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Abstract

Many Embedded Systenase indeedSoftware Based Control Systems
that is control systems whose controller consistsaftrol softwarerun-
ning on a microcontroller device. This motivates invedima on Formal
Model Based Desigapproaches for automatic synthesis of embedded sys-
tems control software. This paper addresses control saftasnthesis for
discrete timenonlinearsystems. We present a methodology to overapprox-
imate the dynamics of a discrete time nonlinear hybrid sgsteby means
of a discrete timdinear hybrid systemZ4,, in such a way that controllers
for L4, are guaranteed to be controllers fgr We present experimental re-
sults on the inverted pendulum, a challenging and mearlibgiuchmark in
nonlinear Hybrid Systems control.
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1 Introduction

Many Embedded Systemase indeedSoftware Based Control Syste(&BCSs).
An SBCS consists of two main subsystems: toatroller and theplant Typ-
ically, the plant is a physical system consisting, for exeEnpf mechanical or
electrical devices whereas the controller consistsootrol softwarerunning on a
microcontroller. In an endless loop, the controller reaeissoroutputs from the
plant and sends commands to plantuatorsin order to guarantee that tietosed
loop systentthat is, the system consisting of both plant and contrpheeets
givensafetyandlivenessspecifications$ystem Level Formal Specificatipns

Software generation from models and formal specification®$ the core of
Model Based Designf embedded softwaré [21]. This approach is particularly
interesting for SBCSs since in such a case system level éipispecifications are
much easier to define than the control software behavidf.itse

The typical control loop skeleton for an SBCS is the folloguitMeasurex of
the system state from plasénsorgyo through aranalog-to-digital(AD) conver-
sion, yielding aquantizedvaluexX. A function ctrlRegion checks ifX'belongs
to the region in which the control software works correctly.this is not the
case aFault Isolation and Recover@FDIR) procedure is triggered, otherwise a
function ctrlLaw computes a command td be sent to planactuatorsafter a
digital-to-analog(DA) conversion. Basically, the control software desigolpr
lem for SBCSs consists in designing software implementimgtionsctrlLaw
andctrlRegion.

For SBCSs, system level specifications are typically givéth wespect to
the desired behavior of the closed loop system. Ghwetrol software(that is,
ctrlLaw andctrlRegion) is designed using separation-of-concerrspproach.
That is,Control Engineeringechniques (e.g., sele [10]) are used to design, from
the closed loop system level specificatidiusictional specificationgcontrol law)
for the control softwarevhereasSoftware Engineerintechniques are used to de-
sign control software implementing the given functionaé@fications. Such a
separation-of-concerns approach has several drawbacks.

First, usually control engineering techniques do not yaefdrmally verified
specification for the control law when quantization is tak&o account. This is
particularly the case when the plant has to be modelled-bgad Systemthat is
a system with continuous as well as discrete state chand&sl6/4]. As aresult,
even if the control software meets its functional speciitcet there is no formal
guarantee that system level specifications are met sinaetigagon effects are
not formally accounted for.



Second, issues concerning computational resources, summngol software
Worst Case Execution TIm@CET), can only be considered very late in the
SBCS design activity, namely once the software has beegmisdi As a result,
the control software may have a WCET greater than the sagiaive. This inval-
idates the schedulability analysis (typically carried loefiore the control software
is completed) and may trigger redesign of the software on @fets functional
specifications (in order to simplify its design).

Last, but not least, the classical separation-of-concgppsoach does not ef-
fectively support design space exploration for the corgaftware. In fact, al-
though in general there will be many functional specifiaagitor the control soft-
ware that will allow meeting the given system level speciiarss, the software
engineer only gets one to play with. This overconstraingaighe design space
for the control software implementation preventing, foaewle, effective per-
formance trading (e.g., between number of bits in AD coneerSNCET, RAM
usage, CPU power consumption, etc.). We note that the alomgederations also
apply to the typical situation where Control Engineeringhteiques are used to
design a control law and then tools like Simulink are usedatwegate the control
software.

The previous considerations motivate research on Softageeering meth-
ods and tools focusing on control software synthesis (rdti@n on control law
synthesis as in Control Engineering). The objective is ttaah the plant model
(as a hybrid system), from formal specifications for the etbkop system be-
havior and frommplementation Specificatiofihat is, number of bits used in the
guantization process) such methods and tools can generagetby-construction
control software satisfying the given specifications.

The tool QKS [23] synthesise control software fiscrete Time Linear Hy-
brid System¢DTLHSs). However, the dynamics of many interesting hylsgid-
tems cannot be directly modeled by linear predicates. Thesf@f the present
paper is control software synthesis faynlinearDiscrete Time Hybrid Systems.

1.1 Our Main Contributions

We model the controlled system (plant) d3iacrete Time Hybrid SystefDTHS),
that is a discrete time hybrid system whose dynamics is nedde$ gpredicate
(possibly non linear) over a set of continuous as well asréiscvariables that
describe system state, system inputs and disturbances.

System level safety as well as liveness specifications adelad as sets of
states defined, in turn, as predicates. In our setting, asyalim control problems,
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liveness constraints define the set of states that any éwolat the closed loop
system should eventually reachog@l statey Using an approach similar to the
one in [20], in [24] it has been proven that both existence abatroller and
existence of ajuantizedcontroller for DTHSs are undecidable problems, even
for very restricted classes of DTHSs. Accordingly, we caty drope for non
complete or semi-algorithms.

In this paper we present a general approach to deal withedéstime non-
linear hybrid systems. The basic idea is to overapproxirtaebehaviour of a
DTHS #H by means of a DTLHS 3. Stemming from Corollari/13, that ensures
that controllers foiL4, are guaranteed to be controllers fér we synthesize con-
trol software by giving as input to the tool QKS [23] the lingdant modelLy,,
the desired quantization schema, and system level forneaifsgations.

SinceL, dynamics overapproximates the dynamic$g{#the controllers that
we synthesize are inherentigbust that is they meet the given closed loop re-
guirementsnotwithstandinghondeterministic smallisturbancessuch as varia-
tions in the plant parameters. Tighter overapproximatimages finding a con-
troller easier, whereas coarser overapproximations makasollers more robust.
As in the linear case, the automatically generated softivasecaWorst Case Ex-
ecution TimgWCET) guaranteed to be linear in the number of bits of theesta
guantization schema. Moreover, control software competesmands in such a
way that the closed loop system follows a (neéame optimalstrategy to reach the
goal [15].

We present experimental results on the inverted pendulurahmeark [22], a
challenging and well studied example in control synthesis.

1.2 Related Work

Control Engineering has been studying control law design ,(eptimal control,
robust control, etc.), for more than half a century (e.ge gé€)]). Also Quan-
tized Feedback Contrdglas been widely studied in control engineering (e.g. see
[14]). However such research does not address hybrid sgsfeun case) and,
as explained above, focuses on control law design rather dhacontrol soft-
ware synthesis (our goal). Furthermore, all control engjiimg approaches model
guantization errorsas statisticahoise As a result, correctness of the control law
holds in a probabilistic sense. Here instead, we model qaaitn errors as non-
deterministic fnalicioug disturbances This guarantees system level correctness
of the generated control software (not just that of the admdrmv) with respect to
anypossible sequence of quantization errors.
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When the plant model islanear Hybrid AutomatoifLHA) [L] 4] reachability
and existence of a control law are both undecidable prob[@8s20]. This, of
course, has not prevented devising effective (semi) algos for such problems.
Examples are in |4, 16, 18, 80,128, 9]. Control software sgsithfor continu-
ous time linear systems (no switching) has been implementixd tool REESSOA
[25]. Such an approach exploits suitable finite state attshra(e.g. se€ [27, 26])
to synthesize a control law computing commands from realadhktate measures
(no quantization). The control software is then generateddssing to Simulink
such a control law. In the same wavelength] [31] generatestaat strategy from
a finite abstraction of ®iecewise Affine Discrete Time Hybrid SystgPg/A-
DTHS). Also the Hybrid Toolbox]7] considers PWA-DTHS. Suzhool outputs
a feedback control law that is then passed to Matlab in omlgenerate control
software. Finite horizon control of PWA-DTHS has been stddising a MILP
based approach. See, for example, [8]. Explicit finite hmrizontrol synthesis al-
gorithms for discrete time (possibly non-linear) hybrigt®ms have been studied
in [12] and citations thereof.

We note that all such approaches do not account for statbdekdjuanti-
zation since they all assunexact(i.e. real valued) state measures. Thus, as
explained above, they do not offer any formal guarantee tafymsiem level cor-
rectness of the generated software, which is instead ousfoere.

Quantization can be seen as a sort of abstraction, whichdeswidely stud-
ied in a hybrid system formal verification context (e.g., &]). Note however
that in a verification context abstractions are designedsdo aase the verifica-
tion task whereas in control software synthesis quantinas a design require-
ment since it models a hardware component (AD converteryhwisi part of the
specification of the control software synthesis problerdebd, in our setting, we
have to design a controllerotwithstandinghe nondeterminism stemming from
the quantization process. As a result, the techniques os#el/tse clever abstrac-
tions in a verification setting cannot be directly used insyurthesis setting where
guantization is given.

The tool QKS[[23] synthesize control software from systevmelspecification
for Discrete Time Linear Hybrid Systems whenever a a constr@ sufficient
condition for control software existence holds. Here, werads control software
synthesis for a more general class of discrete time hybgtegys.

In the context of Hybrid Systems verification, the overappration of Hy-
brid Systems with Linear Hybrid Systems has been studieti8hdnd [17]. Such
works consider dense time models, and focus on verificaitrer than control
synthesis. Moreover, we observe that we can obtain tigipigroximations, since
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DTLHSs allow us to model system dynamics with predicatesrtiiapresent and
next state variables.

Correct-by-construction software synthesis in a finiteestgtting has been
studied, for example, in [6, 29, 11]. Such approaches capaalirectly used in
our context since they cannot handle continuous stateblaga

Summing up, to the best of our knowledge, no previously ghield result is
available about automatic generation of correct-by-goetibn control software
from a DTHS model of the plansystem level formal specificatioasdimple-
mentation specificationguantization that is number of bits in AD conversion).

2 Background

We denote witl{n] an initial segmen{1,...,n} of the natural numbers. We de-
note withX =[xy, ..., X,] @ finite sequence (list) of variables. By abuse of language
we may regard sequences as sets and we tig@enote list concatenation. Each
variablex ranges on a known (bounded or unbounded) intePyagither of the
reals or of the integers (discrete variables). We denotie Tt the set[T,.x Dx.

To clarify that a variablex is continuoud(i.e. real valued) we may writg. Sim-
ilarly, to clarify that a variable is discrete(i.e. integer valued) we may write
xd. AnalogouslyX" (X9) denotes the sequence of real (integer) variables.in
Finally, boolean variables are discrete variables rangmthe se = {0, 1}. If x

is a boolean variable we writefor (1-x).

2.1 Predicates

An expression EX) over a list of variablesX is an expression of the form
Yiern @ fi(X), where fi(X) is a possibly nonlinear function ovet anda; are
rational constantsE(X) is alinear expressiorif each f;(X) is a projection (i.e.
fi(X) =x), i.e. ifitis a linear combination of variabl@ie[n] gjXi. A constraint is
an expression of the fora(X) < b, whereb is a rational constant. In the follow-
ing, we also writeE(X) > b for -E(X) < -b.

Predicatesare inductively defined as follows. éonstraint G X) over a list of
variablesX is a predicate oveX. If A(X) andB(X) are predicates ovef, then
(A(X) AB(X)) and (A(X) vB(X)) are predicates over X. Parentheses may be
omitted, assuming usual associativity and precedencs ofilegical operators. A
conjunctive predicatés a conjunction of constraints. For conjunctive predisate



we will also write: E(X) = b for ((E(X) <b) A (E(X) > b)) anda<x<b for
X>a A X<b, wherexe X.

A valuationover a list of variableX is a functionv that maps each variable
x e X to a valuev(x) € Dx. Given a valuatiorv, we denote withX* € Dx the
sequence of valuga/(x1),...,v(X,)]. By abuse of language, we call valuation
also the sequence of valugs. A satisfying assignment a predicatd® over X
is a valuationX* such thaf(X*) holds. If a satisfying assignment to a predicate
P overX exists, we say tha is feasible Abusing notation, we may denote with
P the set of satisfying assignments to the predié4¢). Two predicate$ and
Q overX areequivalentdenoted by = Q, if they have the same set of satisfying
assignments. Two predicatBsandQ are equisatisfiablef P is feasible iffQ is
feasible.

A variablex € X is said to beboundedn P if there exista, b € Dy such that
P(X) impliesa<x<b. A predicateP is bounded if all its variables are bounded.

Given a constrain€(X) and a fresh boolean variablguard) y ¢ X, theguarded
constraint y— C(X) (if y thenC(X)) denotes the predicatgy = 0) v C(X)).
Similarly, we usey — C(X) (if not y thenC(X)) to denote the predicaty =
1) vC(X)). A guarded predicatés a conjunction of either constraints or guarded
constraints. It is possible to show that, if a guarded pegdie is bounded, then
P can be transformed into an equivalent (bounded) conjumgtiedicate [24].

2.2 Labeled Transition Systems

A Labeled Transition Syste(hTS) is a tupleS = (S A, T) whereSis a (possibly
infinite) set of statesA is a (possibly infinite) set ofctions andT : S x A x
S — B is thetransition relationof S. We say thafl (andS) is deterministicif
T(s,a,9)AT(s,a,9") impliess =s’, andnondeterministiotherwise. Lese S
andae A. We denote with AdriS,s) the set of actions admissible & that is
Adm(S,s) = {acA| 39 :T(sa9)} and with ImdS,s,a) the set of next states
fromsviaa, thatis ImdS,s,a) = {s' €S| T(s,a,9)}. Arunorpathforan LTSS
iS a sequence = S, ap, 1, a1, S, @y, . . . Of statess; and actions; such thatvt >0
T(s,a,%+1)- The lengthjri of a finite runttis the number of actions im. We
denote withr(S) (t) the (t + 1)-th state element af, and withr(®) (t) the (t +1)-th
action element oft ThatisTd9(t) = g, andrA(t) = &.

Given two LTSsS; = (S A, T1) andS> = (S A, T2), we say thatS; refines
S> (notationS; £ Sy) iff Ti(s,a,9) impliesTo(s,a,9) for each states, ' € Sand
actionace A. The refinement relation is a partial order on LTSs.



2.3 LTS Control Problem

A controllerfor an LTSS is used to restrict the dynamics 8fso that all states in
the initial region will reach in one or more steps the goalarglin the following,
we formalize such a concept by defining strong solutions tbTé&hcontrol prob-
lem. In what follows, letS = (SA,T) be an LTSI, G c Sbe, respectively, the
initial andgoalregions ofS.

Definition 1 A controllerfor § is a function K: Sx A — B such thatvse S, Vae

A, if K(s,a) then3s' T(s,a,5'). dom(K) denotes the set of states for which at
least a control action is enabled. Formallgom(K) = {seS|3aK(s,a)}. S(K)
denotes thelosed loop systepnthat is the LTSS A, T(K)), where TK)(s,a,9) =
T(s,a,9)AK(s,a).

We call a pathr fullpath [6] if either it is infinite or its last stated® (|m) has
no successors (i.e. AdiE, (9 (|m)) = @). We denote with Patls,a) the set
of fullpaths starting in state with actiona, i.e. the set of fullpathst such that
9 (0) = sandmn®(0) = a.

Given a pathitin S, we definel(S, 11, G) as follows. If there exista > 0 s.t.
S (n) € G, thenJ(S, 1, G) = min{n|n>0AT(I (n) e G}. OtherwiseJ(S, T, G) =
+o00. We requiren > 0 since our systems are nonterminating and each contrellabl
state (including a goal state) must have a path of positwgtleto a goal state.
Taking sups = +oo and infg = —co, the worst case distancef a states from
the goal regionG is Jstrond S, G, S) = sup(Js(S,G,s,a) | ae Adm(S,s)}, being
Js(S,G,s,a) =sup{J(S,G, ) | Tte Path(s,a) }.

Definition 2 A control problenfor S is a triple P = (S,1,G). A strongsolution
(or simply a solution) td? is a controller K forS, such that Ic dom(K) and for
all se Dom(K), Jstrong(S™), G, s) is finite.

An optimal solution toP is a solution K to P s.t. for all solutions K tgP,
for all se Dx we have: drong(SK"),G,s) < Jstrong(S), G, s). Themost general
optimal (mgo) solutiorto P is an optimal solutiork to P s.t. for all optimal
solutions K toP, for all se Dy, for all ue Dy we have: Ks,u) - K(s,u). Itis
easy to see that this definition is well posed (i.e., the mgdiea is unique) and
thatK does not depend on I.



3 Discrete Time Hybrid Systems

In this section we introduce our class Dfscrete Time Hybrid SystenfBTHS
for short), together with the DTHS representing the inneééggendulum on which
our experiments will focus. Moreover, we will define in S&H8 theQuantized
Control Problem

Definition 3 A Discrete Time Hybrid Systems a tuple# = (X, U, Y, N) where:

« X = X"uXdis afinite sequence of real (Xand discrete (X) present state
variables. We denote with’Xhe sequence afext statevariables obtained
by decorating witH all variables in X.

« U =U'uUdis a finite sequence ahputvariables.

« Y =YruYdis a finite sequence afuxiliary variables. Auxiliary variables
are typically used to modehodes(e.g., from switching elements such as
diodes) or “local” variables.

* N(X,U,Y,X’) is a conjunctive predicate over XU uY u X’ defining the
transition relatior{next statgof the system. N deterministiaf N(x, u,y;,x")
A N(X, U, y2,X") implies X = X, andnondeterministiotherwise.

A DTHS isboundedf the predicate N is bounded. A DTHSdsterministiaf
N is deterministic. A DTHS iknear, and we call it DTLHS if N is a conjunction
of linear constraints.

Since any bounded guarded predicate can be transformed icdajunctive
predicate (see Se€t. 2.1), for the sake of readability weusé bounded guarded
predicates to describe the transition relation of bound&H®s. To this aim, we
will also clarify which variables are boolean, and thus mayuksed as guards in
guarded constraints.

Example 1 Let us consider a simple inverted pendulim [22], as showrigr
The system is modeled by taking the arfjbnd the angular velocity as state
variables. The input of the system is the torquing force at tlan influence the
velocity in both directions. Moreover, the behaviour of siystem depends on the
pendulum mass m, the length of the pendulum | and the greritdtacceleration
g. Given such parameters, the motion of the system is desldoypthe differential
equationd = #sin6+ —Lu.



Figure 1: Inverted Pendulum with Stationary Pivot Point.

In order to obtain a state space representation, we conghiefollowing nor-
malized system, where bs the angled and » is the angular speeé.

X1 =Xo2
{ Xp = sinxg + U (1)
The DTHS model for the pendulum is the tupleX,U,Y,N), where X=
{x1,%2} is the set of continuous state variables=Ju} is the set of input vari-
ables, and Y= . Differently from [22], we consider the problem of findingia-d
crete controller, whose decisions maybe “apply the foraeklise” (u=1), “ap-
ply the force counterclockwise” @-1)”, or “do nothing” (u =0). The intensity of
the force will be given as a constant F. Finally, the disctetes transition relation
N is obtained from the equations [d (1) by introducing a canst that models the
sampling time. N is the predicat®] = xi + Tx) A (X, =X+ T sinx; +T#Fu).

The semantics of DTHSs is given in terms of LTSs.

Definition 4 LetH = (X, U, Y, N) be a DTHS. The dynamics7fis defined by
the Labeled Transition SysteifiS(#) = (Dx, Dy, N) where: N: Dy x Dy x
Dy — B is a function s.tN(x,u,x’) = 3y e Dy : N(x,u,y,x’). A statex for  is a
state x forlL,TS(#) and arun (or path for # is a run forLTS(H) (Sect[2.R).

3.1 DTHS Control Problem

A DTHS control problen{#,1,G) is defined as the LTS control problem (L{78),
I, G). To accommodate quantization errors, always presentfiwae based
controllers, it is useful to relax the notion of control sidm by tolerating an
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(arbitrarily small) errore on the continuous variables. This leads to the defi-
nition of g-solution. Lete be a nonnegative real numb&¥ c R"x ZM. The
e-relaxation of W is the set fall of radiuse) B¢(W) = {(z,...Zn, 01,---0m) |
3(X1,..,%,01,---0m) € W andVie[n]|z-x|<e}

Definition 5 Let (#,l,G) be a DTHS control problem angl be a nonnegative
real number. Are solution to(#,1,G) is a solution to the LTS control problem
(LTS(H).1,Be(G)).

Example 2 Let T be a positive constant (sampling time). We define the®oAH
= ({x},{u}, @, N) where x is a continuous variable, u is a boolean variable, and
N(X,u,X') = [U—>X =X+ (3 -X)T]A[u=>X =x+(x-3)T]. Let? = (H, |, G) be

a control problem, where$ -2 <x< 2.5, and G= x=0. A controller may drive
the system near enough to the goal & by enabling a suitable action in such a
way that X < x when x> 0 and X > x when x 0. If the sampling time T is small
enough with respect te (for example T< 5), the controller: K(x,u) = (-2 <
x<0AT) v (0<x<H Au) v (B <x<25n)is ane solution to(#,1,G).
Observe that, that any controller’ksuch that K(%,O) holds is not a solution,
because since (\Q,O,%) holds, the closed loop systeH(X) may loop forever
along the pattg,0,2,0....

Example 3 The typical goal for the inverted pendulum in Exaniple 1 isita the
pendulum steady to the upright position, starting from aanggible initial posi-
tion, within a given speed interval. In our experiments,dbal region is defined
by the predicate GX) = (-p<x1<p) A (-p< X2 <p), wherep € {0.05,0.1}, and
the initial region is defined by the predicateX) = (-Tt<x1 <) A (-4 < X2 < 4).

3.2 Quantized Control Problem

In order to manage real variables, in classical controlhdee concept ofjuanti-
zationis introduced (e.qg., see [14]). Quantization is the prooéspproximating
a continuous interval by a set of integer values. In the Walhg we formally
define a quantized feedback control problem for DTHSs.

A quantization functiory for a real interval = [a,b] is a non-decreasing func-
tiony: 1~ Z s.t. y(l) is a bounded integer interval. We will denofé ) as
| = [y(a),y(b)]. Thequantization stef y, notation|y|, is defined as supw-
Zl|w,zel Ay(w) =y(2)}. For ease of notation, we extend quantizations to integer
intervals, by stipulating that in such a case the quanardtinction is the identity
function.
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Definition 6 Let? = (X,U,Y,N) be a DTHS, and let W XuU uY. Aquantiza-
tion Q for  is a pair (A,I"), where:

* Aisapredicate over W that explicitely bounds each vagabW . For each
weW, we denote with Aits admissible regiomand with Ay = [Tyew Aw-

* I is a set of mapf = {yw | we W andyy, is a quantization function for 4.

LetW=[w,...W] and v=[v1,...Vi] € Aw. We writel" (v) for the tuple[yw, (1),
-5 Yw (Vi) ]. Finally, thequantization stepl|| is defined asup{ ||y| |yeT}.

A control problem admits guantizedsolution if control decisions can be made
by just looking at quantized values. This enables a softivapéementation for a
controller.

Definition 7 Let H = (X,U,Y,N) be a DTHS,Q = (A,I") be a quantization for
H and P = (H,1,G) be a DTHS control problem. A& Quantized Feedback
Control (QFC) solution toP is a ||| solution K(x,u) to P such that Kx,u) =
K(F(x),I(u)) whereK : T (Ax) xT (Ay) - B.

Example 4 Let P be as in Examplgl2. Let us consider the quantizaias)
where A=1 and I = {yx} whereyx(x) = |x]. The sef” (Ax) of quantized states
is the integer interva[-2,2]. No Q@ QFC solution can exist, because defining
both K(1,1) and K(1,0) allows infinite loops to be potentially executed in the
closed loop system. Of course, the controller K in ExarplarRle obtained as
a quantized controller decreasing the quantization stepekample by takind

= {W} whereyy(x) = |8x].

4 DTLHS overapproximation of DTHSs

In [23], we presented the tool QKS that given a DTLHS contnalgem P =
(H,1,G) and a quantization schema as input, yields as output costfolare
implementing a most general optimal quantized controblef, whenever a suf-
ficient condition holds. In this section we show how a DTHSan be overap-
proximate by a DTLHS 4, in such a way that LT&{) c LTS(Ly). The follow-
ing theorem ensures that controllers 0y, are guaranteed to be controllers for
H.
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4.1 DTHS linearization

LetC(V), withV c XuU uY uX’, be a constraint ifN that contains a nonlinear
function as a subterm. Th&{(V) has the shap& R,W)+E(V) <b, whereRc V'
is a set ofn real variablegry,...,ry}, andw c V4 is a set of discrete variables.
For eachw € Dy, we define the functiorfy(R) obtained fromf, by instanciat-
ing discrete variables withv, i.e fyw(R) = f(R,w). ThenC(V) is equivalent to
the conjunctive predicat@wep,, [ fw(R) + E(V) <b]. In order to make the over-
approximation tighter, we partition the doméail of each functionf,(R) into
m hyperintervald,l,.. .1y, wherel; = 1; ie[n ][a],b'J] In the followingR e I; will
denote the conjunctive predicatg.[n a <rj< b

Let f,;(R) and f,;(R) be over- and under- linear approximationsfe{R)
over the hyperlnterval,, i.e. such thaRe lj implies f;(R) < fw(R) < f;(R).
Taking|Dw/|x n fresh continuous variable&= {Yw; }wepy ic[n], We define the con-

junctive predicat€(V,Y):

AweDyy /\ie[m] [yWI + E(V) < b]
A/\WGY)\N[\/IE[ [R€||/\fW|(R)<yWI< f+|(R)]]

By introducing|Dy | x n fresh boolean variables= {zi}WED\NJG[n],EE(V,Y) can
be translated into the following equisatisfiable conjurepredicate(V,Y,Z):

AweDy Aie[m)[Ywi +E(V) < b]
/\/\WeDW/\le[ m] 4w f (R) <Ywi < f+ (R)
/\/\WED\N/\le ZWI_>R€|I/\/\WGDWZ|E ZWI>1

As a result, this transformation eliminates a nonlineaespbession of a con-
straintC(V) and yields a constraif(V,Y, Z) such thagY,Z[C(V,Y,Z) =C(V)].
Given a DTHSH = (X,U,Y,N), without loss of generality, we may suppose that
the transition relatiomN is a conjunction\jc[m CGi(X,U, Y, X") of constraints. By
applying the above transformation to each nonllnear sulesspons occurring in
N, we obtain a conjunction of linear constraims= A;. rm Gi (X, U, Y, X’), such
thatN = N. Hence, starting from a DTH®, we find a DTLHSL, = (X,U,Y,N),
whose dynamics overapproximate the dynamicH of

Theorem 1 LetH = (X,U,Y,N) be a DTHS and lef be its linearization. Then
we have that LT&{) c LTS Ly).
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Figure 2: Linearization of sixin [-Tt, 11].
Theorem 2 Let S1 = (SA T1) and Sy = (SA,T2) be two LTSs, and let K be a

solution for the LTS control problerfS,,1,G). If S refinesS, and for all se S
Adm(S1,s) = Adm(S1,S), then K is a solution also fofSy, I, G).

Proof 1 (Sketch) The proof is by induction ortr:istrong(SSK),G,s). Ifn=1and
K(s,a), thenimg(Sz,s,a) € G. SinceS; c Sz, we also have thaimg(Sy,s,a) €
Img(S2,s,2) € G. Moreover, Adr(iS1,S) = Adm(S», s) implies that there exists at
least a transition of the shape (E,a,s') with s € G and thus Slrong(st),G, s)=1
too. This implies thafs | Jsrond S\, G,5) = 1} = {S | JstrondSS<’, G,5) = 1}. The
inductive step is similar, by substituting G with the setafes{s| Jstrong(S2, G, S) =
n-1}.

Corollary 3 LetH = (X,U,Y,N) be a DTHS and le£ be its linearization. Let
K be a solution for the DTLHS control proble(d;,1,G). Then K is a solution
also for the DTHS control problerf#,1,G).

Example 5 The DTHSH = (X,U, @, N) model for the inverted pendulum in EX. 1
contains the nonlinear functiasinx;. We define the linearizatiofy, = (X,U,Y,N)
as follows. In order to exploit sinus periodicity, we comsidhe equation x=
21y + Yo, Where y represents the period in which ¥es and y; € [-Tt, 11] repre-
sents the actualpinside a given period.

14
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Figure 3: Controllable re- Figure 4: Trajectories for Figure 5: Same trajecto-
gion for F =05, T = 0.1, #K%) and HKSs)) start- ries of Fig.[3 in the phases
andb=9. ing from (xg,%2) = (11,0). space.

This allows us to apply our linearization tg ¥ [Tt 11] only. We partition the
interval [T, 11) into four sub-intervalsi, I, 13, I4 as shown in Figl 2. Forye
l; = [-1,-3] we define f(yq) as the line passing through points Tt sin(-))
and(-%,sin(-3)), i.e. ff(ya) = -0.6369/ +2. Moreover, we define;{yq) as
the line which is tangent to the cungny, at Iy medium point, i.e. f(yq) =
0.7073yq +0.785) -0.7068 Functions £, f; and f; are obtained analogously.

Finally, we have that Y- YAUY" = {y,Yq,21,22,23,24} U {Ya} andN = (x| =
X1+ 2TYq+TX) A (X, = X2+T|9yq +T#Fu) AX1 = 2Tk + Yo /\/\i4:12i - f7<ya <
fr /\/\i4:12i =X €ljn Zi4:12i >1.

4.2 Linearization: a systematic approach

When nonlinear subexpressions @refunctions, a systematic approach to com-
pute linear overapproximations of a DTHS makes use of Taytdmomial of
degree 1 as piecewise affine functions that over- and urgi@oeaimate the value
of aC2 function. Letf(x) be aC2 function ofn real variables over a given interval
|. By Taylor’s theorem, we may deriVimear under- and over-approximations for
f(x) around a given point € | as follows. Namely, we have that exists[0,1]
such thatf (x) = f(xg) + v f(X0) (X—Xp) + %(x—xO)TH (X+t(x-X0))(X—Xo), being

H the Hessian matrix of. If we know two real numbersn andM that are the
minimum and the maximum value é{x—xo)TH (X+t(X=Xp))(X=X), in agiven
interval aroundkg. In this case we can choo$e(x) = f(xg) + v f (X0) (X—Xg) +M
andf~(x) = f(xp) + v f(X0)(X—Xp) + m.

15



5 Experimental Results

In this section we present our experiments that aim at etiatyaffectiveness of
our linearization technique.

5.1 Experimental Settings

We present experimental results obtained by using QKS [@3he inverted pen-
dulum described in Examplé 1. In order to let QKS handle suchse study, we
linearize the DTHSH in Example[1l with the DTLHSC4, of Examplelb. In all
our experiments, as in [22] we set parametemsdmin such a way tha? =1(i.e.

| =g) and 1, =1 (i.e.m=3). As for the quantization, we s, = [-1.17,1.11]
andAy, = [-4,4], and we definéd = Ay, x Ay, x A,. Moreover, we use uniform
quantization functions dividing the domain of each stateaide (x;,x,) into 20
equal intervals, wherb is the number of bits used by AD conversion. The re-
sulting quantization i€y, = (A,T'p), with || = 5. Since we have two quantized
variables X1, x2) each one wittb bits, the number of quantized (abstract) states is
exactly 2°. Finally, the initial regiori and goal regioi are as in EX3, thus the
DTHS [DTLHS] control problem we consider B= (H, I, G) [(Ly, I, G)].

We run QKS for different values of the remaining parametees, F (force
intensity),p (goal tolerance)T (sampling time), andd (number of bits of AD).
For each of such experiments, QKS outputs a control softiareC language.

In the following, we sometimes make explicit the dependemcd- and b by
writing Kéb). In order to evaluate performancelof we use amverted pendulum
simulatorwritten in C. The simulator computes the next state by usigg (&)

of Ex.[1, thus simulating a path ¢{(K). Such simulator also implements the
following features:

» random disturbances (up to 4%) in the next state computatie intro-
duced, in order to asseksrobustness w.r.t. non-modelled disturbances;

* Eq. () is translated into the discrete time version by rsezra simulation
time stepTs much smaller than the sampling timieused inH (and Ly).
Namely,Ts = 10- seconds, whilsT = 0.01 orT = 0.1 seconds. This allows
us to have a more accurated simulation. Accordinglys called each 10
(or 1) simulation steps of{. WhenK is not called, the last chosen action
is selected agairsampling and holding
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All experiments have been carried out on an Intel(R) XeolfRY @ 2.27GHz,
with 23GiB of RAM, Kernel: Linux 2.6.32-5-686-bigmem, diktution Debian
GNU/Linux 6.0.3 (squeeze).

5.2 Underactuated Inverted Pendulum F =0.5)

In order to stabilize amnderactuatednverted pendulum (i.e. whel < 1) from

the hanging position to the uprigth position, a controlleeds to find a non ob-
vius strategy that consists of swinging the pendulum ongaare times to gain
enough momentum. We show that QKS is able to synthesize scohteoller by
running it onL4 whereF = 0.5 (note that in[[22F = 0.7). Results are in Tab] 1,
where each row corresponds to a QKS run. Columns meaningbiridTare as
follows. Columndb, T andp show the corresponding inverted pendulum parame-

ters. ColumnK| shows the size of the C code ﬂéé?s). Finally, columnsCPU and
RAM show the computation time (in seconds) and RAM usage (in K&&ded

by QKS to synthesizKé?s).

As for Ké%) performance, itis easy to show that by reducing the samflimg

T and the quantization step (i.e. increasi)gwe increase the quality Mé?s) in

terms of ripple, set-up time and coverage. In fact, Eig. Aghthe simulations

©) (10) . .
of #(Kos) and#(os ). As we can seek Y drives the system to the goal with
a smarter trajectory, with one swing only. This have a sigaift impact on the

set-up time (the system stabilizes after about 8 seconds wdrerolled byKééO)

instead of about 10 seconds required when controlle&@). Fig.[3 shows

that thecontrollable regionof Ké%) (i.e., don(K(()_%))) covers almost all states in
the admissible region that we consider. Different coloramdifferent set of
actions enabled by the controller. We observe that the migiso enables more
than one action in a significant portion of the controllaldgion. The control
software, however, is generated in such a way that one aigtiolnosen in each

state. Finally, Fig. 0 shows the ripplexaffor H(Kééo)) inside the goal. Note that
such ripple is very low (0.018 radiants).

5.3 Very Underactuated Inverted Pendulum £ =0.3)

We succeeded to find controllers for the inverted pendulunafy value ofF
down to 03, with T = 0.1 seconds ang = 0.1. However, simulations show that
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Figure 6: Simulation for Figure 7: States turned di-
HKE) starting from rectly to the goal withF =

(X1,%2) = (100). 0.3.

the behaviour of the resulting closed loop system is somepdnzzling. As it is

shown in Fig[6 for‘}-l(Ké.lal)), after three swings the pendulum is correctly driven
to the goal, but at that point the controller is not able tontan the plant inside
the goal. In fact, the controller let the pendulum fall andkesait do a complete
round in order to reach again the upright position. This b&ha is repeated 27

times, before th@(&}’ makes pendulum stabilize into the goal region.

As already noted i [22], all controllers for underactugbetidulum use two
very different strategies to stabilize the system dependin the initial state.
When the angle is positive and the speed is negative (anduitabke range that
depends orf), the controller turns directly the pendulum into the uptigosi-
tion. Symmetrically, this also happens when the angle istgand the speed is
positive. Otherwise the controller let the pendulum falddo gain enough mo-
mentum (or to smoothly slow down it). Therefore, startingnfrvery near states
may lead the system to follow very different trajectorie®edRcingF squeezes
the region of states from which the pendulum is directly @éarimto the upright
position. As FigLlY shows, whe is equal to 03, we have a rather pathological
situation: the frontier between the two strategies iinssdethe goal region. The
controller sometimes is unable to keep the system insidgdhE because distur-
bances introduced by the simulator make the system crodsatger between
the two strategies. When this frontier lies far enough framdoal (see Fid.] 8 for
the case- = 2), this phenomenon is essentially harmless and leads, r&t,wo
suboptimal strategies.

Figure 8: States turned di-
rectly to the goal with = 2.

5.4 Overactuated Pendulum E =2)

WhenF is greater than 1, finding a control strategy is less challendt is worth
noting however that, even in this case, our approach all@ae €ind controllers
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Table 1: Experimental Results for inverted pendulum with 0.5.

b T p | K| CPU MEM

8 0.1 0.1]|2.73e+04 2.56e+03 7.72e+04
9 01 0.1]594e+04 1.13e+04 1.10e+05
10 0.1 0.1|1.27e+05 5.39e+04 1.97e+05
11 0.01 0.05 4.12e+05 1.47e+05 2.94e+05

that hardly can be synthesized by means of traditional #inalymethods. In
Fig.[9, we show trajectories in the phases spacél%‘fz(ll)) with T = 0.01 sec-
onds,p = 0.05, and starting values fog. are in {7, Z, 3 3} andx, = 0. #(K: ")
follows highly non-smooth trajectorieKéll) drives the system along an optimal
approach to the goal. Before joining this ideal path to thalgtihe controller,
in order to optimize the set up time, drives the system at thgimum possible

“cruising” speed that allows the pendulum to be stopped éngbal. For higher
values off, this cruising speed is even higher.

6 Conclusions

We presented an automatic methodology to sinthesize daaiitavare for nonlin-

ear Discrete Time Hybrid Systems. The control software isact-by-construction
with respect both System Level Formal Specifications of theed loop system
and Implementation Specification, namely the quantizagimema. Our exper-
imental results on the inverted pendulum benchmark shovetleetiveness of
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our approach and that we synthesize near optimal contsahet hardly can be
designed by using traditional analytical methods of Cdrirgineering.

The present work can be extended in several directiond.d¥iadl, it would be
interesting to consider control synthesis of controllbet tire optimal with respect
a cost function given as input of the control problem, rattin simply time-
optimal. Another natural possible future research diogcis to investigate fully
symbolic control software synthesis algorithms basedgi@mple, on efficient
guantifier elimination procedures, in order to efficientiatiwith Hybrid Systems
with several continuous state variables.
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