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Velocity-aided Attitude Estimation for Accelerated Rigid Bodies

Minh-Duc Hua, Philippe Martin, Tarek Hamel

Abstract— Two nonlinear observers for velocity-aided atti- frame [13], [8], [17] or body-fixed frame [1], [2], [21], [5].
tude estimation, relying on gyrometers, accelerometers, agne-  This paper focuses on the latter category. In [5], an observe
tometers, and velocity measured in the body-fixed frame, are 5 hronosed and tested experimentally on an underwater
proposed. As opposed to state-of-the-art body-fixed veldgk . . I L
aided attitude observers endowed with local properties, hib vehicle, but without convergence and Stab'_“ty _analy$lsthE,_\
observers are (almost) globally asymptotically stable, wih ~ Same context [21] uses the numerical derivative of the tinea
very simple and flexible tuning. Moreover, the roll and pitch  velocity to recover the gravity direction estimate, which
estimates are globally decoupled from magnetometer measer s sensitive to measurement noise. On the other hand, [2]
ments. proposes a “general” invariant observer with several nice

. INTRODUCTION geometric properties among which 1) the local exponential

Robotic vehicles commonly need to know their orientatior? tab|I||.ty ar?lt"r? d ar|1|y trgjeg:ttor:y oIlthet_sys]Eem, 2) the I(t)cal ?
and velocity to be operated. When cost or weight is affouping of the roll and pitch estimation from magnetometer

. . - W on o IMEasurements.

issue, using very accurate inertial sensors for “true .(|.emIn this Dapber. we propose two invariant observers which

based on the Schuler effect due to a non-flat rotating Earth‘)i b paper, pt' pl f th i ant
inertial navigation is excluded. Instead, low-cost system can be seen as particular cases of e general nvarnan

sometimes called velocity-aided Attitude Heading Refeeen Obese(gfnro?t)[zéio{,gf g]st)?:r?s:olt?c:l]a;t;v;Iif;narrw]gvih%uzrl?)gtaele
Systems- rely on light and cheap strapdown gyroIﬁnme%‘écoupling of the roll and pitch estimation from magnetome-

accelerometers and magnetometers “aided” by velocity sen- . .
sors (provided for example in body-fixed coordinates b £r measurements, while ensunng good local convergence
an air-data, a Doppler radar system or a Doppler velociérOpertIeS and an easy tuning.

log (DVL), or in Earth-fixed coordinates by a GPS engine). [l. PRELIMINARY MATERIAL

The various measurements are then “merged” according f0 Notation

the motion equations of the vehicle assuming a flat non- denotes th ical basisgi. Th tati
rotating Earth, usually with a linear complementary filter o ® {e1, €2, 3} denotes the canonical basisRA. The notation
an Extended Kalman Filter (EKF). (1)x denotes the skew-symmetric matrix associated with the

: _ 3
Nonlinear attitude observers have become an alternatif&oSs Product, i.eaxv = u x v, Yu,v € R”.
Let {Z} denote an inertial frame attached to the earth,

to the EKF, starting with [18] and then over the last fifteer} -
years [16], [20], [19], [12], [23], [13], [2]. [8], [14], [1D typically chosen_ as the north-east-down (NED_) frame. Let
[17], [11], [22], [6], [24], [3], [21], [5], [9]. The perfor- {B} be a body-fixed frame attached to the vehicle.

3 o .

mance of recent observers is comparable to modern nonline'all'%t v f R der;g;edthe veh;]cle N ImTar velloc_lty, expressedd

filtering techniques [4]. Moreover, they often offer much" {B}. Letw € enote_t € angular velocity, expresse
{B}, of the frame{B} with respect to the framéZ}.

stronger stability and robustness properties than an EKIF afl S ) ) : .
are simpler to tune and implement e The vehicle’s attitude is represented by a rotation matrix

In fact, most existing attitude observers are based on tHE € SO(3) of the_frame{B} relative to{Z}. Let ¢, 6 andy .
assumption of weak accelerations of the vehicle so th note the roll, pitch and yaw Euler angles. By representing

. VT . P
the gravity direction estimate can be approximated by th € .greavn.y dlrec;on by th(; Tunlt VZCth B ﬁ es ”_ q
accelerometer measurements [19], [12], [14], [9]. Howevet_ Sin0; sin ¢ cost, cos ¢ cos |, one deduces that roll an
the accuracy of the estimated attitude using this assumjstio pitch Euler _angles_c_an be (locally) _umquely determinediro
far from satisfactory when the vehicle undergoes sustained except singularities correspondingée= /2.
accelerations. To get rid_ of this u_nsatisfactory assqmptiq_b,_ System Equations and Measurements

some authors haye conS|dered attitude observ.ers a@ed ,byThe attitude satisfies the differential equation
complementary linear velocity measurements in the irlertia )

R = Ruwy, (1)
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respectively provide the measurement of the angular viglocie Observer 2:This observer is also given bfl(6), but with
w and specific acceleratioruis € R3, expressed inB}. o, andor defined by
Using the flat non-rotating Earth assumption, one has [2]

ap = RY(% — ges) =0 —v X w— g7, 3) {
where the vehicle’s acceleration and the gravitationaélcc » ) o
eration, both expressed in the inertial frame, are R? and  Wherekt, k3, ki, k3 are positive constant gains, and,

ges. From [3), it is also convenient to write s are defined by[(9). ,
The sole difference between the two observers is the

“quadratic” term—k7v x (0 x 4) involved in the definition
In many IMUs, a 3-axis magnetometer is also integrated tf0) of o, of Observer 2. We will explain later why this
provide the measurement of the Earth’s magnetic field vecttearm has been introduced.
mp € R3, expressed in the body-fixed frame. One verifie$ amma 1 The dynamics of the invariant state erros, &)
thatmpz = RTmz, with mz the Earth’s magnetic field vector defined by ’
expressed in the inertial frame. It is reasonable to asshate t 2 R(v—9) R2RRT (11)
the Earth’s magnetic field vector and the gravity directiom a
non-collinear, i.emz x e3 # 0.

In summary, the observer design presented in the next Proof: The proofis similar to the one in [2]. Usingl(5),

Oy 2 kYD — E¥A X (A% D)= kD x (¥ x4)

10
or £ K9 x 4 + k5 ((ms x mp)T4)4 (10)

v = vXxwtag+gRTes=vxw+ag+gy. (4)

for both Observers 1 and 2 are autonomous.

section will be based on the following system (@) and [11), one easily deduces
) = T v = g(I—R)es—a,
0 - vXw+tap+gR'es ®) v - 9(7 R)es — o (12)
R = Ruwy R = -—orxR

using (v,w, ag, mp) as measurements. with &, £ Ro,, or £ Ror. Wheno, andoy are given by

(8) for Observer 1, using the identit®(u x v) = (Ru) x
(Rv), Yu,v € R3, VR € SO(3), one deduces

oy = kY0 — kY(Res) x ((Res) x ) (13a)
OR = ]CI’U X Reg + kg((mz X Rmz)TR€3)R€3 (13b)

1. OBSERVERDESIGN
A. Invariant Observer Design

Let o € R? and R € SO(3) denote the estimates ofaind
R, respectively. Consider the nonlinear observer system

O A When o, and or are given by [(0) for Observer 2, one
= Ox RT » oo R’ ah X oY
“ v tastgitesto (6) verifies thator still satisfies [I3b), whilez, is given by
R = R(w+o0or)x B B _ _ - S
whereo, € R? andog € R3 are the innovation terms to be  7* kiU — k3 (Res)x ((Res)x ) —kjox (vx Res)  (14)
designed in order to ensure the following objectives: From here, the conclusion is straightforward. [

0O.1) the convergence ¢f, R) to (v, R) and the stability of B, Reduction to Gravity Direction Estimation
0.2) ttr#z Z%Lé'lolgnllijrr]n(gffg ”:a(nvd’ Ri)t,ch estimation from maa- The gravity direction expressed in the body-fixed frame
' ping P 9%an be represented by the vectpf= RTe3 € S?). Its

netometer measurements. . . o s
. . ) . estimatey € S can be calculated from the estimale e
A “general” invariant observer in the form of quaternlonsso(3) provided by Observers 1 or 27as- R”es. It can also
has been proposed in [2], which is equivalently rewritten age optained from an observer directly designedRonx S2

{v — dxXw+ag+ gRTeg + RT(ﬁzev + LY ) @) as a result of the following lemma.

R = Rwy + (LFe, + LEe,) R Lemma 2 Observers 1 and 2 can be reduced to the follow-
where£, £ | L7, and 2 are3 x 3 gain matrices whose ing observers of» and v (that we term *y—observers”):
entries may depend on the invariant errers> R(v—o) and « 7-Observer 1:

em £ mz—Rmjg. Motivated by the fact that the convergence b = OxwHag+gy+ o)

and stability and the decoupling_results proved in_ [2] are 5 = Ax (w+ap) (15)
only local, we propose two following obseryers which can ol A K(v—10)— k3 x (5 x (v—19))

be seen as particular cases[df (7), but for whilrhost global ol L fr(v—1) x4

convergence and stability arglobal decoupling properties N _
can be established hereafter: wherek?, k¥, k] are positive constant gains.

e Observer 1:This observer is given by{6), witk, and * 7—0b§erver 2

or defined by

>
Il

U X w4+ ag+gy+ o)

2

— 2 2
oy 2 kYD — kY4 x (5 x D) = jx(w+op)
v 8 A Viny A LUR 2 A
{ or 2 k{0 x 4 + k3 ((mp x1is) T4 ® o} = K-10) =Ky x (3 x (v-10)) (16)
" : —ki(v—9) x ((v—-128) x7)
whereky, k3, kI, k5 are positive constant gains and ol L K(v—10) x4

i2v—9, 42 R"s, 12 R'mz 9) wherek?, k3, k7 are positive constant gains.



In addition, these two—observers are independent of mag-which is positive-definite under conditiof {20). Fromn]1(18)
netometer measurements (i.e.g). and [21), one verifies that the time-derivative/f satisfies
straigi:?fgfrwa-rrctiis g)é?a:ﬁisesdo?rooiji}dg) GEi)@ﬂ(r(gip(rgr%I(fO)) Lo=—k[o — fles =) — (k3 — 2Ly x of?

which is negative-(semi)definite under conditi-(ZO) c8in

b I Tes b As for the d b
d):‘f replacing " cs RXIV Sd or e hynamics ofy. d;/ System [(IB) is autonomous, by application of LaSalle’s
ifferentiating § = es and using the expression theorem, one deduces the convergenc&gfto zero. This

given by [@-@) (or[(B)£(10)) one deduces in turn implies the convergence 6f£ o — k—v(e3 —7) to
Y=A4x(W+or) =4 x (w+o3) zero, and additionally the convergence'iofx v to zero if
where the latter equality is obtained using ki < lg 2. Contrarily, if k] = 1g 2, only the convergence of

. . W NT oy~ 0 to zero can be deduced Let us now prove the convergence

¥ % [ky ((ms xrnp)"4)7] = 0 of e3 x 7 to zero for the two possible cases satisfyig] (20).

Finally, the statement about the independence of the o Casek] < k%3 - The convergence afto -2 53 (e3—%) can

observers[(15) and_(1L6) ang is straightforward. B pe deduced from the definition éfand its convergence to
The latter statement in Lemrh& 2 implies that the objectiveero (proved previously). This implies thak 7 converges to

0.2 is guaranteed globally. With respect to the statement ifgeg x 7, which must converge to zero singe 7 converges

Lemmal[l that the dynamics of the invariant estimation state zero (proved preV|0ust)

errors(v, R) are autonomous, a similar result is now given. e Casek] = kiky —L=21 It is easily deduced from(18) and

Lemma 3 The dynamics of the invariant state errois ) ~ the definition of§ that § = —ko5 On the other hand, the

defined by definition of § impliesv = § + 2 w (e3 — 7). Then, it can be
72 R(v—10), 52 RY=Res (17) verified from [18) that
for both v—Observers 1 and 2, given bI8) and (I8), F(—edy) = —kel(7x (1x7))
respectively, are autonomous. = —k((0+ #(es—7)) x 7) (e3 x %)
Proof: For bothy—Observers 1 and 2, one verifies from = —k7(d x 7)T(e3 X 7)
@, @), (15) (or[Ib)) that < K7I8||es x 7| —

= _ A s A _ =) 5
) v = Rwx(v—=0)+ R0 =) = gles =7) = Roj Now, consider the foIIowing Lyapunov function Cand%zaete
¥ = Rwxd+R(yx (w+og)) = yx(Rog) = —kiyx (yxv)

5%+ 1-— 23
Consequently, for—Observer 1 (i.e.[[15)) one obtains | "+ ( €3 37) (23)
{ 12 — 9(637_ W),_ ki)'f) + k37 x (7 x D) 18) One deduces fronE(JZZEIZB) aiﬁd: —kod that
Y= kY x (7% 9) L1 < —k{|6]* — (20%/k7)les x 71> + 2g]6]|es x 7]

On the other hand, foy—Observer 2 (i.e.[{16)) it yields Sincek? (5] + (202/k)[es x |2 > 2v/3g|5][es x 7| using
1-:; = g(es—7) — k{0+k3yx (¥ x0)+k{0x (0x7) (19) Young's inequality, there exist two positive numbers a_nd
¥ = —kTy x (¥ X 0) as such thatl; < —aq|d|> — asles x 4|?. Then, by applica-
. . tion of LaSalle’s theorem, one deduces the convergence of
The conclusion then directly follows.

. £, to zero, which implies thad andes x 7 also converge
In the following, convergence and stability analyses of thg'! P 3 X7 9

. fo zero.
error systemsi(18) anfl 19) are provided. Therefore, for both casesconverges to either; (desired)

Proposition 1 (y—Observer 1)- Consider the autonomousr —e,; (undesired), which in turn implies that converges
error dynamics(18) and assume that the observer gaingo either zero (desired) o%—eg (undesired). The stability is

ki, 52' k1 are chosen positive and satisfying the fOIIO\MngdirectIy deduced from the expressions of eith&g, £o) or
condition: < kka (20) (51751)
="y We continue to prove that the “desired” equilibrium
Then, the following properties hold: (v,7) = (0,¢3) is locally exponentially stable and the
1) System({I8) has only two isolated equilibrium points undesired one(v,y) = ((2g/k7)es, —es) is unstable. To
(,7) = (0,e3) and (3,9) = (kv es, —e3). For this purpose, it suffices to study the stability of the lineed

_ system about each equilibrium. For instance, the linedrize

all initial condition (3(0),7(0)), the error trajectory o -
(o(t),7(t)) converges to one of these two equilibria. system about the equilibriurtv, 7) = (0, 3) satisfies

2) The equilibrium(7,5) = (0,e3) is almost-globally { v = gles—7) — k¥ + kJes x (e3 X ¥)
asymptotically stable and locally exponentially stable. ol —kles x (e3 X D)
3) The equilibrium(v,5) = (Z—‘?% —es) is unstable. which can be decomposed into three subsystems
Proof: Consider the Lyapunov function candidate {v] [ (kY + kY) —g} |:Ui:| i—12 ()
Al ) o ~ y 0] [7%]° '
Lo =3I+ 2k”kT|e 3= - F“ (s =7) (21 = — k1v3 (24b)



By application of Hurwitz criteria, one easily deduces thatsing [19), [25) and(26), one deduces
the origin of these three subsystems is stable for any set of So= — (kY + k2) |5 x 7] 27)
positive constant gaingy, k3, k7). Similarly, one can easily P

prove that the remaining “undesired” equilibriufn, 5) = a
((29/kV)es, —es) is unstable by analysing the Iinearizedthe convergence a$, and, subsequently, af x & to zero.

system about this equilibrium. Therefore, the equilibrium From [26) and((27), one deduces the boundedness of

(7,7) = (0, e3) is almost globally asymptotically stable andOn_e then ve_rifie_zs thz_ﬁ is also bouno_led,_ which implies the
locally exponentially stable. uniform continuity ofy. Then, by application of the extended

Barbalat's lemma (see, e.g., [15]) 6 [25) one deduces the

From here, by application of LaSalle’s theorem, one deduces

Remarks: N _ N convergence ofé (v x ) to zero. This in turn implies the
1) The gain conditior{{20) is only sufficient for the almostconvergence o3 x 5 to zero. Thereforey converges to
global asymptotical stability of the equilibriunw,y) = eijthere; or —es.

(0,e3). If [20) is not satisfied, in view of the linearized Sincewxy converges to zero, the zero-dynamicgiaire
system [(24a)E(24b) one still deduces the local exponential L Ay kg o8
stability of the equilibrium(z,7%) = (0, e3), for any set of v=gles =7) = kyv (28)
positive constant gaing:?, k4, k7). Then, the convergence of to eitheres or —e3 associated
2) The linearized subsystem§ (24a), with = 1,2, With the zero-dynamic$ (28) ensures the convergencetof
have identical form, with characteristic polynomial giien ~ €ither zero or(2g/k{)es.
P()\) = A2 + (kY + k)X + gk?. Using Young’s inequality Finally, the proof of almost-global asymptotical stalyilit
and condition[(20), one verifies that the determinanPek) ~ and local exponential stability of the “desired” equililom

is positive, i.e.,Ap = (k{ + kb)? — gk > 4kiky — (9,7) = (0,e3) and the proof of instability of the “unde-
4gky > 0. This implies thatP(\) can only possess two Sired” one(v,7) = ((2g/k)es, —e3) proceed analogously
negative real poles. This in turn implies that we cannd@ the proof of Propositiohl1. u

impose imaginary poles for these subsystems while respegt- Stability Analysis for Observers 1 and 2
ing condition [20). This limitation is usually not criticah '

practice. However, from a theoretical standpoint we stilhiv
to obtain a “stronger” result in the sense that the almo

In order to analyze the asymptotic stability of the observer
{rajectory of Observers 1 and 2 to the system trajectory, it

global asymptotical stability property of-Observer 1 is 'S More c_onverﬁent to consider the dynamics.of the state
still ensured, while the poles of the linearized system abo&rrors(v, R) defined by [(Ill) and prove that their trajectory

the “desired” equilibrium can be arbitrarily chosen (withCenVerges tdo, ), with I the identity element of SO(3).

negative real part). Such a motivation has led us to intredudheorem 1 (Observer 1)- Consider Syste(d) and Ob-
the “quadratic’ term—Fkjo x (¢ x %) in the innovation server 1 (i.e.@)+(8)). Assume that conditiof20d) for the
term o, of Observer 1, yielding Observer 2. This thenobserver gaing?, k3, k7 is satisfied andnz x e3 # 0. Then,
yields the error systenf (119) of—Observer 2, which only the following properties hold:

differs from [I8) by the “quadratic” term-k{v x (v x 7). 1) The dynamics of the estimate errdrg ) have only
Since this term is neglected in the linearized system of four isolated equilibria, one of which i@, R) = (0, I).
(19) about the equilibrium{z,7) = (0,e3), the linearized  2) The equilibrium(w, R) = (0, I) is locally exponentially
systems of both[{18) and_([19) are identical. As shown in  stable and almost globally asymptotically stable; and
Propositior 2 (presented below), conditibnl(20) is no lange  the other three equilibria ofv, R) are unstable. Thus,
required for the almost-global asymptotical stability bet for almost all initial conditions(ﬁ(O),R(O)), the tra-
error system[{19), which in turn implies that more freedom  jectory (#(t), R(t)) converges to the system trajectory
for the choice of poles is available for gain tuning. Thisris a (v(t), R(t)).

advantage of Observer 2 (resp-Observer 2) with respect 3) The dynamics ofo, 27 es) are independent ofi.

to Observer 1 (respy-Observer 1). Conversely, introducing  proof: Property 3 is a direct result of Lemnia 2. We
an addition term in the observer may make it more sensitiéow prove Property 1. First, recall that the dynamics of
to measurement noises. This means that both observers h@y’e}‘g) are given by [(AR), withs,, and 5r given by [I3h)
advantages with respect to each other. and [I3b), respectively. As a result of Propositidn 1, one
Proposition 2 (y—Observer 2)- Consider the autonomousnsures the convergence ¢Res,v) to either (e3,0) or
error dynamics(I9), with k7, k3, k] chosen positive. Then, (—es, 2—363), For both cases, the terdx given by [I3b)
all properties given in Proposition] 1 hold. converées exponentially to

Proof: Using [19) and the identity, x (v x w) =

v(uTw) —wwTv), Yu, v, w € R3, one verifies that - —
( ) d ( ) — k5 ((meymz X R(Tfegml'))T€3)€3
E(’Dxﬁ/) =ges X '7 - (k7lj + kg) v X '7 (25) — k£|7T€3m1|2((mI X RmI)Teg)eg

From [19) and[(25), it is clear that the dynamicg@k 7,7) wherer, = I —zz”, V2 € R? denote the projection on the

A Tegmz

are autonomous. Consider the following positive function plane orthogonal ta;, andm; = ‘ - Consequently, the
_ 7753m
So 2 1/2[v x 3> + g/ (1 — €3 7) (26)  dynamics ofR write

or — ki ((mz x Rmz)Tes)es




R = —E((mz x Riz)Tes)esx R+ e(0, R)x R (29) IV. SIMULATION RESULTS

with k} = kj|me,mz|* and a terme(v, R) € R remaining  Simulations are conducted on a model of a ducted-fan
bounded and converging exponentially to zero. One can alsarOL aerial drone, which was also used in [8]. Details on

easily verify thatR is uniformly continuous. the vehicle’s model are given in [7]. The vehicle is contdll
Using (29), one verifies that the time-derivative of thehy feedback to track a circular reference trajectory, with t
positive function) £ 1—m7 Rinz satisfies) < —k5((mzx  linear velocity given byk, = [—15a sin(at); 15a cos(at); 0]

Rinz)"e3)? + |e(v, R)|. Then, by integration one deduces (;/s), with o = 2/4/15. The magnitude of the reference

e B s linear acceleration is equal tfrmn /s?). Due to aerodynamic
T T 2 < _ - - \ ] . ’
/0 Ry ((mex fima)”es)"dr < /0 [€(2, B)ldr+V(0)=V(o0) forces acting on the vehicle, its orientation constantlgiesa

From here, one deduces th#ﬁ(mz x Rimz)Tes)2dr in large proportions. The normalized earth’s magnetic field
remains bounded sinagis bounded angk (s, R)| converges IS taken asmz = [0.434; —0.0091; 0.9008]. o
exponentially to zero. Then, the application of Barbalatd he initial conditions are chosen such that the initial erro
lemma yields the convergence ofi; x Rmz)Tes to zero. Variables are large and satisfy0) = [5; 5; —5](mn/s) and
Now, from the definition ofmz, one deduces that this £(0) = diag(—1,1, —1). The following gains are chosen so
constant unit vector belongs to Span e,). Thus, there that [20) holdsk} = 1.2, k3 = 1.2, k] = 0.147, kj = 2.764,

exists a constant angte such that where the values ok}, k¥, ki ensure that the linearized
i — CoS el 4 Sina ey — [cgsa e 9l p, system [(24la) has a double negative real pole equal2o
R ! SR T Y R The value ofk} is chosen such that one pole Bf}30) is also

Since Roe3 = Rles = e3, one writes equal tol1.2. In the following, two simulations are reported.

(inz x Rinz)Tes = (e1 x RERRye1) e = el (RERR,)e; o Simulation 1: This simulation allows us to show the
which implies thatel (RYRR,)e; — 0 using the fact performance of these two observers in the case of perfect
that (mz x Rmz)Tes — 0. One also verifies from the measurements. The time evolution of the estimated and
convergenceRe; — ez that RTRR,es — +e3. From real attitudes, represented by Euler angles, along with the
here, it is straightforward to deduce thaf RR,, converges estimated and real velocity is shown in Figk. 1 Bhd 2, respec-
to one of the four following rotation matrices?; = I, tively. Both observers ensure the asymptotic convergefice o
R} 2 diag—1,-1,1), R} 2 diag—1,1,-1), R} £  the estimated variables to the real values despite the large
diag(1, —1,—1), where the first two matrices correspond tonitial estimation errors. Their convergence rates arelaim
the caseRes; — e, and the last two correspond to the cas@nd quite satisfactory.
Res — —es. This in turn implies that? converges to one e Simulation 2:With respect to Simulation 1, we only add a
of the four matricesR, Ry RL (i = 0,---,3), with the first constant bias to magnetometer measurements. As expected,
one equal tal. it can be observed from FigEl 3 ahdl 4 that the estimated
We now prove Property 2. It is straightforward to verifyroll and pitch angles and the estimated velocity components
that the last two equilibrids, R) = (i—ge&RaR;BRg) are still converge to the real ones, and that the magnetome-
unstable, since the corresponding equilibria of the sitbsys ter measurement bias only affects the yaw estimation (see
(, Res) are unstable (as a result of Proposifion 1). Denotinfig. [3-bottom). This confirms the global decoupling of roll
n = RIRR,e;, one obtaingmz x Rimz)Tes = efn and and pitch estimation from magnetometer measurements.

verifies from [29) that V. CONCLUSION

0= —ky(e3n) es x 1 (30) _ . _—
The linearized system of (B0) about the “undesired” equilib In this paper, the problem of attitude estimation for ac-
fium n = Rje; = —e, satisfies celerated rigid bodies is re-visited, and two novel nordine

Mo = kma, 1 =13 =0 invariant observers are proposed based on the fusion of
which clearly indicates that this “undesired” equilibriign Measurement data provided by an IMU and the measurement
unstable. On the other hand, the linearized systenidf (36§ the linear velocity expressed in the body-fixed frame.
about the “desired” equilibrium = Rie; = e; is given by he paper provides rigourous Lyapunov-based analyses of

i = —Km, 1 =15 =0 convergence and stability showing that both observers are
From here, the local exponential stability of this equilibon ~ 2/MOost globally asymptotically stable and locally exponen
is directly deduced (using the zero-dynamiEs] (29)). Thilially stable. Moreover, the roll and pitch estimation is
along with the local exponential stability of5, Res) = glqbally _decoupled from magnetom.eter me.asurem_ents and
(0,¢3) proved in Propositiofil1 yields the local exponentigf&n tuning can be easily done, which are interesting from
stability of the “desired” equilibrium(@, R) = (0,). This Practical standpoints.
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