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Gradient-like observer design on the Special Euclidean group SE(3)
with system outputs on the real projective space

Minh-Duc Hua, Tarek Hamel, Robert Mahony, Jochen Trumpf

Abstract— A nonlinear observer on the Special Euclidean
group SE(3) for full pose estimation, that takes the system out-
puts on the real projective space directly as inputs, is proposed.
The observer derivation is based on a recent advanced theory
on nonlinear observer design. A key advantage with respect to
existing pose observers onSE(3) is that we can now incorporate
in a unique observer different types of measurements such as
vectorial measurements of known inertial vectors and position
measurements of known feature points. The proposed observer
is extended allowing for the compensation of unknown constant
bias present in the velocity measurements. Rigorous stability
analyses are equally provided. Excellent performance of the
proposed observers are shown by means of simulations.

I. I NTRODUCTION

The development of a robust and reliable estimator of
the pose (i.e. position and attitude) of a rigid body is a
key requirement for robust and high performance control
of robotic vehicles. Pose estimation is a highly nonlinear
problem in which the sensors normally utilized are prone
to non-Gaussian noise [2]. Classical approaches for state
estimation are based on nonlinear filtering techniques such
as extended Kalman filters, unscented Kalman filters or
particle filters. However, nonlinear observers have become
an alternative to these classical techniques, starting with the
work of Salcudean [23] for attitude estimation and subse-
quent contributions over the last two decades [3], [7]–[12],
[17], [19]–[22], [24]–[28]. Early nonlinear attitude observers
have been developed on the basis of Lyapunov analysis.
Recently, the attitude estimation problem has motivated the
development of theories on invariant observers for systems
endowed with symmetry properties [1], [5], [6], [15]–[18],
[26]. For instance, complementary nonlinear attitude ob-
servers exploiting the underlying Lie group structure of the
Special Orthogonal groupSO(3) are derived in [17] with
proofs of almost global stability of the error system. A
symmetry-preserving nonlinear observer design based on the
Cartan moving-frame method is proposed in [5], [6], which
is locally valid for arbitrary Lie groups. A gradient-like ob-
server design technique for invariant systems on Lie groups
is proposed in [16], leading to almost global convergence
provided that a non-degenerate Morse-Bott cost function is
used. More recently, an observer design method directly on
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the homogeneous output space for the kinematics of me-
chanical systems is proposed in [18], leading to autonomous
error evolution and strong convergence properties. Finally,
[15] extends the observer design methodology proposed in
[18] in order to deal with the case where the measurement
of system input is corrupted by an unknown constant bias.

Full pose observer design, although less studied than
attitude observer design, has recently attracted more atten-
tion [2]–[4], [14], [21], [27], [28]. For instance, observers
designed directly onSE(3) have been proposed using both
full state feedback [4] or bearing measurements of known
landmarks [3]. An observer onSO(3) × R

3 is proposed in
[27], using full range and bearing measurements of known
landmarks and achieving almost global asymptotic stability.
In a prior work by the authors [14], a nonlinear observer
on SE(3) is proposed using directly position measurements
in the body-fixed frame of known inertial feature points or
landmarks, with motivation strongly related to robotic vision
applications using either stereo camera or Kinect sensor. The
observer derivation is based on the gradient-like observer
design technique proposed in [16], and the almost global
asymptotic stability of the error system is proved by means
of Lyapunov analysis.

In this paper, we consider the question of deriving a
nonlinear observer onSE(3) for full pose estimation that
takes the system outputs on the real projective spaceRP

3

directly as inputs. A key advance on our prior work [14] is
the possibility of incorporating “naturally” in a sole observer
both vectorial measurements (provided e.g. by magnetome-
ters or inclinometers) and position measurements of known
inertial feature points (provided e.g. by stereo camera). In
addition, sharing the same robustness property with the ob-
server proposed in [14], the algorithm here proposed is also
well-posed even when there is insufficient data for full pose
reconstruction using algebraic techniques. In such situations,
the proposed observer continues to operate, incorporating
what information is available and relying on propagation of
prior estimates where necessary. Finally, as a complementary
contribution, a modified version of the basic observer is
proposed so as to deal with the case where bias is present
in the velocity measurements.

The remainder of this paper is organised as follows.
Section II formally introduces the problem of pose estimation
on SE(3) along with the notation used. In Section III, based
on a recent advanced theory for nonlinear observer design
directly on the output space [18], a nonlinear observer on
SE(3) is proposed using direct body-fixed measurements of
known inertial elements of the real projective spaceRP

3 and
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the knowledge of the group velocity. Stability analysis is also
provided in this section. Then, in Section IV the proposed
basic observer is extended using Lyapunov theory in order
to cope with the case where the measurement data of the
group velocity are corrupted by an unknown constant bias.
In Section V, the performance of the proposed observers
are validated by means of simulation. Finally, concluding
remarks are given in Section VI.

II. PRELIMINARY MATERIAL

A. Notation

Let {A} and {B} denote an inertial frame and a body-
fixed frame attached to a vehicle moving in 3D-space,
respectively. The vehicle’s position, expressed in the frame
{A}, is denoted asp ∈ R

3. The attitude of the vehicle is
represented by a rotation matrixR ∈ SO(3) of the frame
{B} relative to the frame{A}. Let V ∈ R

3 and Ω ∈ R
3

denote the vehicle’s translational and angular velocities, both
expressed in{B}.

In this paper, we consider the problem of estimating the
vehicle’s pose, which can be represented by an element of
the Special Euclidean groupSE(3) given by the matrix

X :=

[

R p
0 1

]

∈ SE(3) ⊂ R
4×4. (1)

This representation, known as homogeneous coordinates,
preserves the group structure ofSE(3) with the GL(4)
operation of matrix multiplication, i.e.X1X2 ∈ SE(3),
∀X1, X2 ∈ SE(3). Now let us recall some common defi-
nitions and notation.
• The Lie-algebrase(3) of the group SE(3) is defined as

se(3) :=

{

A ∈ R
4×4 | ∃Ω, V ∈ R

3 : A =

[

Ω× V
0 0

]}

,

with Ω× denoting the skew-symmetric matrix associated
with the cross product byΩ, i.e.Ω×v = Ω×v, ∀v ∈ R

3. The
adjoint operator is a mappingAd : SE(3) × se(3) → se(3)
defined asAdXA := XAX−1, with X ∈ SE(3), A ∈ se(3).
• For any two matricesM1,M2 ∈ R

n×n, the Euclidean
matrix inner product and Frobenius norm are defined as

〈M1,M2〉 := tr(M⊤
1 M2), ‖M1‖ :=

√

〈M1,M1〉.

Let Pa(M), ∀M ∈ R
n×n, denote the anti-symmetric part of

M , i.e. Pa(M) := (M −M⊤)/2. Let P : R4×4 → se(3)
denote the unique orthogonal projection ofR

4×4 onto se(3)
with respect to the inner product〈·, ·〉, i.e.∀A ∈ se(3), M ∈
R

4×4, one has

〈A,M〉 = 〈A,P(M)〉 = 〈P(M), A〉 .

It is verified that for allM1 ∈ R
3×3,m2,3 ∈ R

3,m4 ∈ R,

P

([

M1 m2

m⊤
3 m4

])

:=

[

Pa(M1) m2

0 0

]

. (2)

• For allX ∈ SE(3), A1, A2 ∈ se(3), the following equation
defines aright-invariant Riemannian metric〈·, ·〉X :

〈A1X,A2X〉X := 〈A1, A2〉.

• For anyx ∈ R
4 (or ∈ RP

3), the notationx ∈ R
3 denotes

the vector of first three components ofx and the notationxi
stands for the i-th component ofx. Thus, it can be written
asx = [x x4]

⊤.

B. System equations and measurements

The vehicle’s poseX ∈ SE(3), defined by (1), satisfies
the kinematic equation

Ẋ = F (X,A) := XA, (3)

with group velocityA ∈ se(3). System (3) isleft invariant
in the sense that it preserves the (Lie group) invariance
properties with respect to constant translation and constant
rotation of the body-fixed frame{B} X 7→ X0X .

Assume that the group velocityA (i.e. Ω and V ) is
bounded, continuous, and available to measurement. More-
over,N ∈ N

+ constant elements of the real projective space
ẙi ∈ RP

3 (i = 1, · · · , N ), known in the inertial frame{A},
are assumed to be measured in the body-fixed frame{B} as

yi = h(X, ẙi) :=
X−1ẙi
|X−1ẙi|

∈ RP
3, i = 1, · · · , N. (4)

Note that the Lie group actionh : SE(3)×RP
3 → RP

3 is a
right group actionin the sense that for allX1, X2 ∈ SE(3)
andy ∈ RP

3, one hash(X2, h(X1, y)) = h(X1X2, y). For
later use, define

Y := (y1, · · · , yN), Y̊ := (̊y1, · · · , ẙN ). (5)

Remark 1 Interestingly, by considering the measurement
data in the real projective spaceRP3, we are able to combine
in a sole pose observer various types of measurements
coming from sensors of different nature. For instance, froma
stereo camera or a Kinect sensor we can obtain a matching
of N1 ∈ N

+ feature points whose position coordinates are
known in both the inertial reference frame{A} and the
current body-fixed frame{B}, i.e. one has

pi = R⊤(p̊i − p), i = 1, · · · , N1,

with p̊i, pi ∈ R
3 the position coordinates of the feature points

expressed in the frames{A} and{B}, respectively. Then, the
following simple transformations:

ẙ
i
:=

p̊i
√

|p̊i|2 + 1
, ẙi,4 :=

1
√

|p̊i|2 + 1
,

y
i
:=

pi
√

|pi|2 + 1
, yi,4 :=

1
√

|pi|2 + 1
,

yield the following relations in the form(4):

yi =
X−1ẙi
|X−1ẙi|

= h(X, ẙi), i = 1, · · · , N1,

with ẙi = [̊y
i

ẙi,4]
⊤ ∈ RP

3 and yi = [y
i

yi,4]
⊤ ∈ RP

3.
Such a transformation provides a “natural” scaling of the
position measurements of known inertial feature points so
that the measurement of a very far feature point will act
closely to a vectorial measurement. On the other hand,
assume also that the vehicle is equipped withN2 ∈ N

+



vectorial sensors (e.g. magnetometer or inclinometer) so as
to provide the measurementsvj ∈ R

3 in the body-fixed
frame {B} of N2 Euclidean vectors (given for example by
the geomagnetic field or the gravity field) whose coordinates
v̊j ∈ R

3 in the inertial frame{A} are known. Then, one
verifies thatvj = R⊤v̊j and deduces the following relations
in the form(4):

yj =
X−1ẙj
|X−1ẙj|

= h(X, ẙj), j = N1 + 1, · · · , N1 +N2,

with ẙj = [̊y
j

0]⊤ ∈ RP
3, yj = [y

j
0]⊤ ∈ RP

3, ẙ
j
:=

v̊j
|̊vj |

and y
j
:=

vj
|vj |

.

We verify that SE(3) is a symmetry group with group
actionsφ : SE(3)×SE(3) −→ SE(3), ψ : SE(3)×se(3) −→
se(3) andρ : SE(3)× RP

3 −→ RP
3 defined by

φ(Q,X) := XQ,
ψ(Q,A) := AdQ−1A = Q−1AQ,

ρ(Q, y) := Q−1y
|Q−1y| .

Indeed, it is straightforward to verify thatφ, ψ, and ρ are
right group actionsin the sense thatφ(Q2, φ(Q1, X)) =
φ(Q1Q2, X), ψ(Q2, ψ(Q1, A)) = ψ(Q1Q2, A), and
ρ(Q2, ρ(Q1, y)) = ρ(Q1Q2, y), for all Q1, Q2, X ∈ SE(3),
A ∈ se(3), andy ∈ RP

3. Clearly, one has

ρ(Q, h(X, ẙi)) =
Q−1 X−1ẙi

|X−1ẙi|
∣

∣Q−1 X−1yi

|X−1ẙi|

∣

∣

= h(φ(Q,X), ẙi),

dφQ(X)[F (X,A)] = XAQ = (XQ)(Q−1AQ)
= F (φ(Q,X), ψ(Q,A)).

Thus, the kinematics (3) areright equivariant in the sense
of [18, Def. 2]. This is a condition allowing us to apply
the theory proposed in [18] for nonlinear observer design
directly on the output space. Note also that the system under
consideration belongs to type I systems (see [18]) where both
the velocity sensors and the state sensors are attached to the
body-fixed frame.

III. G RADIENT-LIKE OBSERVER DESIGN

Denote byX̂(t) ∈ SE(3) the estimate of the poseX(t)
and denote bŷR andp̂ the estimates ofR andp, respectively.

One hasX̂ =

[

R̂ p̂
0 1

]

. Define the group error

E(X̂,X) := X̂X−1 ∈ SE(3), (6)

which is right invariant in the sense that for all̂X,X,Q ∈
SE(3), one hasE(X̂Q,XQ) = E(X̂,X). From now on,
without confusion the shortened notationE is used for
E(X̂,X). The group errorE converges to the identity
elementI4 ∈ SE(3) iif X̂ converges toX . For later use,
define also the output errorsei ∈ RP

3, with i = 1, · · · , N ,
as

ei := h(X̂−1, yi) =
X̂yi

|X̂yi|
=

Eẙi
|Eẙi|

. (7)

Note thatei (i = 1, · · · , N) can be viewed as the estimates
of ẙi, since they converge to̊yi whenE converges toI4.
Note also thatei are computable by the observer.

We now proceed the observer design. As proposed by [18],
the observer takes the form

˙̂
X = X̂A−∆(X̂, Y )X̂, X̂(0) ∈ SE(3), (8)

where∆(X̂, Y ) ∈ se(3), which is a matrix-valued function
of X̂ andY with Y defined by (5), is the innovation term to
be designed hereafter and must beright equivariant in the
sense that∀Q ∈ SE(3):

∆(φ(Q, X̂), ρ(Q, Y )) = ∆(X̂, Y ),

with ρ(Q, Y ) := (ρ(Q, y1), · · · , ρ(Q, yN)). Interestingly,
if the innovation term∆(X̂, Y ) is right equivariant, the
dynamics of the group errorE are autonomous [18, Th. 1]:

Ė = −∆(E, Y̊ )E. (9)

In order to determine the innovation term∆(X̂, Y ), the
following cost function is considered:

C : SE(3)×(RP3 × · · · × RP
3)−→ R

+,

(X̂, Y ) 7→ C(X̂, Y ) :=

N
∑

i=1

ki
2

∣

∣

∣

∣

∣

X̂yi

|X̂yi|
− ẙi

∣

∣

∣

∣

∣

2
(10)

with positive constant parameterski. It is easily verified that
the cost functionC(X̂, Y ) is right invariant in the sense that
C(φ(Q, X̂), ρ(Q, Y )) = C(X̂, Y ) for all Q ∈ SE(3). From
here, the innovation term∆(X̂, Y ) is computed as [18, Eq.
(40)]:

∆(X̂, Y ) := (grad1C(X̂, Y ))X̂−1, (11)

where grad1 is the gradient in the first variable, using a
right-invariant Riemannian metric onSE(3).

Lemma 1 The innovation term∆(X̂, Y ) defined by(11) is
right equivariant and explicitly given by

∆(X̂, Y )=−P

(

N
∑

i=1

ki
(

I4 − eie
⊤
i

)

ẙie
⊤
i

)

, (12)

with ei considered as functions of̂X andyi, i.e. ei =
X̂yi

|X̂yi|
.

Proof: The proof for∆(X̂, Y ) given by (12) to be right
equivariant is straightforward. Now, using standard rulesfor
transformations of Riemannian gradients and the fact that the
Riemannian metric is right invariant, one obtains

D1C(X̂, Y )[UX̂ ] = 〈grad1C(X̂, Y ), UX̂〉X
= 〈grad1C(X̂, Y )X̂−1X̂, UX̂〉X
= 〈grad1C(X̂, Y )X̂−1, U〉
= 〈∆(X̂, Y ), U〉,

(13)



with someU ∈ se(3). On the other hand, using (10) one
deduces

D1C(X̂, Y )[UX̂ ] = d1C(X̂, Y )[UX̂]

=
∑N

i=1 ki

(

X̂yi

|X̂yi|
− ẙi

)⊤(

I4 − (X̂yi)(X̂yi)
⊤

|X̂yi|2

)

(UX̂)yi

|X̂yi|

=
∑N

i=1 ki(ei − ẙi)
⊤(I4 − eie

⊤
i )Uei

= tr
(

∑N

i=1 ki(I4 − eie
⊤
i )(ei − ẙi)e

⊤
i U

⊤
)

=
〈

−
∑N

i=1 ki(I4 − eie
⊤
i )̊yie

⊤
i , U

〉

=
〈

−P

(

∑N
i=1 ki(I4 − eie

⊤
i )̊yie

⊤
i

)

, U
〉

.

(14)
Finally, the expression of∆(X̂, Y ) given by (12) is directly
obtained from (13) and (14).

Using the definition (2) of the projectionP(·), the innova-
tion term∆(X̂, Y ) given by (12) can be rewritten in matrix
form as follows:

∆(X̂, Y )

=







−1

2

N
∑

i=1

ki(ei × ẙ
i
)×

N
∑

i=1

kiei,4((ei
⊤ẙi)ei − ẙ

i
)

0 0







(15)

Using (9), (11) and (12), one deduces the error system

Ė = −grad1C(E, Y̊ )

= P

(

N
∑

i=1

ki
(

I4 − eiei
⊤
)

ẙiei
⊤

)

E
(16)

with ei considered as functions ofE and ẙi, i.e. ei =
Eẙi

|Eẙi|
.

For the sake of analysis purposes, the following assump-
tion is introduced.

Assumption 1 (Observability) The set{ẙi ∈ RP
3, i =

1, · · · , N} satisfies one of the three following cases:

• Case 1 (at least 2 vectorial and 1 position measure-
ments): There exist two different pointsẙi1 and ẙi2 with
ẙi1,4 = ẙi2,4 = 0 and one point̊yj1 such that̊yj1,4 6= 0.

• Case 2 (at least 1 vectorial and 2 position measure-
ments): There exist one point̊yi1 with ẙi1,4 = 0 and
two different points̊yj1 and ẙj2 (i.e., ẙj1 6= ẙj2) with
ẙj1,4 6= 0 and ẙj2,4 6= 0. Furthermore, the vector̊y

i1
and the resultant vectorvj12 := ẙj2,4 ẙj1

− ẙj1,4 ẙj2 are
non-collinear.

• Case 3 (at least 3 position measurements): There exist
three different points̊yj1 , ẙj2 and ẙj3 such that̊yj1,4 6=
0, ẙj2,4 6= 0 and ẙj3,4 6= 0. Furthermore, the resultant
vectorsvj12 := ẙj2,4 ẙj1

− ẙj1,4 ẙj2
, vj23 := ẙj3,4 ẙj2

−
ẙj2,4 ẙj3

and vj31 := ẙj1,4 ẙj3
− ẙj3,4 ẙj1

are not all
collinear.

From here, the first result of this paper is stated.

Theorem 1 Consider the kinematics(3). Consider the ob-
server(8) with the innovation term∆(X̂, Y ) given by(12).

Assume that Assumption 1 is satisfied. Then, the equilibrium
E = I4 of the error system(16) is locally asymptotically
stable.

Proof: Since the right-hand side of (16) is a gradient
flow of C, in order to prove the local asymptotic stability of
E = I4, it suffices to prove thatC(E, Y̊ ) is minimal when
E = I4. Note that

C(E, Y̊ ) = V(E) :=
1

2

N
∑

i=1

ki

∣

∣

∣

∣

Eẙi
|Eẙi|

− ẙi

∣

∣

∣

∣

2

. (17)

Let us prove that the functionV(E) has a unique global
minimum atE = I4, i.e. V(E) = 0 ⇔ E = I4.
First, it is straightforward to verify thatV(I4) = 0. Denote

E =

[

Re pe
0 1

]

, with Re ∈ SO(3), pe ∈ R
3. Now assuming

that V(E) = 0, we only have to prove thatE = I4 or,
equivalently,Re = I3 and pe = 0. In view of (17) and
V(E) = 0, one deduces thatEẙi = |Eẙi |̊yi, ∀i, i.e.










Re̊yi + peẙi,4 =
√

ẙ2i,4 + |Reẙi + peẙi,4|2 ẙi
ẙi,4 =

√

ẙ2i,4 + |Reẙi + peẙi,4|2 ẙi,4

(18a)

(18b)

Let us consider all the three cases of Assumption 1.

• Case 1 of Assumption 1:Since ẙi1,4 = ẙi2,4 = 0, one
has |̊y

i1
| = |̊y

i2
| = 1. Then, one deduces from (18a) that

Re̊yi1
= ẙ

i1
and Reẙi2

= ẙ
i2

. These equalities and the
non-collinearity of ẙ

i1
and ẙ

i2
allows one to deduce that

Re = I3. Sinceẙj1,4 6= 0, (18b) implies that|Eẙj1 | = 1. As
a consequence, one deduces from (18a) thatpe = 0.

• Case 2 of Assumption 1:Analogously to case 1, one
deduces thatRe̊yi1

= ẙ
i1

. Now, since ẙj1,4 6= 0 and
ẙj2,4 6= 0, (18b) implies that|Eẙj1 | = |Eẙj2 | = 1. Then,
from (18a) one obtains

{

(Re − I3 )̊yj1
+ peẙj1,4 = 0

(Re − I3 )̊yj2
+ peẙj2,4 = 0

From here, simple combination yieldsRevj12 = vj12 , with
vj12 defined in Assumption 1. It is easily verified that
vj12 6= 0 using the fact that̊yj1 and ẙj2 are non-collinear by
assumption. Furthermore, sinceẙ

i1
andvj12 are non-collinear

by assumption, relationsRe̊yi1
= ẙ

i1
andRevj12 = vj12

obtained previously imply thatRe = I3. From here, it is
straightforward to deduce thatpe = 0.

• Case 3 of Assumption 1:Analogously to case 2, one
deduces from (18) that|Eẙj1 | = |Eẙj2 | = |Eẙj3 | = 1 and















(Re − I3 )̊yj1
+ peẙj1,4 = 0

(Re − I3 )̊yj2
+ peẙj2,4 = 0

(Re − I3 )̊yj3
+ peẙj3,4 = 0

From here, analogously to case 2 one deduces thatRevj12 =
vj12 , Revj23 = vj23 , Revj31 = vj31 , and thatvj12 , vj23 and
vj31 are not null. Then, using the non-collinearity assumption
of the vectorsvj12 , vj23 and vj31 , it is easily deduced that
Re = I3 and, consequently, thatpe = 0.



IV. OBSERVER DESIGN WITH VELOCITY BIAS

COMPENSATION

The observer developed in the previous section will be ex-
tended in order to cope with the case where the measurement
Ay ∈ se(3) of the group velocityA ∈ se(3) is corrupted by
an unknown constant biasbA ∈ se(3), i.e.Ay = A+ bA.

Assumption 2 Assume that the following matrices̊G ∈
R

3×3 and H̊ ∈ R
3×3 are full rank:

G̊ :=
N
∑

i=1

ki(̊yi×)
2

H̊ :=

(

N
∑

i=1

kiẙi,4̊yi×

)

G̊−1

(

N
∑

i=1

kiẙi,4̊yi×

)

−
N
∑

i=1

kiẙ
2
i,4(I3 − ẙ

i̊
y⊤
i
)

The condition on the set{ẙi ∈ RP
3, i = 1, · · · , N}

evoked in Assumption 1 ensures that it is always possible
to choose a set of parameters{ki, i = 1, · · · , N} such that
G̊ andH̊ are full rank (i.e. invertible). Now, the second result
of this paper is stated.

Proposition 1 Consider the observer system


























˙̂
X = X̂(Ay − b̂A)−∆(X̂, Y )X̂

˙̂
bA = −kbP

(

X̂⊤
N
∑

i=1

ki
(

I4−eiei⊤
)

ẙiei
⊤X̂−⊤

)

X̂(0) ∈ SE(3), b̂A(0) ∈ se(3)

(21a)

(21b)

with ∆(X̂, Y ) given by(12). Assume that Assumptions 1 and
2 are satisfied. Assume also thatA andX are bounded for all
time. Then, the equilibrium(E, b̃A) = (I4, 0) of the dynamics
of (E, b̃A), with b̃A := bA − b̂A, is locally asymptotically
stable.

Proof: It is easily verified that˙̃bA = − ˙̂
bA and ˙̂

X =
X̂(A+ b̃A)−∆(X̂, Y )X̂ . Then, one deduces

Ė =
(

Ad
X̂
b̃A −∆(E, Y̊ )

)

E. (22)

Consider the candidate Lyapunov function

Vb(E, b̃A) :=
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+
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2kb
‖b̃A‖2. (23)

Analogously to the proof of Theorem 1, it can be verified
that Vb(E, b̃A) is locally positive-definite and has a unique
global minimum at(E, b̃A) = (I4, 0), i.e. Vb(E, b̃A) = 0 ⇔
(E, b̃A) = (I4, 0).

The time-derivative ofVb satisfies

V̇b =
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−∑N
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ẙiei
⊤, Ad

X̂
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⊤
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2

= −‖∆(E, Y̊ )‖2.
(24)

Since the dynamics of(E, b̃A) are not autonomous, LaSalle’s
theorem does not apply to deduce the convergence ofV̇b to
zero. Thus, the next step of the proof consists in proving that
V̇b is (locally) uniformly continuous in order to deduce, by
application of Barbalat’s lemma, the convergence ofV̇b to
zero. To this purpose it suffices to prove thatV̈b is bounded.
In view of (24), V̈b is bounded if ėi (i = 1, · · · , N ) are
bounded, where (using (22) and the relationei =

Eẙi

|Eẙi|
)

ėi = (I4 − eie
⊤
i )(AdX̂ b̃A −∆(E, Y̊ ))ei.

According to Assumption 2, there exists at least one pointẙi
such that its fourth component̊yi,4 is not null. This indicates
that for a given small numberε > 0 there existsδε > 0 such
that if |pe| > δε or |b̃A| > δε thenVb(E, b̃A) > ε. Therefore,
there exists a small enough neighborhoodBε ∈ SE(3)×R

3

of the point (I4, 0) such that if(E(0), b̃A(0)) ∈ Bε then
Vb(E(0), b̃A(0)) < ε. SinceVb(E, b̃A) is non-increasing, one
hasVb(E(t), b̃A(t)) < ε, ∀t ≤ 0. This implies thatE and
b̃A remain bounded. SinceX is bounded by assumption,
one deduces from the boundedness ofE that X̂ is also
bounded, which in turn implies the boundedness ofĖ and
ėi. This concludes the proof of (local) uniform continuity of
V̇b and the convergence oḟVb to zero. One easily verifies
that (E, b̃A) = (I4, 0) is an equilibrium of the error system.
Let us prove the local stability of this equilibrium. To this
purpose let us first prove that∀(E, b̃A) ∈ Bε:

{

V̇b(E, b̃A) = 0 if E = I4
V̇b(E, b̃A) < 0 if E 6= I4

Consider a first order approximation ofE =

[

Re pe
0 1

]

aroundI4 as
{

pe = εp
Re = I3 + εr×

with εp, εr ∈ R
3. We only need to prove that

V̇b(E, b̃A) = 0 ⇔ εp = εr = 0.

Note that (24) and (15) indicate that the relationV̇b = 0 is
equivalent to

{
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i=1 kiei × ẙ
i
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i
)ei,4 = 0

(25)

In first order approximations, one verifies that

Eẙi =
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]

, |Eẙi| = 1 + ẙi,4ε
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and, thus,
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.

Therefore, in first order approximations the equalities in (25)
can be rewritten as
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SinceG̊ is full rank according to Assumption 2, it is deduced
from (26a) thatεr = G̊−1

(

∑

i kiẙi,4̊yi×

)

εp. This relation

along with (26b) yieldsH̊εp = 0. Since H̊ is also full
rank by Assumption 2, it is deduced thatεp = 0 and,
consequently,εr = 0.

It remains to prove to convergence ofb̃A to zero. From
the convergence ofE to I4 (proven previously) and (22), the
application of Barbalat’s lemma yields the convergence ofĖ
to zero. Finally, Eq. (22) and the convergence ofĖ and of
∆(E, Y̊ ) to zero imply the convergence ofb̃A to zero.

The estimatêbA plays the role of integral correction for
the error dynamics (22), allowing for the compensation of the
unknown constant biasbA. It may, however, grow arbitrarily
large, resulting in slow convergence and sluggish dynamics
of the error evolution. This leads us to replace hereafter the
integral term̂bA, with dynamics given by (21b), by an “anti-
windup” integrator similar to the one proposed in [11], [13].

More precisely, by decomposinĝbA as b̂A =

[

(b̂Ω)× b̂V
0 0

]

with b̂Ω, b̂V ∈ R
3, one rewrites the dynamics (21b) of the

estimated biaŝbA as
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bV = kbR̂
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with V∆ :=
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⊤ẙi)ei − ẙ

i
) and Ω∆ :=

− 1
2
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i
. From here, the following modified dy-

namics ofb̂A (i.e. of b̂Ω and b̂V ) are proposed:










˙̂
bΩ =kbR̂

⊤(Ω∆+
1

2
V∆× p̂)− κΩ(b̂Ω − satδΩ(b̂Ω))

˙̂
bV = kbR̂

⊤V∆ − κV (b̂V − satδV (b̂V ))

(28a)

(28b)

with initial conditions |bΩ(0)| ≤ δΩ and |bV (0)| ≤ δV ;
κΩ and κV two positive numbers;δΩ and δV two positive
parameters associated with the classical functionssatδΩ(·)
andsatδΩ(·) defined bysatδ(x) = xmin(1, δ/|x|), ∀x ∈ R

3.

Corollary 1 Consider the observer(21a)+(28). Assume that
δΩ and δV are chosen such that|bΩ| ≤ δΩ and |bV | ≤
δV . Then, provided that all the assumptions of Proposition
1 are satisfied, the local asymptotic stability property of
Proposition 1 holds.

Proof: Based on the inequality|b−satδ(b−b̃)| ≤ |b̃| for
all b̃ ∈ R

3 and provided thatδ ≥ |b| (see e.g. [11]), it can be
easily proved that the time-derivative ofVb defined by (23)
satisfiesV̇b ≤ −‖∆(E, Y̊ )‖2. Therefore, the local asymptotic
stability property given in Proposition 1 still holds when the
dynamics of̂bA given by (21b) is replaced by (28).

V. SIMULATION RESULTS

In this section, the performance of observer (21a)+(28) is
illustrated by simulations. The angular and translationalve-
locity measurements are corrupted by the following constant
biases:

bΩ = [−0.02 0.02 0.01]⊤ (rad/s),

bV = [0.2 − 0.1 0.1]⊤ (m/s).

We consider the three following cases where only three
system outputsyi ∈ RP

3 of known inertial elements̊yi ∈
RP

3 (i = 1, 2, 3) are available to measurement:

• Case 1: corresponds to Case 1 of Assumption 1, in
which two vectorial measurementsv1, v2 ∈ R

3 and
the position measurementp1 ∈ R

3 of one feature
point are available, wherev1 = R⊤v̊1, v2 = R⊤v̊2,
p1 = R⊤(p̊1 − p), with v̊1 = [0 0 1]⊤, v̊2 =
[
√
3/2 1/2 0]⊤ and p̊1 = [1 0 0]⊤.

• Case 2: corresponds to Case 2 of Assumption 1, in
which one vectorial measurementv1 ∈ R

3 and the posi-
tion measurementsp1, p2 ∈ R

3 of two feature points are
available, wherev1 = R⊤v̊1, p1 = R⊤(p̊1 − p), p2 =
R⊤(p̊2 − p), with v̊1 = [0 0 1]⊤, p̊1 = [1 0 0]⊤

and p̊2 = [−1/2
√
3/2 0]⊤.

• Case 3: corresponds to Case 3 of Assumption 1, in
which the position measurementsp1, p2, p3 ∈ R

3 of
three feature points are available, wherep1 = R⊤(p̊1−
p), p2 = R⊤(p̊2 − p), p3 = R⊤(p̊3 − p), with
p̊1 = [1 0 0]⊤, p̊2 = [−1/2

√
3/2 0]⊤ and p̊3 =

[−1/2 −
√
3/2 0]⊤.

Recall that Remark 1 explains how to transform a vector or
a position of a feature point into a corresponding element of
RP

3.
The gains and parameters involved in the proposed ob-

server are chosen as follows:

k1 = k2 = k3 = 2, kb = 1,

κΩ = κV = 10, δΩ = 0.052, δV = 0.346.

For each simulation run, the proposed filter is initialized at
the origin (i.e. R̂ = I3, p̂ = 0, b̂Ω = 0, b̂V = 0) while
the true trajectories are initialized differently. Combined
sinusoidal inputs are considered for both the angular and
translational velocity inputs of the system kinematics. The
rotation angle associated with the axis-angle representation
is used to represent the attitude trajectory. One can observe
from Figure 1 that the observer trajectories converge to the
true trajectories after a short transition period for all the
three considered cases. Figure 2 shows that the norms of
the estimated velocity bias errors|b̃Ω| and |b̃V | converge to
zero, which means that the group velocity biasbA is also
correctly estimated.

VI. CONCLUSIONS

In this paper, we propose a nonlinear observer onSE(3)
for full pose estimation that takes the system outputs on the
real projective spaceRP3 directly as inputs. The observer
derivation is based on a recent observer design technique
directly on the output space, proposed in [18]. An advantage
with respect to our prior work [14] is that we can now
incorporate in a unique observer different types of mea-
surements such as vectorial measurements of known inertial
vectors and position measurements of known feature points.
The proposed observer is also extended onSE(3) × se(3)
so as to compensate for unknown additive constant bias in
the velocity measurements. Rigorous stability analyses are
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Fig. 1. The rotation angle and the position tracking performance of the
proposed observer. Note that the dashed lines are the estimated trajectories
(for Cases 1 (green), Case 2 (blue), Case 3 (red)) while the solid line (black)
represents the true trajectory.
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equally provided. Excellent performance of the proposed
observers are justified through simulations.
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