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Abstract

Many Embedded Systemsare indeedSoftware Based Control Systems,
that is control systems whose controller consists ofcontrol softwarerun-
ning on a microcontroller device. This motivates investigation on Formal
Model Based Designapproaches for automatic synthesis of embedded sys-
tems control software. This paper addresses control software synthesis for
discrete timenonlinearsystems. We present a methodology to overapprox-
imate the dynamics of a discrete time nonlinear hybrid systemH by means
of a discrete timelinear hybrid systemLH, in such a way that controllers
for LH are guaranteed to be controllers forH. We present experimental re-
sults on the inverted pendulum, a challenging and meaningful benchmark in
nonlinear Hybrid Systems control.
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1 Introduction

Many Embedded Systemsare indeedSoftware Based Control Systems(SBCSs).
An SBCS consists of two main subsystems: thecontroller and theplant. Typ-
ically, the plant is a physical system consisting, for example, of mechanical or
electrical devices whereas the controller consists ofcontrol softwarerunning on a
microcontroller. In an endless loop, the controller readssensoroutputs from the
plant and sends commands to plantactuatorsin order to guarantee that theclosed
loop system(that is, the system consisting of both plant and controller) meets
givensafetyandlivenessspecifications (System Level Formal Specifications).

Software generation from models and formal specifications forms the core of
Model Based Designof embedded software [21]. This approach is particularly
interesting for SBCSs since in such a case system level (formal) specifications are
much easier to define than the control software behavior itself.

The typical control loop skeleton for an SBCS is the following. Measurex of
the system state from plantsensorsgo through ananalog-to-digital(AD) conver-
sion, yielding aquantizedvalue x̂. A function ctrlRegion checks ifx̂ belongs
to the region in which the control software works correctly.If this is not the
case aFault Isolation and Recovery(FDIR) procedure is triggered, otherwise a
function ctrlLaw computes a command ˆu to be sent to plantactuatorsafter a
digital-to-analog(DA) conversion. Basically, the control software design prob-
lem for SBCSs consists in designing software implementing functionsctrlLaw
andctrlRegion.

For SBCSs, system level specifications are typically given with respect to
the desired behavior of the closed loop system. Thecontrol software(that is,
ctrlLaw andctrlRegion) is designed using aseparation-of-concernsapproach.
That is,Control Engineeringtechniques (e.g., see [10]) are used to design, from
the closed loop system level specifications,functional specifications(control law)
for thecontrol softwarewhereasSoftware Engineeringtechniques are used to de-
sign control software implementing the given functional specifications. Such a
separation-of-concerns approach has several drawbacks.

First, usually control engineering techniques do not yielda formally verified
specification for the control law when quantization is takeninto account. This is
particularly the case when the plant has to be modelled as aHybrid System, that is
a system with continuous as well as discrete state changes [5, 1, 16, 4]. As a result,
even if the control software meets its functional specifications there is no formal
guarantee that system level specifications are met since quantization effects are
not formally accounted for.
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Second, issues concerning computational resources, such as control software
Worst Case Execution Time(WCET), can only be considered very late in the
SBCS design activity, namely once the software has been designed. As a result,
the control software may have a WCET greater than the sampling time. This inval-
idates the schedulability analysis (typically carried outbefore the control software
is completed) and may trigger redesign of the software or even of its functional
specifications (in order to simplify its design).

Last, but not least, the classical separation-of-concernsapproach does not ef-
fectively support design space exploration for the controlsoftware. In fact, al-
though in general there will be many functional specifications for the control soft-
ware that will allow meeting the given system level specifications, the software
engineer only gets one to play with. This overconstrains a priori the design space
for the control software implementation preventing, for example, effective per-
formance trading (e.g., between number of bits in AD conversion, WCET, RAM
usage, CPU power consumption, etc.). We note that the above considerations also
apply to the typical situation where Control Engineering techniques are used to
design a control law and then tools like Simulink are used to generate the control
software.

The previous considerations motivate research on SoftwareEngineering meth-
ods and tools focusing on control software synthesis (rather than on control law
synthesis as in Control Engineering). The objective is thatfrom the plant model
(as a hybrid system), from formal specifications for the closed loop system be-
havior and fromImplementation Specifications(that is, number of bits used in the
quantization process) such methods and tools can generate correct-by-construction
control software satisfying the given specifications.

The tool QKS [23] synthesise control software forDiscrete Time Linear Hy-
brid Systems(DTLHSs). However, the dynamics of many interesting hybridsys-
tems cannot be directly modeled by linear predicates. The focus of the present
paper is control software synthesis fornonlinearDiscrete Time Hybrid Systems.

1.1 Our Main Contributions

We model the controlled system (plant) as aDiscrete Time Hybrid System(DTHS),
that is a discrete time hybrid system whose dynamics is modeled as apredicate
(possibly non linear) over a set of continuous as well as discrete variables that
describe system state, system inputs and disturbances.

System level safety as well as liveness specifications are modeled as sets of
states defined, in turn, as predicates. In our setting, as always in control problems,

3



liveness constraints define the set of states that any evolution of the closed loop
system should eventually reach (goal states). Using an approach similar to the
one in [20], in [24] it has been proven that both existence of acontroller and
existence of aquantizedcontroller for DTHSs are undecidable problems, even
for very restricted classes of DTHSs. Accordingly, we can only hope for non
complete or semi-algorithms.

In this paper we present a general approach to deal with discrete time non-
linear hybrid systems. The basic idea is to overapproximatethe behaviour of a
DTHSH by means of a DTLHSLH. Stemming from Corollary 3, that ensures
that controllers forLH are guaranteed to be controllers forH, we synthesize con-
trol software by giving as input to the tool QKS [23] the linear plant modelLH,
the desired quantization schema, and system level formal specifications.

SinceLH dynamics overapproximates the dynamics ofH, the controllers that
we synthesize are inherentlyrobust, that is they meet the given closed loop re-
quirementsnotwithstandingnondeterministic smalldisturbancessuch as varia-
tions in the plant parameters. Tighter overapproximationsmakes finding a con-
troller easier, whereas coarser overapproximations makescontrollers more robust.
As in the linear case, the automatically generated softwarehas aWorst Case Ex-
ecution Time(WCET) guaranteed to be linear in the number of bits of the state
quantization schema. Moreover, control software computescommands in such a
way that the closed loop system follows a (near)time optimalstrategy to reach the
goal [15].

We present experimental results on the inverted pendulum benchmark [22], a
challenging and well studied example in control synthesis.

1.2 Related Work

Control Engineering has been studying control law design (e.g., optimal control,
robust control, etc.), for more than half a century (e.g., see [10]). Also Quan-
tized Feedback Controlhas been widely studied in control engineering (e.g. see
[14]). However such research does not address hybrid systems (our case) and,
as explained above, focuses on control law design rather than on control soft-
ware synthesis (our goal). Furthermore, all control engineering approaches model
quantization errorsas statisticalnoise. As a result, correctness of the control law
holds in a probabilistic sense. Here instead, we model quantization errors as non-
deterministic (malicious) disturbances. This guarantees system level correctness
of the generated control software (not just that of the control law) with respect to
anypossible sequence of quantization errors.
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When the plant model is aLinear Hybrid Automaton(LHA) [1, 4] reachability
and existence of a control law are both undecidable problems[19, 20]. This, of
course, has not prevented devising effective (semi) algorithms for such problems.
Examples are in [4, 16, 13, 30, 28, 9]. Control software synthesis for continu-
ous time linear systems (no switching) has been implementedin the tool PESSOA

[25]. Such an approach exploits suitable finite state abstraction (e.g. see [27, 26])
to synthesize a control law computing commands from real valued state measures
(no quantization). The control software is then generated by passing to Simulink
such a control law. In the same wavelength, [31] generates a control strategy from
a finite abstraction of aPiecewise Affine Discrete Time Hybrid Systems(PWA-
DTHS). Also the Hybrid Toolbox [7] considers PWA-DTHS. Sucha tool outputs
a feedback control law that is then passed to Matlab in order to generate control
software. Finite horizon control of PWA-DTHS has been studied using a MILP
based approach. See, for example, [8]. Explicit finite horizon control synthesis al-
gorithms for discrete time (possibly non-linear) hybrid systems have been studied
in [12] and citations thereof.

We note that all such approaches do not account for state feedback quanti-
zation since they all assumeexact (i.e. real valued) state measures. Thus, as
explained above, they do not offer any formal guarantee about system level cor-
rectness of the generated software, which is instead our focus here.

Quantization can be seen as a sort of abstraction, which has been widely stud-
ied in a hybrid system formal verification context (e.g., see[2, 3]). Note however
that in a verification context abstractions are designed so as to ease the verifica-
tion task whereas in control software synthesis quantization is a design require-
ment since it models a hardware component (AD converter) which is part of the
specification of the control software synthesis problem. Indeed, in our setting, we
have to design a controllernotwithstandingthe nondeterminism stemming from
the quantization process. As a result, the techniques used to devise clever abstrac-
tions in a verification setting cannot be directly used in oursynthesis setting where
quantization is given.

The tool QKS [23] synthesize control software from system level specification
for Discrete Time Linear Hybrid Systems whenever a a constructive sufficient
condition for control software existence holds. Here, we address control software
synthesis for a more general class of discrete time hybrid systems.

In the context of Hybrid Systems verification, the overapproximation of Hy-
brid Systems with Linear Hybrid Systems has been studied in [18] and [17]. Such
works consider dense time models, and focus on verification rather than control
synthesis. Moreover, we observe that we can obtain tighter approximations, since
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DTLHSs allow us to model system dynamics with predicates that mix present and
next state variables.

Correct-by-construction software synthesis in a finite state setting has been
studied, for example, in [6, 29, 11]. Such approaches cannotbe directly used in
our context since they cannot handle continuous state variables.

Summing up, to the best of our knowledge, no previously published result is
available about automatic generation of correct-by-construction control software
from a DTHS model of the plant,system level formal specificationsand imple-
mentation specifications(quantization, that is number of bits in AD conversion).

2 Background

We denote with[n] an initial segment{1, . . .,n} of the natural numbers. We de-
note withX = [x1, . . .,xn] a finite sequence (list) of variables. By abuse of language
we may regard sequences as sets and we use∪ to denote list concatenation. Each
variablex ranges on a known (bounded or unbounded) intervalDx either of the
reals or of the integers (discrete variables). We denote with DX the set∏x∈XDx.
To clarify that a variablex is continuous(i.e. real valued) we may writexr . Sim-
ilarly, to clarify that a variablex is discrete(i.e. integer valued) we may write
xd. AnalogouslyXr (Xd) denotes the sequence of real (integer) variables inX.
Finally, boolean variables are discrete variables rangingon the setB = {0, 1}. If x
is a boolean variable we write ¯x for (1−x).

2.1 Predicates

An expression E(X) over a list of variablesX is an expression of the form
∑i∈[n]ai fi(X), where fi(X) is a possibly nonlinear function overX and ai are
rational constants.E(X) is a linear expressionif each fi(X) is a projection (i.e.
fi(X) = xi), i.e. if it is a linear combination of variables∑i∈[n]aixi . A constraint is
an expression of the formE(X) ≤ b, whereb is a rational constant. In the follow-
ing, we also writeE(X) ≥ b for −E(X) ≤ −b.

Predicatesare inductively defined as follows. Aconstraint C(X) over a list of
variablesX is a predicate overX. If A(X) andB(X) are predicates overX, then
(A(X) ∧B(X)) and (A(X) ∨B(X)) are predicates over X. Parentheses may be
omitted, assuming usual associativity and precedence rules of logical operators. A
conjunctive predicateis a conjunction of constraints. For conjunctive predicates
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we will also write: E(X) = b for ((E(X) ≤ b) ∧ (E(X) ≥ b)) and a ≤ x ≤ b for
x≥ a ∧ x≤ b, wherex ∈X.

A valuationover a list of variablesX is a functionv that maps each variable
x ∈ X to a valuev(x) ∈ Dx. Given a valuationv, we denote withX∗ ∈ DX the
sequence of values[v(x1), . . .,v(xn)]. By abuse of language, we call valuation
also the sequence of valuesX∗. A satisfying assignmentto a predicateP overX
is a valuationX∗ such thatP(X∗) holds. If a satisfying assignment to a predicate
P overX exists, we say thatP is feasible. Abusing notation, we may denote with
P the set of satisfying assignments to the predicateP(X). Two predicatesP and
Q overX areequivalent, denoted byP≡Q, if they have the same set of satisfying
assignments. Two predicatesP andQ areequisatisfiableif P is feasible iffQ is
feasible.

A variablex ∈ X is said to beboundedin P if there exista, b ∈ Dx such that
P(X) impliesa≤ x≤ b. A predicateP is bounded if all its variables are bounded.

Given a constraintC(X) and a fresh boolean variable (guard) y/∈X, theguarded
constraint y→ C(X) (if y thenC(X)) denotes the predicate((y = 0) ∨C(X)).
Similarly, we use ¯y→C(X) (if not y thenC(X)) to denote the predicate((y =
1)∨C(X)). A guarded predicateis a conjunction of either constraints or guarded
constraints. It is possible to show that, if a guarded predicateP is bounded, then
P can be transformed into an equivalent (bounded) conjunctive predicate [24].

2.2 Labeled Transition Systems

A Labeled Transition System(LTS) is a tupleS = (S,A,T) whereS is a (possibly
infinite) set of states,A is a (possibly infinite) set ofactions, andT : S × A ×
S→ B is the transition relationof S . We say thatT (andS) is deterministicif
T(s,a,s′)∧T(s,a,s′′) implies s′ = s′′, andnondeterministicotherwise. Lets∈ S
anda ∈ A. We denote with Adm(S ,s) the set of actions admissible ins, that is
Adm(S ,s) = {a ∈ A ∣ ∃s′ ∶ T(s,a,s′)} and with Img(S ,s,a) the set of next states
from svia a, that is Img(S ,s,a) = {s′ ∈S∣ T(s,a,s′)}. A run or pathfor an LTSS
is a sequenceπ = s0,a0,s1,a1,s2,a2, . . . of statesst and actionsat such that∀t ≥ 0
T(st ,at,st+1). The length∣π∣ of a finite runπ is the number of actions inπ. We
denote withπ(S)(t) the(t+1)-th state element ofπ, and withπ(A)(t) the(t+1)-th
action element ofπ. That isπ(S)(t) = st , andπ(A)(t) = at .

Given two LTSsS1 = (S, A, T1) andS2 = (S, A, T2), we say thatS1 refines
S2 (notationS1 ⊑ S2) iff T1(s,a,s′) impliesT2(s,a,s′) for each states,s′ ∈ S and
actiona ∈A. The refinement relation is a partial order on LTSs.
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2.3 LTS Control Problem

A controller for an LTSS is used to restrict the dynamics ofS so that all states in
the initial region will reach in one or more steps the goal region. In the following,
we formalize such a concept by defining strong solutions to anLTS control prob-
lem. In what follows, letS = (S,A,T) be an LTS,I , G ⊆ S be, respectively, the
initial andgoal regions ofS .

Definition 1 A controllerfor S is a function K∶ S×A→ B such that∀s∈ S,∀a ∈
A, if K(s,a) then∃s′ T(s,a,s′). dom(K) denotes the set of states for which at
least a control action is enabled. Formally,dom(K) = {s∈ S ∣ ∃a K(s,a)}. S(K)
denotes theclosed loop system, that is the LTS(S,A,T(K)), where T(K)(s,a,s′) =
T(s,a,s′)∧K(s,a).
We call a pathπ fullpath [6] if either it is infinite or its last stateπ(S)(∣π∣) has
no successors (i.e. Adm(S ,π(S)(∣π∣)) = ∅). We denote with Path(s,a) the set
of fullpaths starting in states with actiona, i.e. the set of fullpathsπ such that
π(S)(0) = s andπ(A)(0) = a.

Given a pathπ in S , we defineJ(S ,π,G) as follows. If there existsn> 0 s.t.
π(S)(n) ∈G, thenJ(S ,π,G)=min{n ∣ n>0∧π(S)(n) ∈G}. Otherwise,J(S ,π,G)=
+∞. We requiren> 0 since our systems are nonterminating and each controllable
state (including a goal state) must have a path of positive length to a goal state.
Taking sup∅ = +∞ and inf∅ = −∞, the worst case distanceof a states from
the goal regionG is Jstrong(S ,G,s) = sup{Js(S ,G,s,a) ∣ a ∈ Adm(S ,s)}, being
Js(S ,G,s,a)= sup{J(S ,G,π) ∣ π ∈Path(s,a)}.
Definition 2 A control problemfor S is a tripleP = (S , I ,G). A strongsolution
(or simply a solution) toP is a controller K forS , such that I⊆ dom(K) and for
all s ∈Dom(K), Jstrong(S(K),G,s) is finite.

An optimalsolution toP is a solution K∗ to P s.t. for all solutions K toP,
for all s ∈DX we have: Jstrong(S(K∗),G,s) ≤ Jstrong(S(K),G,s). Themost general
optimal (mgo) solutionto P is an optimal solutionK̄ to P s.t. for all optimal
solutions K toP, for all s ∈DX, for all u ∈DU we have: K(s,u) → K̄(s,u). It is
easy to see that this definition is well posed (i.e., the mgo solution is unique) and
that K̄ does not depend on I.
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3 Discrete Time Hybrid Systems

In this section we introduce our class ofDiscrete Time Hybrid Systems(DTHS
for short), together with the DTHS representing the inverted pendulum on which
our experiments will focus. Moreover, we will define in Sect.3.2 theQuantized
Control Problem.

Definition 3 A Discrete Time Hybrid Systemis a tupleH = (X, U, Y, N) where:

• X = X r ∪Xd is a finite sequence of real (Xr) and discrete (Xd) present state
variables. We denote with X′ the sequence ofnext statevariables obtained
by decorating with′ all variables in X.

• U = U r ∪Ud is a finite sequence ofinputvariables.

• Y = Yr ∪Yd is a finite sequence ofauxiliary variables. Auxiliary variables
are typically used to modelmodes(e.g., from switching elements such as
diodes) or “local” variables.

• N(X,U,Y,X′) is a conjunctive predicate over X∪U ∪Y ∪X′ defining the
transition relation(next state) of the system. N isdeterministicif N(x,u,y1,x′)
∧ N(x,u,y2,x′′) implies x′ = x′′, andnondeterministicotherwise.

A DTHS isboundedif the predicate N is bounded. A DTHS isdeterministicif
N is deterministic. A DTHS islinear, and we call it DTLHS if N is a conjunction
of linear constraints.

Since any bounded guarded predicate can be transformed intoa conjunctive
predicate (see Sect. 2.1), for the sake of readability we will use bounded guarded
predicates to describe the transition relation of bounded DTHSs. To this aim, we
will also clarify which variables are boolean, and thus may be used as guards in
guarded constraints.

Example 1 Let us consider a simple inverted pendulum [22], as shown in Fig. 1.
The system is modeled by taking the angleθ and the angular velocitẏθ as state
variables. The input of the system is the torquing force u, that can influence the
velocity in both directions. Moreover, the behaviour of thesystem depends on the
pendulum mass m, the length of the pendulum l and the gravitational acceleration
g. Given such parameters, the motion of the system is described by the differential
equationθ̈ = g

l sinθ+ 1
ml2

u.
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Figure 1: Inverted Pendulum with Stationary Pivot Point.

In order to obtain a state space representation, we considerthe following nor-
malized system, where x1 is the angleθ and x2 is the angular speeḋθ.

{ ẋ1 = x2

ẋ2 =
g
l sinx1+

1
ml2u

(1)

The DTHS modelH for the pendulum is the tuple(X,U,Y,N), where X={x1,x2} is the set of continuous state variables, U= {u} is the set of input vari-
ables, and Y=∅. Differently from [22], we consider the problem of finding a dis-
crete controller, whose decisions maybe “apply the force clockwise” (u= 1), “ap-
ply the force counterclockwise” (u=−1)”, or “do nothing” (u =0). The intensity of
the force will be given as a constant F. Finally, the discretetime transition relation
N is obtained from the equations in (1) by introducing a constant T that models the
sampling time. N is the predicate(x′1 = x1+Tx2) ∧ (x′2 = x2+T g

l sinx1+T 1
ml2

Fu).
The semantics of DTHSs is given in terms of LTSs.

Definition 4 LetH = (X, U, Y , N) be a DTHS. The dynamics ofH is defined by
the Labeled Transition SystemLTS(H) = (DX, DU , Ñ) where: Ñ ∶ DX × DU ×
DX → B is a function s.t.Ñ(x,u,x′) ≡ ∃y ∈DY ∶N(x,u,y,x′). A statex forH is a
state x forLTS(H) and arun (or path) for H is a run forLTS(H) (Sect. 2.2).

3.1 DTHS Control Problem

A DTHS control problem(H, I ,G) is defined as the LTS control problem (LTS(H),
I , G). To accommodate quantization errors, always present in software based
controllers, it is useful to relax the notion of control solution by tolerating an
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(arbitrarily small) errorε on the continuous variables. This leads to the defi-
nition of ε-solution. Letε be a nonnegative real number,W ⊆ Rn×Zm. The
ε-relaxation of W is the set (ball of radiusε) Bε(W) = {(z1, . . .zn, q1, . . .qm) ∣
∃(x1, . . .,xn,q1, . . .qm) ∈ W and∀i ∈ [n] ∣zi −xi ∣ ≤ ε}.

Definition 5 Let (H, I ,G) be a DTHS control problem andε be a nonnegative
real number. Anε solution to(H, I ,G) is a solution to the LTS control problem(LTS(H), I ,Bε(G)).
Example 2 Let T be a positive constant (sampling time). We define the DTHSH
= ({x},{u}, ∅, N) where x is a continuous variable, u is a boolean variable, and
N(x,u,x′) ≡ [u→ x′ = x+(5

4 −x)T]∧[u→ x′ = x+(x− 3
2)T]. LetP = (H, I, G) be

a control problem, where I≡ −2 ≤ x ≤ 2.5, and G≡ x = 0. A controller may drive
the system near enough to the goal x= 0, by enabling a suitable action in such a
way that x′ < x when x> 0 and x′ > x when x< 0. If the sampling time T is small
enough with respect toε (for example T< ε

10), the controller: K(x,u) = (−2 ≤
x ≤ 0 ∧ u) ∨ (0 ≤ x ≤ 11

8 ∧ u) ∨ (11
8 ≤ x ≤ 2.5 ∧ u) is an ε solution to(H, I ,G).

Observe that, that any controller K′ such that K′(5
4,0) holds is not a solution,

because since N(5
4,0,

5
4) holds, the closed loop systemH(K) may loop forever

along the path5
4,0,

5
4,0. . ..

Example 3 The typical goal for the inverted pendulum in Example 1 is to turn the
pendulum steady to the upright position, starting from any possible initial posi-
tion, within a given speed interval. In our experiments, thegoal region is defined
by the predicate G(X) ≡ (−ρ ≤ x1 ≤ ρ) ∧ (−ρ ≤ x2 ≤ ρ), whereρ ∈ {0.05,0.1}, and
the initial region is defined by the predicate I(X) ≡ (−π ≤ x1 ≤ π) ∧ (−4≤ x2 ≤ 4).

3.2 Quantized Control Problem

In order to manage real variables, in classical control theory the concept ofquanti-
zationis introduced (e.g., see [14]). Quantization is the processof approximating
a continuous interval by a set of integer values. In the following we formally
define a quantized feedback control problem for DTHSs.

A quantization functionγ for a real intervalI = [a,b] is a non-decreasing func-
tion γ ∶ I ↦ Z s.t. γ(I) is a bounded integer interval. We will denoteγ(I) as
Î = [γ(a),γ(b)]. Thequantization stepof γ, notation∥γ∥, is defined as sup{ ∣w−
z∣ ∣w,z∈ I ∧γ(w) = γ(z)}. For ease of notation, we extend quantizations to integer
intervals, by stipulating that in such a case the quantization function is the identity
function.
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Definition 6 LetH = (X,U,Y,N) be a DTHS, and let W=X∪U ∪Y. Aquantiza-
tionQ for H is a pair (A,Γ), where:

• A is a predicate over W that explicitely bounds each variable in W. For each
w ∈W, we denote with Aw its admissible regionand with AW = ∏w∈W Aw.

• Γ is a set of mapsΓ = {γw ∣ w ∈W andγw is a quantization function for Aw}.
Let W= [w1, . . .wk] and v= [v1, . . .vk] ∈AW. We writeΓ(v) for the tuple[γw1(v1),
. . ., γwk(vk)]. Finally, thequantization step∥Γ∥ is defined assup{ ∥γ∥ ∣ γ ∈ Γ}.
A control problem admits aquantizedsolution if control decisions can be made
by just looking at quantized values. This enables a softwareimplementation for a
controller.

Definition 7 Let H = (X,U,Y,N) be a DTHS,Q = (A,Γ) be a quantization for
H and P = (H, I ,G) be a DTHS control problem. AQ Quantized Feedback
Control (QFC) solution toP is a ∥Γ∥ solution K(x,u) to P such that K(x,u) =
K̂(Γ(x),Γ(u)) whereK̂ ∶ Γ(AX)×Γ(AU) → B.

Example 4 Let P be as in Example 2. Let us consider the quantization(A,Γ)
where A= I and Γ = {γx} whereγx(x) = ⌊x⌋. The setΓ(Ax) of quantized states
is the integer interval[−2,2]. NoQ QFC solution can exist, because defining
both K̂(1,1) and K̂(1,0) allows infinite loops to be potentially executed in the
closed loop system. Of course, the controller K in Example 2 can be obtained as
a quantized controller decreasing the quantization step, for example by taking̃Γ
= {γ̃x} whereγ̃x(x) = ⌊8x⌋.

4 DTLHS overapproximation of DTHSs

In [23], we presented the tool QKS that given a DTLHS control problemP =
(H, I ,G) and a quantization schema as input, yields as output controlsoftware
implementing a most general optimal quantized controller for P, whenever a suf-
ficient condition holds. In this section we show how a DTHSH can be overap-
proximate by a DTLHSLH, in such a way that LTS(H) ⊑ LTS(LH). The follow-
ing theorem ensures that controllers forLH are guaranteed to be controllers for
H.

12



4.1 DTHS linearization

Let C(V), with V ⊆ X∪U ∪Y∪X′, be a constraint inN that contains a nonlinear
function as a subterm. ThenC(V) has the shapef (R,W)+E(V)≤b, whereR⊆V r

is a set ofn real variables{r1, . . ., rn}, andW ⊆Vd is a set of discrete variables.
For eachw ∈ DW, we define the functionfw(R) obtained fromf , by instanciat-
ing discrete variables withw, i.e fw(R) = f (R,w). ThenC(V) is equivalent to
the conjunctive predicate⋀w∈DW[ fw(R)+E(V) ≤ b]. In order to make the over-
approximation tighter, we partition the domainDR of each functionfw(R) into
m hyperintervalsI1, I2 . . . Im, whereIi =Π j∈[n][a

i
j ,b

i
j]. In the followingR∈ Ii will

denote the conjunctive predicate⋀ j∈[n]a
i
j ≤ r j ≤ bi

j .
Let f +w,i(R) and f −w,i(R) be over- and under- linear approximations offw(R)

over the hyperintervalIi, i.e. such thatR ∈ Ii implies f −w,i(R) ≤ fw(R) ≤ f +w,i(R).
Taking∣DW∣×n fresh continuous variablesY = {yw,i}w∈DW,i∈[n], we define the con-
junctive predicatẽC(V,Y):

⋀w∈DW⋀i∈[m][yw,i +E(V) ≤ b]
∧⋀w∈DW[⋁i∈[m][R∈ Ii ∧ f −w,i(R) ≤ yw,i ≤ f +w,i(R)]]

By introducing∣DW∣×n fresh boolean variablesZ = {zi}w∈DW,i∈[n], C̃(V,Y) can
be translated into the following equisatisfiable conjunctive predicateC̄(V,Y,Z):

⋀w∈DW⋀i∈[m][yw,i +E(V) ≤ b]
∧⋀w∈DW⋀i∈[m]zw,i → f −w,i(R) ≤ yw,i ≤ f +w,i(R)
∧⋀w∈DW⋀i∈[m]zw,i →R∈ Ii ∧⋀w∈DW∑i∈[m]zw,i ≥ 1

As a result, this transformation eliminates a nonlinear subexpression of a con-
straintC(V) and yields a constraint̄C(V,Y,Z) such that∃Y,Z[C̄(V,Y,Z)⇒C(V)].
Given a DTHSH = (X,U,Y,N), without loss of generality, we may suppose that
the transition relationN is a conjunction⋀i∈[m]Ci(X,U,Y,X′) of constraints. By
applying the above transformation to each nonlinear subexpressions occurring in
N, we obtain a conjunction of linear constraints̄N ≡ ⋀i∈[m̄]C̄i(X,U,Ȳ,X′), such
thatN̄⇒N. Hence, starting from a DTHSH, we find a DTLHSLH = (X,U,Ȳ,N̄),
whose dynamics overapproximate the dynamics ofH.

Theorem 1 LetH = (X,U,Y,N) be a DTHS and letLH be its linearization. Then
we have that LTS(H) ⊑ LTS(LH).

13
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Figure 2: Linearization of sinx in [−π,π].

Theorem 2 Let S1 = (S,A,T1) and S2 = (S,A,T2) be two LTSs, and let K be a
solution for the LTS control problem(S2, I ,G). If S1 refinesS2 and for all s∈ S
Adm(S1,s) =Adm(S1,s), then K is a solution also for(S1, I ,G).

Proof 1 (Sketch) The proof is by induction on n= Jstrong(S
(K)
2 ,G,s). If n = 1 and

K(s,a), thenImg(S2,s,a) ⊆G. SinceS1 ⊑ S2, we also have thatImg(S1,s,a) ⊆
Img(S2,s,a) ⊆G. Moreover, Adm(S1,s) = Adm(S2,s) implies that there exists at

least a transition of the shape T1(s,a,s′)with s′ ∈G and thus Jstrong(S
(K)
1 ,G,s)=1

too. This implies that{s ∣ Jstrong(S(K)1 ,G,s)= 1} = {s ∣ Jstrong(S(K)2 ,G,s)= 1}. The
inductive step is similar, by substituting G with the set of states{s ∣ Jstrong(S2,G,s)=
n−1}.
Corollary 3 LetH = (X,U,Y,N) be a DTHS and letLH be its linearization. Let
K be a solution for the DTLHS control problem(LH, I ,G). Then K is a solution
also for the DTHS control problem(H, I ,G).
Example 5 The DTHSH = (X,U,∅,N)model for the inverted pendulum in Ex. 1
contains the nonlinear functionsinx1. We define the linearizationLH = (X,U,Y,Ñ)
as follows. In order to exploit sinus periodicity, we consider the equation x1 =
2πyk+yα, where yk represents the period in which x1 lies and yα ∈ [−π,π] repre-
sents the actual x1 inside a given period.
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This allows us to apply our linearization to yα ∈ [−π,π] only. We partition the
interval [−π,π] into four sub-intervals I1, I2, I3, I4 as shown in Fig. 2. For yα ∈
I1 = [−π,−π

2] we define f+1 (yα) as the line passing through points(−π,sin(−π))
and(−π

2 ,sin(−π
2)), i.e. f+1 (yα) = −0.6369yα+2. Moreover, we define f−1 (yα) as

the line which is tangent to the curvesinyα at I1 medium point, i.e. f−1 (yα) =
0.7073(yα+0.785)−0.7068. Functions f±2 , f±3 and f±4 are obtained analogously.

Finally, we have that Y=Yd ∪Yr = {yk,yq,z1,z2,z3,z4}∪{yα} and Ñ ≡ (x′1 =
x1+2πyq+Tx2) ∧ (x′2 = x2+T g

l yα+T 1
ml2

Fu)∧x1 = 2πyk+yα∧⋀
4
i=1zi → f −i ≤ yα ≤

f +i ∧⋀
4
i=1zi → x1 ∈ Ii ∧∑

4
i=1zi ≥ 1.

4.2 Linearization: a systematic approach

When nonlinear subexpressions areC2 functions, a systematic approach to com-
pute linear overapproximations of a DTHS makes use of Taylorpolinomial of
degree 1 as piecewise affine functions that over- and under-approximate the value
of aC2 function. Let f (x) be aC2 function ofn real variables over a given interval
I . By Taylor’s theorem, we may derivelinear under- and over-approximations for
f (x) around a given pointx0 ∈ I as follows. Namely, we have that existst ∈ [0,1]
such thatf (x) = f (x0)+▽ f (x0)(x−x0)+

1
2(x−x0)TH(x+t(x−x0))(x−x0), being

H the Hessian matrix off . If we know two real numbersm andM that are the
minimum and the maximum value of1

2(x−x0)TH(x+t(x−x0))(x−x0), in a given
interval aroundx0. In this case we can choosef +(x) = f (x0)+▽ f (x0)(x−x0)+M
and f −(x) = f (x0)+▽ f (x0)(x−x0)+m.
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5 Experimental Results
In this section we present our experiments that aim at evaluating effectiveness of
our linearization technique.

5.1 Experimental Settings

We present experimental results obtained by using QKS [23] on the inverted pen-
dulum described in Example 1. In order to let QKS handle such acase study, we
linearize the DTHSH in Example 1 with the DTLHSLH of Example 5. In all
our experiments, as in [22] we set parametersl andm in such a way thatgl = 1 (i.e.
l = g) and 1

ml2
= 1 (i.e. m= 1

l2
). As for the quantization, we setAx1 = [−1.1π,1.1π]

andAx2 = [−4,4], and we defineA = Ax1 ×Ax2 ×Au. Moreover, we use uniform
quantization functions dividing the domain of each state variable (x1,x2) into 2b

equal intervals, whereb is the number of bits used by AD conversion. The re-
sulting quantization isQb = (A,Γb), with ∥Γb∥ =

8
2b . Since we have two quantized

variables (x1,x2) each one withb bits, the number of quantized (abstract) states is
exactly 22b. Finally, the initial regionI and goal regionG are as in Ex. 3, thus the
DTHS [DTLHS] control problem we consider isP = (H, I , G) [(LH, I , G)].

We run QKS for different values of the remaining parameters,i.e. F (force
intensity),ρ (goal tolerance),T (sampling time), andb (number of bits of AD).
For each of such experiments, QKS outputs a control softwareK in C language.
In the following, we sometimes make explicit the dependenceon F and b by
writing K(b)F . In order to evaluate performance ofK, we use aninverted pendulum
simulatorwritten in C. The simulator computes the next state by using Eq. (1)
of Ex. 1, thus simulating a path ofH(K). Such simulator also implements the
following features:

• random disturbances (up to 4%) in the next state computation are intro-
duced, in order to assessK robustness w.r.t. non-modelled disturbances;

• Eq. (1) is translated into the discrete time version by means of a simulation
time stepTs much smaller than the sampling timeT used inH (andLH).
Namely,Ts= 10−6 seconds, whilstT = 0.01 orT = 0.1 seconds. This allows
us to have a more accurated simulation. Accordingly,K is called each 104

(or 105) simulation steps ofH. WhenK is not called, the last chosen action
is selected again (sampling and holding).
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All experiments have been carried out on an Intel(R) Xeon(R)CPU @ 2.27GHz,
with 23GiB of RAM, Kernel: Linux 2.6.32-5-686-bigmem, distribution Debian
GNU/Linux 6.0.3 (squeeze).

5.2 Underactuated Inverted Pendulum (F = 0.5)

In order to stabilize anunderactuatedinverted pendulum (i.e. whenF < 1) from
the hanging position to the uprigth position, a controller needs to find a non ob-
vius strategy that consists of swinging the pendulum once ormore times to gain
enough momentum. We show that QKS is able to synthesize such acontroller by
running it onLH whereF = 0.5 (note that in [22]F = 0.7). Results are in Tab. 1,
where each row corresponds to a QKS run. Columns meaning in Tab. 1 are as
follows. Columnsb, T andρ show the corresponding inverted pendulum parame-

ters. Column∣K∣ shows the size of the C code forK(b)0.5 . Finally, columnsCPU and
RAM show the computation time (in seconds) and RAM usage (in KB) needed

by QKS to synthesizeK(b)0.5 .

As for K(b)0.5 performance, it is easy to show that by reducing the samplingtime

T and the quantization step (i.e. increasingb), we increase the quality ofK(b)0.5 in
terms of ripple, set-up time and coverage. In fact, Fig. 4 shows the simulations

of H(K
(9)
0.5 ) andH(K

(10)
0.5 ). As we can see,K(10)

0.5 drives the system to the goal with
a smarter trajectory, with one swing only. This have a significant impact on the
set-up time (the system stabilizes after about 8 seconds when controlled byK(10)

0.5

instead of about 10 seconds required when controlled byK(9)0.5 ). Fig. 3 shows

that thecontrollable regionof K(9)0.5 (i.e., dom(K(9)0.5 )) covers almost all states in
the admissible region that we consider. Different colors mean different set of
actions enabled by the controller. We observe that the mgo solution enables more
than one action in a significant portion of the controllable region. The control
software, however, is generated in such a way that one actionis chosen in each

state. Finally, Fig. 10 shows the ripple ofx1 forH(K
(10)
0.5 ) inside the goal. Note that

such ripple is very low (0.018 radiants).

5.3 Very Underactuated Inverted Pendulum (F = 0.3)

We succeeded to find controllers for the inverted pendulum for any value ofF
down to 0.3, with T = 0.1 seconds andρ = 0.1. However, simulations show that
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the behaviour of the resulting closed loop system is somewhat puzzling. As it is

shown in Fig. 6 forH(K
(11)
0.3 ), after three swings the pendulum is correctly driven

to the goal, but at that point the controller is not able to maintain the plant inside
the goal. In fact, the controller let the pendulum fall and makes it do a complete
round in order to reach again the upright position. This behaviour is repeated 27

times, before theK(11)
0.3 makes pendulum stabilize into the goal region.

As already noted in [22], all controllers for underactuatedpendulum use two
very different strategies to stabilize the system depending on the initial state.
When the angle is positive and the speed is negative (and in a suitable range that
depends onF), the controller turns directly the pendulum into the upright posi-
tion. Symmetrically, this also happens when the angle is negative and the speed is
positive. Otherwise the controller let the pendulum fall down to gain enough mo-
mentum (or to smoothly slow down it). Therefore, starting from very near states
may lead the system to follow very different trajectories. ReducingF squeezes
the region of states from which the pendulum is directly turned into the upright
position. As Fig. 7 shows, whenF is equal to 0.3, we have a rather pathological
situation: the frontier between the two strategies liesinsidethe goal region. The
controller sometimes is unable to keep the system inside thegoal, because distur-
bances introduced by the simulator make the system cross thefrontier between
the two strategies. When this frontier lies far enough from the goal (see Fig. 8 for
the caseF = 2), this phenomenon is essentially harmless and leads, at worst, to
suboptimal strategies.

5.4 Overactuated Pendulum (F = 2)

WhenF is greater than 1, finding a control strategy is less challenging. It is worth
noting however that, even in this case, our approach allows us to find controllers
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Table 1: Experimental Results for inverted pendulum withF = 0.5.

b T ρ ∣K∣ CPU MEM

8 0.1 0.1 2.73e+04 2.56e+03 7.72e+04
9 0.1 0.1 5.94e+04 1.13e+04 1.10e+05
10 0.1 0.1 1.27e+05 5.39e+04 1.97e+05
11 0.01 0.05 4.12e+05 1.47e+05 2.94e+05

that hardly can be synthesized by means of traditional analytical methods. In

Fig. 9, we show trajectories in the phases space ofH(K
(11)
2 ) with T = 0.01 sec-

onds,ρ = 0.05, and starting values forx1 are in{π
4,

π
2,

3π
4 ,3} andx2 = 0. H(K

(11)
2 )

follows highly non-smooth trajectories:K(11)
2 drives the system along an optimal

approach to the goal. Before joining this ideal path to the goal, the controller,
in order to optimize the set up time, drives the system at the maximum possible
“cruising” speed that allows the pendulum to be stopped in the goal. For higher
values ofF, this cruising speed is even higher.

6 Conclusions

We presented an automatic methodology to sinthesize control software for nonlin-
ear Discrete Time Hybrid Systems. The control software is correct-by-construction
with respect both System Level Formal Specifications of the closed loop system
and Implementation Specification, namely the quantizationschema. Our exper-
imental results on the inverted pendulum benchmark show theeffectiveness of
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our approach and that we synthesize near optimal controllers that hardly can be
designed by using traditional analytical methods of Control Engineering.

The present work can be extended in several directions. First of all, it would be
interesting to consider control synthesis of controllers that are optimal with respect
a cost function given as input of the control problem, ratherthan simply time-
optimal. Another natural possible future research direction is to investigate fully
symbolic control software synthesis algorithms based, forexample, on efficient
quantifier elimination procedures, in order to efficiently deal with Hybrid Systems
with several continuous state variables.
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