorrelated vari-
ables with common mean µ and variance bounded by
σ2 then, from the discussion in Section 2.2, we conclude
that indeed zN ; µ and, in particular, (2) holds for
Nε,β =

⌈
σ2
/ (
βε2
)⌉

. However, we shall use the conver-
gence notation zN ; z̄ also when z̄ is not necessarily the
expected value of zN , and/or when zN is not necessarily
an empirical mean. The following lemma holds.

Lemma 1 For any fixed integer p, let y1, . . . , yp be (pos-
sibly correlated) scalar random variables that depend on
N and such that yi ; ȳi, i = 1, . . . , p, for some given
values ȳ1, . . . , ȳp. Let f be a Lipschitz continuous func-
tion from Rp into R, such that f(ȳ1, . . . , ȳp) is finite.
Then, it holds that f(y1, . . . , yp) ; f(ȳ1, . . . , ȳp).

Appendix A.1 contains a proof of Lemma 1.

3 Problem setup

3.1 A linear measurement model

We consider an identification experiment in which a
discrete-time scalar input signal ũ(k) enters an LTI dy-
namic system, which produces in response a scalar out-
put signal ỹ(k). This output is acquired via noisy mea-
surements over a time window k = 1, . . . , N , obtaining a
sequence of output measurements y(k) = ỹ(k) + δy(k),
k = 1, . . . , N , where δy(k) is the measurement noise se-
quence. Since the unknown system is assumed to be LTI,
there exists a linear relation between the output mea-
surements and the unknown system’s impulse response
h(i), i = 1, . . . Assuming that the system is operating in
steady state, this relation is given by the discrete-time
convolution: for k = 1, . . . , N ,

y(k)= ỹ(k) + δy(k)=
∞∑
i=1

ũ(k − i+ 1)h(i) + δy(k). (3)

Observe that, following a nonparametric approach, we
do not assume to know in advance the order of the un-
known system; therefore, in (3), all values h(i) can be, a
priori, nonzero. Letting

y
.
=

 y(1)
y(2)...
y(N)

; δy
.
=

 δy(1)
δy(2)...
δy(N)

; ũi
.
=

 ũ(2− i)
ũ(3− i)...

ũ(N + 1− i)

,
for i = 1, 2, . . . , we can write (3) in vector format as

y =
∑∞
i=1 ũih(i) + δy. (4)

For any integer n ≥ 0, we define

Ũ↑n
.
= [ũ1 · · · ũn] ∈RN,n, h↑n

.
= [h(1) · · · h(n)]>∈Rn,

as well as the semi-infinite matrices and vectors

Ũ↓n
.
= [ũn+1 ũn+2 · · · ] ∈RN,∞,

h↓n
.
= [h(n+ 1) h(n+ 2) · · · ]>∈R∞.

Let now q ≤ N be a given integer: our goal is to estimate
the first q elements of the impulse response h (i.e., to es-
timate h↑q ∈ Rq), from N noisy output measurements.
The value of q is fixed by the decision maker, based on

the available number of measurements N and on a priori
knowledge. For instance, under a standard assumption
of stability (see Assumption 2), since h(i) decays expo-
nentially, one may a priori assess that the response will
be negligible for i ≥ q, for some sufficiently large q. We
can then rewrite (4) as

y = Ũ↑qh↑q + δy + yud,

where

yud
.
= Ũ↓qh↓q

represents the unmodelled dynamics due to the trunca-
tion of the impulse response to the q-th term. For sim-
plifying the notation, we let from now on

Ũ
.
= Ũ↑q,

which is an N × q Toeplitz matrix.

3.2 An Elastic Net identification criterion

The initial approach that we consider for identifying the
unknown system’s impulse response consists in finding
an estimate of h↑q that minimizes w.r.t. x the cost func-
tion

1

γ
‖y − Ũx‖22 + ‖x‖0, (5)

where γ > 0 is a suitable tradeoff parameter. The first
term in (5) is the standard prediction error, while the
second term ‖x‖0 represents the cardinality of x, that is
the number of nonzero entries in x. This term penalizes
the complexity of the estimate, thus promoting solutions
with a small number of nonzero entries. Note incidentally
that, if δy(k) is a sequence of independent identically
distributed (i.i.d.) Normal random variables with zero
mean and known variance σ2

y then, for γ = 2σ2
y, the

above criterion coincides with the well-known Akaike’s
information criterion AIC. Other standard criteria, such
as the BIC, can also be obtained for different values of γ.

3.2.1 Input uncertainty and averaged cost
In a realistic identification experiment, however, the in-
put signal ũ(k) that enters the unknown system is a pos-
sibly “perturbed” version of a nominal input signal u(k)
that the user intends to provide to the system. To model
this situation, we assume that ũ(k) = u(k) + δu(k),
where u(k) is the nominal input signal, and δu(k) is an
i.i.d. random noise sequence, which is assumed to have
zero mean and variance σ2

u (setting σ2
u = 0 we recover

the standard, no-input-noise, situation). Considering the
time window k = 1, . . . , N , we have in matrix form that

Ũ = U + ∆, (6)

where U is an N × q Toeplitz matrix containing the
nominal input signal, and ∆ is an N × q Toeplitz matrix
containing the noise samples δu(k). Specifically, U

.
=

[u1 · · · uq], and ∆
.
= [δ1 · · · δq], where for i = 1, . . . , q

ui
.
=

 u(2− i)
u(3− i)...

u(N + 1− i)

 , δi
.
=

 δu(2− i)
δu(3− i)...

δu(N + 1− i)

 .
We account for input uncertainty in the identification
experiment by “averaging” the effect of this uncertainty
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in the cost criterion (5). This leads to the following cost
function:

J0(x) = Eδu
{

1

γ
‖y − Ũx‖22 + ‖x‖0

}
=

1

γ
Eδu

{
‖y − (U + ∆)x‖22

}
+ ‖x‖0, (7)

where Eδu denotes expectation w.r.t. the random se-
quence δu. Elaborating on the expression (7), we obtain

Eδu{‖y − (U + ∆)x‖22}
= Eδu{‖y − Ux‖22 + ‖∆x‖22 − 2(y − Ux)>∆x}
= ‖y − Ux‖22 + Eδu{‖∆x‖22}
= ‖y − Ux‖22 + x>Eδu{∆>∆}x,

because Eδu{∆} = 0. Since δu(k) is an i.i.d. sequence,
and since ∆ has Toeplitz structure, it is easy to verify
that the off-diagonal terms in Eδu{∆>∆} are zero, while
the diagonal terms are all equal to Nσ2

u. Therefore, it
holds that Eδu{∆>∆} = Nσ2

uIq, and the expected cost
J0(x) is explicitly expressed as

J0(x) =
1

γ
‖y − Ux‖22 +

Nσ2
u

γ
‖x‖22 + ‖x‖0. (8)

Notice that this setting can be easily extended to wide-
sense stationary input noise sequences δu(k), in which
case the second term in the above expression takes the
form N

γ x
>Rux, where Ru is the autocorrelation matrix

of δu. For simplicity, however, we here focus on the basic
case of an i.i.d. sequence, for which Ru = σ2

uIq. Observe
further that accounting for noise on the input signal re-
sults in the introduction of a Tikhonov-type regulariza-
tion term in (8), a fact that has been previously observed
in other contexts such as neural network training, see,
e.g., Bishop [1995].

3.2.2 Normalizing the variables
We next rescale the variables in the cost (8) by nor-
malizing the columns of the regression matrix. First, we
rewrite J0(x) as

J0(x) =
1

γ

∥∥b− Āx∥∥2
2

+ ‖x‖0, (9)

where

b
.
=

[
y
0

]
, Ā

.
=

[
U

σu
√
NIq

]
. (10)

Second, we let T
.
= diag(‖ā1‖2, . . . , ‖āq‖2)−1, where āi

denotes the i-th column of Ā, and perform the change
of variable x̃ = T−1x, thus the right-hand side of (9)
becomes

J̃0(x̃)
.
=

1

γ
‖b−Ax̃‖22 + ‖x̃‖0, (11)

where we defined A
.
= ĀT , and we used the fact that

‖T x̃‖0 = ‖x̃‖0, since the cardinality of a vector does not
depend on (nonzero) scalings of the entries of the vec-
tor. We observe that the columns a1, . . . , aq of A now

have unit Euclidean norm. We let x̃∗0
.
= arg min J̃0(x̃),

and x∗0
.
= arg min J0(x), where it obviously holds that

x∗0 = T x̃∗0. These optimal solutions are hard to deter-
mine numerically in practice. However, we do not need
to compute them, we only need them for theoretical pur-
poses.

3.2.3 Weighted `1 relaxation of the cost function
We now introduce the following tractable relaxation of
the cost (11):

J̃1(x̃)
.
=

1

γ
‖b−Ax̃‖22 + ‖Wx̃‖1. (12)

where W
.
= diag(w1, . . . , wq) is a suitable weighting ma-

trix, with maxk=1,...,q wk = 1, mink=1,...,q wk > 0. We
shall henceforth assume that the weight sequence is non-
decreasing: w1 ≤ w2 ≤ · · · ≤ wq = 1.
Notice that, expanding the squared norm in (12), we

obtain the cost function J̃1 in the form

J̃1(x̃) =
1

γ
‖y − UT x̃‖22 +

Nσ2
u

γ
‖T x̃‖22 + ‖Wx̃‖1, (13)

which corresponds to the cost expressed in the original
variable x = T x̃

J1(x) =
1

γ
‖y − Ux‖22 +

Nσ2
u

γ
‖x‖22 + ‖WT−1x‖1. (14)

The cost function (13) is strongly convex, hence the op-

timal solution x̃∗1
.
= arg min J̃1(x̃) is unique and, equiv-

alently, the minimization of (14) has a unique optimal
solution x∗1 = T x̃∗1. In the following section, we shall
study the properties of x∗1 as an estimate of the impulse
response h↑q. Note that only two parameters (γ and σu)
have to be chosen to obtain this estimate. A systematic
procedure is proposed in Section 5, allowing an effective
choice of these parameters, based on the desired trade-
off between model complexity and accuracy.
Remark 1 The cost criterion appearing in (13) is a
particular version of the Lasso (see, e.g., Tibshirani
[1996]), known as the Elastic Net (Zou and Hastie
[2005]). The Elastic Net criterion includes an `2 regu-
larization term which provides shrinkage and improves
conditioning of the `2-error cost (by guaranteeing strong
convexity of the cost), as well as an `1 penalty term
which promotes sparsity in the solution. Elastic Net-
based methods are widely used in statistics and machine
learning, see, e.g., De Mol et al. [2009], Hastie et al.
[2009], and are amenable to very efficient large-scale so-
lution algorithms (Friedman et al. [2010]). To the best
of the authors’ knowledge, this is the first work in which
the Elastic Net criterion is used in the context of a sys-
tem identification problem and the resulting sparsity
pattern is rigorously analyzed.

4 Leading response recovery

This section contains the main results of the paper. First,
we report a preliminary technical lemma (Lemma 2)
stating that, under a certain condition, the minimizer
x∗1 of (14) is supported on {1, . . . , n}, with n ≤ q. Sec-
ond, under some suitable assumptions on the input and
noise signals, we show (Theorem 4) that if the unknown
system is stable, then for a sufficiently large N and for
a given n ≤ q, there exist explicitly given γ values for
which the support of x∗1 is contained in {1, . . . , n}, with
any given high probability. This means that the esti-
mated impulse response x∗1 is not only sparse but, with
high probability, it is zero precisely on the tail of the sys-
tem’s impulse response h↑q. We next define the notions

4



of leading response and leading support of the system’s
impulse response, and show (Corollary 5) that if the un-
known system is stable, then for a suitable γ and a suf-
ficiently large N the support of x∗1 is contained in the
leading support, with any given high probability; we call
this property leading response recovery (LRR). Finally,
we show (Corollary 6) that if the true unknown system
is FIR then, for a sufficiently large N and for any γ > 0,
the estimated impulse response x∗1 will be sparse, and of
order no larger than the order of the true system, with
high probability.

4.1 Preliminary results, assumptions and definitions

With the notation set in Section 3.2.2, for a given integer

n ≤ q, let Pn
.
= A↑nA

†
↑n denote the orthogonal projector

onto the span of A↑n, and define the n-leading recovery

coefficient Υn(A)
.
= 1 − maxn<i≤q w

−1
i

∥∥∥W]nA
†
↑nai

∥∥∥
1
,

where ai is the i-th column of A. The following technical
lemma, based on a result in Tropp [2006], holds.

Lemma 2 Suppose that for some integer n ≤ q it holds
that ∥∥W−1A>(b− Pnb)

∥∥
∞ ≤ γ Υn(A)/ 2, (15)

and let x∗1 be the minimizer of (14). Then, it holds that
supp(x∗1) ⊆ {1, . . . , n}.

See Appendix A.2 for a proof of Lemma 2.
Let us now state the following working assumptions.

Assumption 1 (on input and disturbance sequences )

(1) The input u(k) is an i.i.d. sequence with zero mean,
bounded variance ν2 and bounded 4-th order moment
E
{
u(k)4

}
= m4 .

(2) The noise δy(k) is an i.i.d. sequence with zero mean
and bounded variance σ2

y .
(3) The input perturbation δu(k) is an i.i.d. sequence

with zero mean and bounded variance σ2
u .

(4) u(k), δy(k), and δu(k) are mutually uncorrelated.

Assumption 2 (Stability ) The unknown system’s im-
pulse response h is such that |h(i)| ≤ Lρi−1, for i =
1, 2, . . . , for some given finite L > 0 and ρ ∈ (0, 1).

We next establish a preliminary lemma.

Lemma 3 Under Assumption 1, for any pair of column
vectors ui and uj it holds that

1
N u
>
i uj ;

{
ν2 if i = j
0 otherwise,

(16)

where the notation ; has the meaning specified in Sec-
tion 2.2.1. Also, it holds that

1
N u
>
i δy ; 0, ∀i (17)

1
N u
>
i δj ; 0, ∀i, j. (18)

Appendix A.3 contains a proof of Lemma 3.
We next define the notion of leading order of the system’s
impulse response, and the associated notions of leading
response and leading support.

Definition 1 Let Assumption 2 hold. We define the
leading order, nl(N), of h as the largest integer i ≤ q
such that

Lρi−1 ≥ σy
ν
× 1√

N
. (19)

The leading response is {h(i), i = 1, . . . , nl} and the
leading support is {1, . . . , nl}.
Remark 2 We provide an intuitive interpretation of the
definition in (19). The leading order is a value such that
for time values larger than it the system’s impulse re-
sponse cannot essentially be discriminated from noise.
Indeed, if a classical output error criterion would be used
for estimating h↑q, then the covariance matrix of the es-
timated parameter would be of the form σ2

y(U>U)−1,

which tends to σ2
y/(ν

2N)Iq as N →∞, see the proof of
Theorem 4 for details. The standard error on the generic
element h(i) of the impulse response thus goes to zero

as 1/
√
N , whereN is the number of measurements and the

proportionality constantσy/ν is the noise-to-signal ratio.
The leading order nl is therefore defined as the time
value after which the upper bound on |h(i)| goes below
the level η =

σy

ν
1√
N

, and hence h(i) becomes essentially

indistinguishable from noise, for all i > nl; if this condi-
tion is not met for i ≤ q, then we just set nl = q. It is
an immediate consequence of (19) that the leading order
grows as the logarithm of N , until it saturates to q:

nl(N) = min

(⌊
log(νL) + 1

2 logN − log(σyρ)

log(ρ−1)

⌋
, q

)
.

4.2 Main results

We next establish the main results of this paper.

Theorem 4 Let Assumptions 1 and 2 hold. Let n ≤ q,
κ
.
= ν/

√
ν2 + σ2

u, and

γ = 2µw−1n Lρnνκ×
√
N , (20)

for some µ > 1. Then, for any given β ∈ (0, 1) there
exists a finite integer Nβ such that for any N ≥ Nβ it
holds that

supp(x∗1) ⊆ {1, . . . , n}
with probability no smaller than 1 − β, where x∗1 is the
minimizer of (14).

Appendix A.4 contains a proof of Theorem 4. The key
point of this theorem is that if the tradeoff parameter
γ is chosen proportional to

√
N then, with high proba-

bility and for a sufficiently large N , the minimization of
(14) provides a solution which is not only sparse, but its
sparsity pattern is identically zero on the tail of the im-
pulse response, i.e., the estimated impulse response x∗1
is FIR of order at most n.
A consequence of Theorem 4 is stated in the following
corollary: for a suitable constant value of γ, the mini-
mizer x∗1 of (14) has its support contained in the leading
support.

Corollary 5 (Leading support recovery )

Let Assumptions 1 and 2 hold. Let κ
.
= ν/

√
ν2 + σ2

u, and

γ > 2w−1nl(N)ρσyκ. (21)

Then, for any given β ∈ (0, 1) there exists a finite integer
Nβ such that for any N ≥ Nβ it holds that

supp(x∗1) ⊆ {1, . . . , nl(N)}
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with probability no smaller than 1 − β, where x∗1 is the
minimizer of (14), and nl(N) is the leading order of the
unknown system’s impulse response.

See Appendix A.5 for a proof of Corollary 5. Corollary 5
states that, under suitable conditions, an estimate of
the impulse response based on the minimization of (14)
is supported inside the leading support of the system,
with high probability. The following corollary provides
a similar result, for the case in which the true system is
a-priori known to have finite impulse response (FIR).

Corollary 6 (FIR recovery ) Let Assumption 1 hold.
Further, assume the “true,” unknown, system is FIR
of order n ≤ q, with n unknown. Then, for any γ > 0
and for any given β ∈ (0, 1) there exists a finite in-
teger Nβ such that for any N ≥ Nβ it holds that
supp(x∗1) ⊆ {1, . . . , n} with probability no smaller than
1− β, where x∗1 is the minimizer of (14).

See Appendix A.6 for a proof of Corollary 6. The key
point of this corollary is that if the true system is known
to be FIR, then the minimizer of (14) will tendentially
recover the true order of the system, regardless of the
value of γ > 0 (but, of course, the larger the value of γ,
the sooner w.r.t.N the condition (15) will be satisfied).

5 Identification procedure

We next formalize a possible procedure illustrating
how the proposed methodology can be used in a prac-
tical experimental setting. Suppose that a set of data
{y(k), u(k)}Nk=3−q is available from a process of the

form (3). Identification of the impulse response h(i) is
performed by minimizing the cost function (14). This
operation requires the choice of two parameters (γ and
σu). If σu and σy are known from some a-priory infor-
mation on the noises affecting the system or can be reli-
ably estimated, then γ can be chosen according to (21),
where ρ can be estimated by means of the technique in
Milanese et al. [2010] (see Section 6.1). If instead this
information is not available, a systematic procedure for
the choice of γ and σu is the following one:

• Take “reasonable” sets Γ = {γ(1), γ(2), ...} and Σu =

{σ(1)
u , σ

(2)
u , ...} for γ and σu values, respectively. If σu

is known from some a-priory information on the noise
affecting the input, then Σu = σu.

• Define y, U and T as shown in Section 3.

• Run the following algorithm:

for i = 1 : length(Σu)

for j = 1 : length(Γ)

σu = σ
(i)
u ; γ = γ(j);

x∗(i, j) = arg minx J1(x);

E(i, j) = ‖y − Ux∗(i, j)‖22 ;

C(i, j) = ‖x∗(i, j)‖0 ;

end

plot(C(i, :), E(i, :))

end

• The obtained plot shows how the model accuracy
(measured by E) changes in function of its complex-
ity (measured by C). Thus, γ and σu can be chosen
according to the desired trade-off between model
accuracy and complexity.

Choosing γ(1) > γ(2) > ... and using x∗(i, j − 1) at
the jth step as the initial condition for the optimization
problem may significantly increase the speed of the al-
gorithm. An example of application of this procedure is
shown in Section 6.2 and, in particular, in Figure 3.
The weighting matrix W plays a relevant role in the
model order selection, increasing the algorithm efficiency
especially in situations where a low number of data is
available. For simplicity, unitary weights wi were here
adopted in Section 6. Further research activity will be
devoted to investigate how to automatically and opti-
mally select these weights, in order to take into account
possible priors on the unknown system.

6 Numerical examples

6.1 A simulated LTI system

For our first numerical test we considered a classical
discrete-time LTI system proposed in Ljung [1999b].
This system is defined by the discrete-time transfer func-
tion

H(z) =
z3 + 0.5z2

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225
, (22)

with sampling time 1 s. We assume that all necessary
parameters (e.g., the noise variances and the impulse
response’s stability degree bounds) are known or have
been estimated in advance by other means.

6.1.1 Experiments with a fixed number of data
Three i.i.d. input sequences with zero mean and variance
ν2 = 1 were first generated. Each of these sequences was
corrupted by an i.i.d. noise with zero mean and variance
σ2
u, with σu = 0.01 for the first sequence, σu = 0.03 for

the second one, and σu = 0.05 for the third one. These
values correspond to noise-to-signal standard deviation
ratios of 1%, 3%, and 5%, respectively.
For each noise-corrupted input sequence, the system (22)
was simulated for 2000 s, assuming zero initial condi-
tions. Note that the system reaches steady-state condi-
tions after about 150 s. The resulting output sequence
was corrupted by an i.i.d. noise with zero mean and vari-
ance σ2

y, with σy = 0.1 for the first sequence, σy = 0.3
for the second one, and σy = 0.5 for the third one.
These values correspond to noise-to-signal standard de-
viation ratios of 1%, 3%, and 5%, respectively (the sys-
tem static gain is about 10). Then, the last N = 1000
noise-corrupted output values were acquired. From these
data, the following models of the unknown system im-
pulse response were identified:
• Leading Response Recovery (LRR) model. This model

was obtained minimizing the objective function (14).
The parameters required for this minimization were
taken as follows. The variances σ2

u and σ2
y were as-

sumed known (or accurately estimated). The impulse
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response bound parameters were estimated by means
of the technique in Milanese et al. [2010], giving values
L = 6 and ρ = 0.93 (note that only ρ is required by the
LRR algorithm). Unitary weights wi were adopted.
The estimated length was taken as q = 500. The value
of γ was chosen according to (21).
• Least Squares (LS) model. This model was identified

using standard least squares, that is, by minimizing
the objective function (14), with σ2

u = 0 and T−1 = 0.
• Tikhonov regularized Least Squares (TLS) model.

This model was identified by minimizing the objective
function (14), with T−1 = 0.

To validate the identified models, the following indices
were computed:
• Best fit criterion:

FIT
.
= 100

(
1−

‖y − ŷ‖2
‖y −mean(y)‖2

)
where y is the measured system output vector and ŷ
is the output vector simulated by the model. The FIT
index was evaluated on Nv = 2000 validation data
points (i.e., points not previously used for identifica-
tion). Obviously, this index measures the model sim-
ulation accuracy: the closer it is to 100%, the more
accurate the simulation is.
• Tail `0 quasi-norm:

TN0
.
= ‖x∗tail‖0

where x∗tail
.
= [x∗(nl+1) · · · x∗(500)]> and x∗ is the es-

timated model impulse response. This index is a mea-
sure of the model tail (the tail can be defined as the
vector formed by the impulse response components
with index > nl). More precisely, it counts how many
elements in the tail of the model impulse response are
different from zero. Note that, for σy = 0.1, nl = 105;
for σy = 0.3, nl = 89; for σy = 0.5, nl = 82.
• Tail `1 norm:

TN1
.
= ‖x∗tail‖1 .

This index provides an indication on the average mag-
nitude of the elements in the tail of the model impulse
response.

A Monte Carlo simulation was then carried out, where
the above identification-validation procedure was re-
peated for 100 trials. The averages FIT, TN0 and TN1
of FIT, TN0 and TN1 obtained in this simulation are
reported in Table 1. We observe that the three identifi-
cation methods lead to very similar FIT values. How-
ever, the LRR models have a tail that is practically null
(in average, about 4 non-null elements over about 280),
even though the number of data used for identifica-
tion is relatively low (1000 data). This fact shows that
our identification algorithm is able to provide highly
sparse models, without compromising their simulation
accuracy. An even more important aspect is that spar-
sification does not occur for “random” indexes of the
model impulse response but for large indexes, i.e., those
indexes associated with the exponentially decaying tail
of the impulse response.
It is important to remark that the LRR algorithm does
not use the prior information in terms of L and ρ values

noise model FIT TN0 TN1

1%

LRR 98.6 6.0 0.012

LS 98.6 315 1.40

TLS 98.6 315 1.39

3%

LRR 95.9 4 0.019

LS 96.0 267 3.29

TLS 96.0 267 3.28

5%

LRR 93.3 3.3 0.025

LS 93.4 246 4.97

TLS 93.4 246 4.94

Table 1
Average indices obtained in the Monte Carlo simulation.

to impose strict constraints or weights on the samples
of the leading response. The information on L and ρ is
only used in the proof of Theorem 4 (see (A.7)) to derive
a bound on the value of γ (see (21)).
It may be expected that using explicit constraints or
weights based on L and ρ in the algorithm may lead to
improvements in terms of model accuracy and/or com-
plexity. To better investigate this aspect, we performed
another Monte Carlo simulation, considering a 3% noise
level, and applying standard constrained least squares
and regularized Diagonal/Correlated kernel methods
(the latter using the Matlab routine impulseest.m,
see, e.g., Pillonetto et al. [2014]). Indeed, these methods
use the L and ρ information (either known a priori or
estimated from the data) to impose a desired exponen-
tial decay of the overall impulse response. The follow-
ing index values were obtained with constrained least
squares (CLS): FIT = 96.6, TN0 = 267, TN1 = 0.115.
The following index values were obtained with the reg-
ularized Diagonal/Correlated kernel method (DCK):
FIT = 96.7, TN0 = 267, TN1 = 0.033.
We can compare these results with those shown in Table
1. It can be noted that the CLS and DCK methods give
slight improvements w.r.t. the other methods in terms
of the FIT criterion, although the formers use a signifi-
cantly stronger prior information. An interesting result
of the CLS and DCK methods is that they lead to tails
with very small (albeit nonzero) elements, giving a rele-
vant reductions of the tail magnitude w.r.t. the LS and
TLS methods, with TN1 indexes not far from the one
given by the LRR method. Nevertheless, the TN0 val-
ues given by the LRR method are by far the lowest ones,
showing that this method is the only one (among those
considered) allowing effective and unsupervised model
order selection.

6.1.2 Experiments with an increasing number of data
A “long” i.i.d. input sequence with zero mean and vari-
ance ν2 = 1 was generated and corrupted by an i.i.d.
noise with zero mean and variance σ2

u = 0.032. The true
system was then simulated using this input sequence,
and the resulting output sequence was corrupted by an
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i.i.d. noise with zero mean and variance σ2
y = 0.32. The

data corresponding to the output values with time in-
dex k = 1001, . . . , 1000 + N were selected, where N =
500, . . . , 50000. For each value ofN , an LLR, an LS and a
TLS model were identified from these data. The values of
FIT, TN0 and TN1 obtained for these models are plotted
as function of N in Figures 1 and 2. We can observe that
the three identification methods lead to very similar FIT
values, the LRR models giving slightly better results for
low number of data. A key difference between the three
techniques is that the LRR method is able to select the
more appropriate impulse response components (i.e., the
components with index in the interval [1, nl]), forcing
the others to vanish. After a certain value of N (about
32000), the tail of the LRR models is zero, confirming
the theoretical result given in Corollary 5. Such an effec-
tive component selection is not guaranteed by the other
two methods which, on the contrary, have tails with sup-
port cardinality (measured by the `0 quasi-norm) that
grows with N .
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Fig. 1. Values of FIT, TN0 and TN1 for all models.

6.2 Experimental data from a flexible robot arm

The identification of poorly damped systems from ex-
perimental data is among the most challenging issues
in many practical applications. For this reason, as sec-
ond test we considered a system with a vibrating flexible
robot arm described in Torfs et al. [1998], adopted as case
study in various software packages (Kollár et al. [1994],
Kollár [1994], National Instruments Corporation [2004-
2006]). Data records from this process have been also an-
alyzed in Pintelon and Schoukens [2012], Pillonetto et al.
[2014]. The input is the driving torque and the output is
the tangential acceleration of the tip of the robot arm.
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Fig. 2. Values of TN0 and TN1 for the LRR models.

Ten consecutive periods of the response to a multisine
excitation signal were collected at a sampling frequency
of 500 Hz, for a total of 40960 data points.
We have built models using different techniques: the
Leading Response Recovery (LRR) and the regularized
Diagonal/Correlated kernel (DCK) methods to obtain
high-order FIR models, the standard Prediction Error
Method (PEM) to estimate low-order state space mod-
els. Since the true system is unknown, the models cannot
be evaluated by their fit to the actual system. Instead,
we used the hold-out validation technique and measured
how well the identified models can reproduce the output
on validation portions of the data that were not used
for estimation. We chose the estimation data to be the
portion 1:7000 and the validation data to be the portion
10000:40960.
To identify the LRR models, the procedure described in
Section 5 has been applied to suitably choose the values
of σu and γ, taking q = 7000 as initial estimate length.
No a-priori information was available about the input
noise affecting the system, driven by an input signal u
with sample variance ν2 = 0.0298. For this reason, three
scenarios have been considered, with σu = 0, σu = 0.02
and σu = 0.04. These values correspond to noise-to-
signal ratios of 0% (i.e., no-input-noise situation), 1.3%,
and 5.3%, respectively. Then the LRR algorithm has run
with values of γ in the range [0.01, 1], using the MAT-
LAB’s command lasso with optional input arguments
’RelTol’,4e-4,’Standardize’,false. The results in
terms of fitting error ‖y − Ux∗‖22 and complexity ‖x∗‖0
are shown in Figure 3 (lower error and higher complexity
are achieved for lower values of γ). As expected, curves
with lower σu dominate curves with higher σu (for any
given γ, the solution obtained with lower σu has both
lower error and complexity with respect to a solution
obtained with higher σu). However, the choice of the ac-
tual curve to use depends on our confidence on the true
value of σu, and underestimating this value may lead
to worse-than-expected performance on validation data.
Also, curves with higher σu show a flatter behavior after
the “knee” for lower γ values.
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We found a reasonable tradeoff for γ = 0.2, allowing a
satisfactory fitting error (around 19.8 for σu = 0, which
raises up to 21.1 in the worst-case σu = 0.04) with a
small complexity (around 560, that raises up to 1220 for
σu = 0.04). Alternatively, γ = 0.1 allows a lower error
(around 14.8 for σu = 0, which raises up to 16.1 for
σu = 0.04) with a still acceptable complexity (around
830, that raises up to 1740 for σu = 0.04).
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Fig. 3. LRR fitting error ‖y − Ux∗‖22 vs. complexity ‖x∗‖0.

To fairly compare the performances achieved by LRR
and DCK methods, FIR models with the same given
order have been identified. First, the LRR FIR model
of order 2500 was identified with FIT value of 80.1%.
Then, the DCK FIR model of order 2500 was esti-
mated using regularized least squares, tuned by the
marginalized likelihood method and with the unknown
input data set to zero, via the MATLAB’s command
impulseest(data,2500,0,opt) with option opt set as
opt.RegulKernel=’dc’; opt. Advanced.AROrder=0.
The FIT for this DCK FIR model was 79.9%. For il-
lustration, the FIT values of the LRR and DCK FIR
models are shown in Figure 4 as horizontal lines. For
comparison, we estimated n-th order state space PEM
models without disturbance model for n = 1, . . . , 30 (via
the MATLAB’s command pem(data,n,’dist’,’no’))
and calculated their FIT index to validation data. These
FIT values are shown as function of n in Figure 4. The
two best FITs were 78.9% and 78.6%, obtained for order
n = 21 and n = 18, respectively, while the 5-th order
model with FIT value of 69.6% could be a reasonable
tradeoff between accuracy and complexity. In any case,
any PEM fit is worst than those provided by the LRR
and DCK FIR models.
One may observe that FIR models of order 2500 are
quite large, but it is interesting to note that they can
be easily reduced to low-order state space models by
model order reduction methods, like balanced trunca-
tion, Hankel norm minimization and L2 reduction. For
example, we applied the square root balanced truncation

method to the LRR FIR model, to obtain reduced state
space models of order n = 1, . . . , 30 (via the MATLAB’s
command balancmr), and we computed their FIT index
on validation data. These FIT values are also shown as
function of n in Figure 4. It can be observed that a re-
duced state-space model of order n = 6 provides a FIT
of 74.2%, which is better than any PEM-estimated state
space model of order n = 1, . . . , 14.
To discriminate the effects of the transient due to the
mismatch between the initial states of the actual system
and the identified models, the FIT index has been also
computed by neglecting the initial 3000 samples of the
validation data. The FIT values of the LRR and DCK
FIR models of order 2500 raise to 83.4% and 83.6%,
respectively; the FIT values of the PEM models of order
n = 5, 18, 21 go to 71.2%, 83.2%, 83.7%, respectively;
the FIT value of the reduced state-space model of order
n = 6 increases to 76.2%. All these results are shown in
Figure 5.
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Fig. 4. Values of FIT for all models.
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It is worth to observe that, even if the fit performances
of LRR and DCK FIR models are very close, the com-
putational complexity of their corresponding algorithms
is dramatically different. Referring to a workstation
equipped with an Intel(R) Core(TM) i7-3770 CPU @
3.40 GHz and with 16 GB of RAM, the overall CPU
time used to estimate the LRR FIR model of order 2500
was around 30 seconds, while the computation of DCK
FIR model of order 2500 required around 8700 seconds,
i.e., 290 times more. For comparison, FIR models of
order 3000 and 3500 were also identified using the same
7000 estimation data as before: the CPU times required
by the LRR FIR models were around 30 and 36 seconds,
respectively, while the CPU times required by the DCK
FIR models were around 11000 and 23200 seconds, re-
spectively. Widening the estimation data to the first
10000 samples, the identification of LRR FIR models
of orders up to 5000 required no more than 75 seconds,
thus showing that the approach proposed in this paper
scales nicely with the problem dimensionality.

7 Conclusions

A novel method for the identification of low-complexity
FIR models from experimental data is presented in this
paper. The method is based on an Elastic Net crite-
rion, which considers an identification cost defined as
a weighted combination of a standard prediction er-
ror term, an `2 regularization term, and a weighted `1
penalty term. The main novelty of the method with re-
spect to the state of the art is that it allows for an ef-
fective selection of the model order, while requiring only
stability and standard statistical assumptions on the
noises affecting the system; no additional information on
the system impulse response behavior is needed. The ef-
fectiveness of the method has been tested through both
extensive numerical simulations (considering two typi-
cal situations: one with a fixed number of data, and one
with an arbitrarily large number of data) and real exper-
imental data from a lightly damped mechanical system.
In all situations, the method showed high numerical ef-
ficiency and satisfactory order selection capability and
simulation accuracy.
Research activity is being devoted to developing a
weighted version of the method proposed here. It is
indeed expected that including suitable weights in the
identification criterion may make the model order selec-
tion even more efficient, especially in situations where a
low number of data is available.

A Appendix

A.1 Proof of Lemma 1

From the hypothesis that yi ; ȳi, i = 1, . . . , p, applying
the definition of symbol ;, we have that for any ε̃ > 0 and
β̃ ∈ (0, 1) there exists an integer Ñε̃,β̃ such that

P{|yi − ȳi| ≤ ε̃} ≥ 1− β̃, ∀N ≥ Ñε̃,β̃ .

From Bonferroni’s inequality we further have that the prob-
ability of the joint event {|yi − ȳi| ≤ ε̃, i = 1, . . . , p} is lower
bounded as

P{|yi − ȳi| ≤ ε̃, i = 1, . . . , p} ≥ 1− pβ̃, ∀N ≥ Ñε̃,β̃ .

Since P{|yi − ȳi| ≤ ε̃, i = 1, . . . , p} = P{‖y − ȳ‖∞ ≤ ε̃},
letting β

.
= pβ̃, we write

P{‖y − ȳ‖∞ ≤ ε̃} ≥ 1− β, ∀N ≥ Ñε̃,β/p.
Now, from the hypothesis that f is Lipschitz continuous, it
follows that there exists a finite constant C ≥ 0 such that

|f(y)− f(ȳ)| ≤ C‖y − ȳ‖∞.
Therefore, ‖y − ȳ‖∞ ≤ ε̃ implies that |f(y) − f(ȳ)| ≤ ε, for
ε
.
= Cε̃, whence

P{|f(y)− f(ȳ)| ≤ ε} ≥ 1− β, ∀N ≥ Ñε/C,β/p,
which proves that f(y) ; f(ȳ).

A.2 Proof of Lemma 2

The claim is a direct consequence of the first point of Theo-
rem 8 in Tropp [2006], where the index set Λ is {1, . . . , n}, and
ERC(Λ) in Tropp [2006] coincides with Υn(A). The symbol
aΛ used in Theorem 8 of Tropp [2006] corresponds to Pnb,
that is the best `2 approximation of b using a linear com-
bination of the first n columns of A. These first n columns
have unit `2 norm and are indeed linearly independent, as
requested by the hypotheses of Theorem 8 in Tropp [2006],
due to the specific structure of A = ĀT , where Ā, shown in
(10), has a multiple of the identity matrix Iq as a bottom
block.

A.3 Proof of Lemma 3

Some parts of this result might possibly be derived as
a particular case of Theorem 2.3 in Ljung [1999a]; we
here report a full proof for the specific case of inter-
est in the present work. For i = 1, 2, . . . , let us define
ui = [u(2−i) u(3−i) · · · u(N+1−i)]> ∈ RN . Then, for all
i and j, we have that

1
N
u>i uj = 1

N
[u(2−i)u(3−i) · · ·u(N+1−i)] ·
[u(2−j)u(3−j) · · ·u(N+1−j)]>

= 1
N

∑N+1
k=2 u(k − i)u(k − j)

= 1
N

∑N
k=1 u(k + 1− i)u(k + 1− j).

Consider first the case where i = j. Then
1
N
u>i ui = 1

N

∑N
k=1 u(k + 1− i)2

is the empirical mean of the elements of the sequence of
length N of random variables xk = u(k+1−i)2, k = 1, . . . , N ,
such that, for all k, i and l 6= k:

E{xk} = E{u(k+1−i)2} = var{u(k+1−i)} = ν2 <∞

var{xk}= E
{

(xk − E {xk})2} = E
{(
u(k+1−i)2−ν2)2}

= E
{
u(k+1−i)4−2ν2u(k+1−i)2+ν4}

= E
{
u(k+1−i)4}− 2ν2E

{
u(k+1−i)2}+ ν4

=m4 − ν4 <∞
E {(xk−E {xk}) (xl−E {xl})}

= E
{(
u(k+1−i)2−ν2

) (
u(l+1−i)2−ν2

)}
= E

{
u(k+1−i)2u(l+1−i)2+

−ν2
[
u(k+1−i)2+u(l+1−i)2

]
+ν4

}
= E

{
u(k+1−i)2u(l+1−i)2

}
+

−ν2
[
E
{
u(k+1−i)2

}
+E

{
u(l+1−i)2

}]
+ν4

= E
{
u(k+1−i)2

}
E
{
u(l+1−i)2

}
−ν4 = ν2ν2 − ν4 = 0

10



where the last derivation follows from the fact that xk and
xl are mutually independent since the input u(k) is an i.i.d.
sequence. By applying the Chebyshev’s inequality for sums
of uncorrelated variables shown in Section 2.2, it holds that

1
N
u>i ui ; E{xk} = ν2, ∀i.

Consider next the case where i 6= j. Then
1
N
u>i uj = 1

N

∑N
k=1 u(k + 1− i)u(k + 1− j)

is the empirical mean of the elements of the sequence of
length N of random variables xk = u(k+ 1− i)u(k+ 1− j),
k = 1, . . . , N , such that, for all k, i, j = i + ĩ 6= i and
l = k + k̃ 6= k, with ĩ 6= 0 and k̃ 6= 0 :

E{xk}= E {u(k+1−i)u(k+1−j)}
= E {u(k+1−i)}E {u(k+1−j)} = 0

var{xk}= E
{
(xk− E{xk})2}=E

{
(u(k+1−i)u(k+1−j))2}

= E
{
u(k+1−i)2u(k+1−j)2}

= E
{
u(k+1−i)2}E{u(k+1−j)2} = ν4 <∞

E{(xk−E{xk}) (xl−E{xl})}=

=E{(u(k+1−i)u(k+1−j)) (u(l+1−i)u(l+1−j))}
=E{u(k+1−i)u(k+1−i− ĩ)u(k+k̃+1−i)u(k+k̃+1−i− ĩ)}
=E{u(k+1−i)u(k+1−i− ĩ)u(k+1−i+k̃)u(k+1−i− ĩ+k̃)}
if ĩ = k̃, then:

E {(xk−E {xk}) (xl−E {xl})} =

= E
{
u(k+1−i)2u(k+1−i− ĩ)u(k+1−i+ ĩ)

}
= E

{
u(k+1−i)2}E{u(k+1−i− ĩ)

}
E
{
u(k+1−i+ ĩ)

}
= 0

otherwise, if ĩ 6= k̃, then:

E {(xk−E {xk}) (xl−E {xl})} =

= E{u(k+1−i)u(k+1−i− ĩ)u(k+1−i+k̃)u(k+1−i− ĩ+k̃)}
= E{u(k+1−i)} ·

E{u(k+1−i− ĩ)u(k+1−i+k̃)u(k+1−i− ĩ+k̃)}= 0

and this means that xk and xl are uncorrelated for all k 6= l.
By applying the Chebyshev’s inequality for sums of uncor-
related variables shown in Section 2.2, we obtain that

1
N
u>i uj ; E{xk} = 0, for all i 6= j,

which proves (16).

We next prove (17). Since δy=[δy(1) δy(2) · · · δy(N)]>∈RN,
then for i = 1, 2, . . .:

1
N
u>i δy = 1

N
[u(2−i)u(3−i) · · ·u(N+1−i)] ·
[δy(1) δy(2) · · · δy(N)]>

= 1
N

∑N
k=1 u(k + 1− i)δy(k)

is the empirical mean of the elements of the sequence of
length N of random variables xk = u(k + 1 − i)δy(k), k =
1, . . . , N , such that, for all k, i and l 6= k:
E{xk}=E{u(k+ 1− i)δy(k)}=E{u(k+ 1− i)}E{δy(k)}=0

var{xk}=E
{

(xk − E {xk})2}
=E

{
(u(k+1−i)δy(k))2}=E

{
u(k+1−i)2δy(k)2}

=E
{
u(k+1−i)2}E{δy(k)2} = ν2σ2

y <∞
E {(xk−E {xk}) (xl−E {xl})} =

= E {(u(k+1−i)δy(k)) (u(l+1−i)δy(l))}
= E {u(k+1−i)u(l+1−i)δy(k)δy(l)}
= E {u(k+1−i)}E {u(l+1−i)}E {δy(k)}E {δy(l)} = 0.

By applying the Chebyshev’s inequality for sums of uncor-
related variables shown in Section 2.2, it thus holds that

1
N
u>i δy ; E{xk} = 0, for all i.

Finally, we prove (18). For j = 1, 2, . . . , let us define δj =

[δu(2−j) δu(3−j) · · · δu(N+1−j)]>∈ RN . Then, ∀i, j:
1
N
u>i δj = 1

N
[u(2−i)u(3−i) · · ·u(N+1−i)] ·
[δu(2−j) δu(3−j) · · · δu(N+1−j)]>

= 1
N

∑N+1
k=2 u(k − i)δu(k − j)

= 1
N

∑N
k=1 u(k + 1− i)δu(k + 1− j)

is the empirical mean of the elements of the sequence of
length N of random variables xk = u(k+ 1− i)δu(k+ 1− j),
k = 1, . . . , N , such that, for all k, i, j and l 6= k:

E{xk}= E {u(k+1−i)δu(k+1−j)}
= E {u(k+1−i)}E {δu(k+1−j)} = 0

var{xk}=E
{

(xk− E{xk})2}=E
{
(u(k+1−i)δu(k+1−j))2}

=E
{
u(k+1−i)2δu(k+1−j)2}

=E
{
u(k+1−i)2}E{δu(k+1−j)2} = ν2σ2

u <∞
E {(xk−E {xk}) (xl−E {xl})} =

= E {(u(k+1−i)δu(k+1−j)) (u(l+1−i)δu(l+1−j))}
= E {u(k+1−i)u(l+1−i)δu(k+1−j)δu(l+1−j)}
= E {u(k+1−i)}E {u(l+1−i)} ·

E {δu(k+1−j)}E {δu(l+1−j)}= 0.

By applying the Chebyshev’s inequality for sums of uncor-
related variables shown in Section 2.2, it holds that

1
N
u>i δj ; E{xk} = 0, for all i and j.

A.4 Proof of Theorem 4

A.4.1 Preliminaries
For any integer n ≤ q, let hn

.
= [h(1) · · · h(n) 0 · · · 0]> ∈ Rq

denote the n-leading truncation of h↑q ∈ Rq, let

h↓n = [h(n+ 1)h(n+ 2) · · · ]>,
and let, for i = 1, 2, . . . ,

ũi
.
=


ũ(2− i)
ũ(3− i)

...
ũ(N+1− i)

, ui .=


u(2− i)
u(3− i)

...
u(N+1− i)

, δi .=


δu(2− i)
δu(3− i)

...
δu(N+1− i)

.
For any integer k ≥ 1, let ∆↑k

.
= [δ1 · · · δk], ∆↓k

.
= [δk+1 · · · ]

and define ∆↓0 = [δ1 δ2 · · · ] ∈ RN,∞. Considering the ex-
pression in (4), and splitting the summation at n, we can
write

y = Ũ↑nh↑n + δy + Ũ↓nh↓n.

Further, using (6), we have
y = U↑nh↑n + (∆↑nh↑n + δy + U↓nh↓n + ∆↓nh↓n).

Since U↑nh↑n = U↑qh
n .

= Uhn, we can write
y = Uhn + e0,

where
e0

.
= U↓nh↓n + ∆↓0h+ δy,

being h
.
= [h(1)h(2) · · · ]>. Then, using the notation in (10),

we have that
b = Āhn + e,

where

e
.
=

[
e0

−σu
√
Nhn

]
, (A.1)

and, by the change of variable h̃n = T−1hn,

b = Ah̃n + e.

Since A = ĀT , where T is diagonal, we can write
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A↑n = Ā↑nT]n,

where T]n is the n× n principal submatrix of T . Therefore,

A†↑n = (A>↑nA↑n)−1A>↑n = T−1
]n Ā

†
↑n

= T−1
]n

(
U>↑nU↑n +Nσ2

uIn
)−1 [

U>↑n σu
√
NI>↑n

]
,

where I↑n is the submatrix formed by the first n columns of
the identity matrix Iq.
The orthogonal projector Pn onto the span of A↑n is given by

Pn =A↑nA
†
↑n = Ā↑nĀ

†
↑n

=

[
U↑n

σu
√
NI↑n

](
U>↑nU↑n+Nσ2

uIn
)−1[

U>↑n σu
√
NI>↑n

]
.

For any given vector b, the best `2 approximation of b using
the columns in A↑n is given by bn = Pnb, where, by the
Projection theorem, bn⊥(b−bn). The corresponding optimal

coefficient vector is xn = A†↑nb = A†↑nbn.

For a column ai of A, i = 1, . . . , q, we have that

A†↑nai = tiA
†
↑nāi

= tiT
−1
]n (U>↑nU↑n/N+ σ2

uIn)−1(U>↑nui/N+ σ2
uI
>
↑nζi),

where ζi is the i-th column of the identity matrix Iq, and

ti
.
= [T ]i,i = ‖āi‖−1

2 =
(
u>i ui +Nσ2

u

)−1/2
.

We shall next examine the condition in (15).

A.4.2 The large N sparsity pattern
From Lemma 3, we have that U>↑nU↑n/N ; ν2In, and

U>↑nui/N ; 0n,1, if i > n. Moreover, tiT
−1
]n ; In, and

I>↑nζi =
[
In 0n,q−n

]
ζi = 0n,1, if i > n. Therefore, con-

sidering the scalar-valued function ‖W]nA
†
↑nai‖1, which is

Lipschitz continuous w.r.t. the entries of U>↑nU↑n/N and

U>↑nui/N , and applying Lemma 1, we obtain that, for i > n,∥∥∥W]nA
†
↑nai

∥∥∥
1
;∥∥∥W]ntiT

−1
]n

σ2
u

ν2+σ2
u
I>↑nζi

∥∥∥
1

=
∥∥∥W]nIn

σ2
u

ν2+σ2
u

0n,1

∥∥∥
1

= 0.

Hence it holds that

Υn(A) = 1−max
i>n

w−1
i

∥∥∥W]nA
†
↑nai

∥∥∥
1
; 1− 0 = 1. (A.2)

Let us now consider the left-hand side in the condition (15).
Using the fact that b = Āhn + e, with e given in (A.1), we
have

W−1A>(b−Pnb) = W−1TĀ>(Āhn + e−PnĀhn−Pne)
= W−1T (Ā>Āhn+ Ā>e− Ā>PnĀhn− Ā>Pne). (A.3)

Defining T̃
.
= T
√
N and dividing (A.3) by

√
N , we obtain

1√
N
W−1A>(b− Pnb) =

= W−1T̃ (Ā>Āhn+Ā>e−Ā>PnĀhn−Ā>Pne) /N . (A.4)

Now we evaluate

Ā>Ā/N= U>U/N + σ2
uIq

Ā>e/N= U>U↓nh↓n/N+ U>∆↓0h/N+ U>δy/N−σ2
uh

n

Ā>PnĀh
n/N= (U>U/N + σ2

uIq)h
n

Ā>Pne/N= (U>U↑n/N + σ2
uI↑n)(U>↑nU↑n/N + σ2

uIn)−1 ·
{[U>↑nU↓nh↓n+U>↑n(∆↓0h+δy)]/N−σ2

uI
>
↑nh

n}
and observe that

U>U/N ; ν2Iq

U>U↓nh↓n/N ; ν2(hq − hn)

U>U↑n/N ;

[
ν2In

0

]

U>∆↓0h/N ; 0

U>δy/N ; 0

U>↑nU↓nh↓n/N ; 0
hence

Ā>Ā/N ; (ν2 + σ2
u)Iq

Ā>e/N ; ν2(hq − hn)− σ2
uh

n

Ā>PnĀh
n/N ; (ν2 + σ2

u)hn

Ā>Pne/N ;−σ2
uh

n.
Substituting in (A.4) we obtain that

1√
N
W−1A>(b− Pnb) ; ν2W−1T̃ (hq − hn). (A.5)

Finally, observe that for the i-th diagonal element ti of T it
holds that (by Lemma 1)

t2i =
1

‖āi‖22
=

1

‖ui‖22 + σ2
uN

;
1

N(ν2 + σ2
u)

and thus, for the i-th diagonal element t̃i of T̃ , we have

t̃2i ;
1

ν2 + σ2
u

.

Therefore, from (A.5), we obtain that

1√
N

[W−1A>(b−Pnb)]i ; zi
.
=


0, for i = 1, . . . , n;

w−1
i νκh(i),

for i = n+ 1, . . . , q.

where κ
.
= ν/

√
ν2 + σ2

u.
From the definition of the symbol ;, the above expression
implies that for any given ε1 > 0 and β1 ∈ (0, 1) there exists
an integer N1 such that, for any N≥N1, it results

P
{∣∣∣ 1√

N
|[W−1A>(b−Pnb)]i|−|zi|

∣∣∣ ≥ ε1} ≤ β1. (A.6)

Further, under the Assumption 2 that |h(i)| ≤ Lρi−1 and
since the weight sequence is assumed to be nondecreasing,
we have that

|zi| ≤ w−1
n νκLρn, ∀i = 1, . . . , q. (A.7)

Since, for all i = 1, . . . , q,∣∣∣ 1√
N
|[W−1A>(b− Pnb)]i| − |zi|

∣∣∣ ≥
≥ 1√

N
|[W−1A>(b− Pnb)]i| − |zi|

≥ 1√
N
|[W−1A>(b− Pnb)]i| − w−1

n νκLρn,

from (A.6) it follows that, for any N≥N1,

P
{

1√
N
|[W−1A>(b−Pnb)]i| − w−1

n νκLρn ≥ ε1
}
≤ β1;

hence, from Bonferroni’s inequality, for any N≥N1 we have

P
{

1√
N
‖W−1A>(b−Pnb)‖∞> w−1

n νκLρn+ε1
}
≤qβ1.

Taking the complementary event, for any N ≥ N1 it results

P
{

1√
N
‖W−1A>(b−Pnb)‖∞≤w−1

n νκLρn+ε1
}
≥1− qβ1.

(A.8)
Similarly, from (A.2) it follows that for any given ε2 > 0 and
β2 ∈ (0, 1) there exists an integer N2 such that
P{|Υn(A)−1|≤ε2}=P{1−Υn(A)≤ε2}≥1−β2, ∀N≥N2;

(A.9)
thus

P
{

γ

2
√
N

(1−ε2) ≤ γ

2
√
N

Υn(A)
}
≥ 1−β2, ∀N≥N2. (A.10)

Considering the joint events in (A.8) and (A.10), we have
from Bonferroni’s inequality that{

1√
N
‖W−1A>(b−Pnb)‖∞ ≤ w−1

n νκLρn + ε1
}
∩{

γ

2
√
N

(1− ε2) ≤ γ

2
√
N

Υn(A)
}
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holds with probability no smaller than 1 − β, for any N ≥
Nβ

.
= max(N1, N2), with β

.
= qβ1 + β2. Next, observe that

if it holds that

w−1
n νκLρn + ε1 ≤ γ

2
√
N

(1− ε2) , (A.11)

then we may conclude with confidence at least 1− β that
1√
N
‖W−1A>(b− Pnb)‖∞ ≤ γ

2
√
N

Υn(A). (A.12)

Suppose that condition (20) holds, thus γ=2µw−1
n Lρ

nνκ
√
N

for some µ > 1; substituting this expression into (A.11), we
obtain the condition

ε1 + µw−1
n Lρnνκε2 ≤ (µ− 1)w−1

n Lρnνκ.

Since µ > 1, and since ε1, ε2 can be chosen arbitrarily, this
condition is satisfied for a sufficiently small choice of ε1, ε2.
Therefore, condition (A.11) is satisfied, and hence (A.12) is
satisfied with probability no smaller than 1− β. The state-
ment then follows from Lemma 2.

A.5 Proof of Corollary 5

We apply Theorem 4 with n being equal to the leading or-
der nl(N) of the system. Since (19) holds for i = nl(N),
substituting this expression into (20) we have the condition

γ ≥ 2µw−1
nl(N)ρσyκ,

for some µ > 1, which is equivalent to (21). The claim then
follows by applying Theorem 4.

A.6 Proof of Corollary 6

We follow the same reasoning as in Section A.4 up to (A.5).
Then, we observe that since h is FIR of order n, then h↓n is
identically zero, hence from (A.5) it follows that

1√
N
W−1A>(b− Pnb) ; 0,

which means that for any given ε1 > 0 and β1 ∈ (0, 1) there
exists an integer N1 such that

P
{

1√
N
‖W−1A>(b− Pnb)‖∞ ≤ ε1

}
≥ 1− qβ1, ∀N ≥ N1.

Following a reasoning similar to the one in (A.9)–(A.12), we
claim that if

ε1 ≤ γ

2
√
N

(1− ε2) , (A.13)

then we may conclude with confidence at least 1− β that
1√
N
‖W−1A>(b− Pnb)‖∞ < γ

2
√
N

Υn(A). (A.14)

But, since γ > 0, condition (A.13) can always be satisfied
for some ε1, ε2, and hence (A.14) holds with probability at
least 1− β. The claim then follows from Lemma 2.
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