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Abstract. We consider the problem of controlling marginally stable linear sys-
tems using bounded control inputs for networked control settings in which the
communication channel between the remote controller and the system is unreli-
able. We assume that the states are perfectly observed, but the control inputs are
transmitted over a noisy communication channel. Under mild hypotheses on the
noise introduced by the control communication channel and large enough control
authority, we construct a control policy that renders the state of the closed-loop
system mean-square bounded.

1. Introduction

Communication channels have become ubiquitous in control applications such
as remotely operated robotic systems [Hokayem and Spong, 2006]. In such ap-
plications, measurement and control signals are exchanged via a lossy and noisy
communication channels, which makes the system a networked control system (NCS).
The research in NCS has branched into many different directions that deal with
the effects of delays, limited information exchanged, and information losses on the
stability of the plant, see, e.g., [Nair et al., 2007] and the references therein.

Control under information loss in the communication channel has been ex-
tensively studied within the Linear Quadratic Gaussian (LQG) framework [Imer
et al., 2006; Schenato et al., 2007]. Typically, the communication channel(s) are
modeled by an independent and identically distributed (i.i.d) Bernoulli process,
which assign probabilities to the successful transmission of packets. Perhaps the
most well known result in this setting is: When the transmission of sensor and
control data packets happens over a network with TCP-like protocols, the closed-
loop system under LQG controller can be mean-square stabilized provided that
the probabilities of successful transmission are above a certain threshold. Since the
TCP-like protocols enable the receiver to obtain an acknowledgment of whether
or not the packets were successfully transmitted, the separation principle holds
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and the optimal LQG controller is linear in the estimated state. Thus, this result
is a proper generalization of the classical LQG control problem to the networked
control setting.

Within the LQG setting, control inputs are not assumed bounded and therefore
linear state feedback is a permissible and optimal strategy. However, guaranteeing
hard bounds on the control inputs is of paramount importance in applications.
Consequently, many researchers have pursued the problem of optimal control
and stabilization for linear systems with bounded control inputs [Bernstein and
Michel, 1995; Saberi et al., 1999; Toivonen, 1983; Wonham and Cashman, 1969].
This problem has also received a renewed interest in recent years [Chatterjee et al.,
2009; Digaı̆lova and Kurzhanskiı̆, 2004; Hokayem et al., 2009; Ramponi et al., 2009;
Wang and Boyd, 2009]. In the deterministic setting, it is well-known [Yang et al.,
1997] that global asymptotic stabilization of a linear system xt+1 = Axt + But is
possible if and only if the pair (A,B) is stabilizable under arbitrary controls and the
spectral radius of the system matrix A is at most 1. In the stochastic setting, it was
argued in [Nair and Evans, 2004] that ensuring a mean-square bound for every
initial condition is not possible for linear systems with bounded control elements
if the system matrix A is unstable. In [Ramponi et al., 2009] we established the
existence of a policy with sufficiently large control authority that ensures mean-
square boundedness of the states of the system under the assumption that A is
Lyapunov stable. Although Lyapunov stability of A is a stronger requirement than
the spectral radius of A being at most 1, to the best of our knowledge, this is the
current state of the art.

In this article we generalize the results of [Ramponi et al., 2009] to incorporate
noisy control channels. We consider mean-square boundedness of stochastic linear
systems under the following specification:

◦ the communication channel between the controller and the system actuators is
noisy whereas the communication channel between sensors and controller is
noiseless, and

◦ hard constraints on the control inputs must be satisfied.

We are thus concerned with a networked setting as proposed in [Elia, 2005;
Garone et al., 2007; Schenato et al., 2007] when generalized to incorporate bounded
control inputs [Ramponi et al., 2009]. The control input u(i) for the i-th plant is com-
municated to the corresponding plant actuator via a lossy communication channel,
which is characterized by the noise ν(i) affecting the control input multiplicatively
as shown in Figure 1. We assume that the states are perfectly observed and are

Plant 1

Plant k x(k)

x(1)

Communication channels

u(1)

u(k)

ν(1) � u(1)

ν(k) � u(k)

Controller

Figure 1. Topology of the control system.

transmitted to the controller without any loss.
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Notation. For any random vector ν let µν B E[ν] denote its mean and σν B

var(ν) B E
[∥∥∥ν − µν∥∥∥2]

denote its second moment. For a matrix M we let ‖M‖
denote the induced Euclidean norm of M. We shall employ the standard notation
diam(S) B supx,y∈S ‖x− y‖ to denote the diameter of a subset S of Euclidean space.
For n ∈N, by 1n we denote a vector of length n with all entries equal to 1. For r > 0
and n ∈N, define the saturation function

(1) Rn
3 z 7−→ satr(z) B

z if ‖z‖ < r
rz/ ‖z‖ otherwise

∈ Rn.

The remainder of this article is organized as follows. In §2 we formalize the
main problem with all the underlying assumptions, and in §3 we state the main
results. The proofs are provided in §4.

2. Problem Setup

Consider the following discrete-time stochastic linear system subjected to packet
drops in the control communication channel

(2)
xt+1 = Axt + Bũt + wt,

ũt B νt � ut,
t ∈N0,

where xt ∈ Rd is the state, ut ∈ Rm is the control input, A ∈ Rd×d is the dynamics
matrix, B ∈ Rd×m is the input matrix, (wt)t∈N0 is an Rd-valued random process
noise, and (νt)t∈N0 is an Rm-valued random process modelling the uncertainty
in the control communication channel, and � denotes the Schur or Hadamard
product of matrices.1 The initial condition x0 = x̄ is given and the state xt is
perfectly observed by the controller.

The controller determines the control input ut based on the history of k states
Xt,k B (xt−k+1, . . . , xt−1, xt). (For t = 0, . . . , k− 2, Xt,k B ( x0, . . . , x0︸    ︷︷    ︸

(k−1−t)-times

, x0, x1, . . . , xt).) The

controller synthesizes a deterministic control policy π = (πt)t∈N0 which maps the
states vector X into a control setU. To wit,

ut = πt(Xt,k), t ∈N0,

where the maps πt : Rkd
−→ U ⊆ Rm, t ∈N0, are Borel measurable. Such a control

policy π is known as a k-history dependent policy. The control set U is assumed to
be nonempty, compact, and containing the origin. Any control policy π = (πt)t∈N0

which guarantees that the control input sequence (ut)t∈N0 satisfies

ut ∈ U, t ∈N0,(3)

is called an admissible k-history dependent policy. In many practical situations in-
volving saturating actuators and hard bounds on control inputs,U is chosen to be
a ball, i.e.,

U B
{
z ∈ Rm

∣∣∣ ‖z‖ 6 Umax

}
,(4)

where Umax > 0 is called the control authority available to the controller.

1Recall [Bernstein, 2009, p. 444] that if M′,M′′ are n1 × n2 matrices with real entries, then M′ �M′′

is the n1 × n2 matrix defined by (M′ �M′′)i, j B (M′)i, j(M′′)i, j.
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Our control objective is to synthesize an admissible k-history dependent policy
which ensures that the second moment of the closed-loop system, for any initial
condition x̄ ∈ Rn,

xt+1 = Axt + Bνt � πt(Xt,k) + wt, t ∈N0,(5)

remains bounded for all t ∈N0. We shall focus on the following problem:

Problem 2.1. Find, if possible, a control authority Umax and an admissible policy
π = (πt)t∈N0 with control authority Umax, such that the following condition holds:

for every initial condition x0 = x̄ ∈ Rd there exists a constant ζ > 0
such that the closed-loop system (5) satisfies Ex̄[‖xt‖

2] 6 ζ for all
t ∈N0.

In practice, a performance index that accounts for the average sum of cost-
per-stage functions (involving the state and control inputs) of the system is often
required to be minimized; however, in this article we are only concerned with the
stability property defined in Problem 2.1.

We shall make the following standing hypotheses:

Assumption 2.2.
(i) The matrix A is Lyapunov stable, i.e., all the eigenvalues of A lie in the closed

unit circle, and all eigenvalues λ satisfying |λ| = 1 have equal algebraic and
geometric multiplicities.

(ii) The pair (A,B) is stabilizable.
(iii) The process noise (wt)t∈N0 is an independent sequence, and has bounded

fourth moment, i.e., C4 B supt∈N0
E[‖wt‖

4] < ∞.
(iv) The control input sequence (ut)t∈N0 satisfies (3) and (4).
(v) The control channel noise (νt)t∈N0 is i.i.d. ♦

It follows from Assumption 2.2-(iii) that there exists C1 > 0 such that E[‖wt‖] 6 C1

for all t ∈ N0. (For instance, Jensen’s inequality shows that C1 6
4√C4.) Note also

that Assumption 2.2-(iii) does not require that the process noise vectors (wt)t∈N0 be
identically distributed. The assumption of mutual independence of (wt)t∈N0 can
also be relaxed, but we shall not pursue this line of generalization here.

Without any loss of generality, we also assume that A is in real Jordan canonical
form (cf. [Nair and Evans, 2004]). Indeed, given a linear system described by
system matrices (Ã, B̃), there exists a coordinate transformation in the state-space
that brings the pair (Ã, B̃) to the pair (A,B), where A is in real Jordan form [Horn
and Johnson, 1990, p. 150]. In particular, choosing a suitable ordering of the

Jordan blocks, we can ensure that the pair (A,B) has the form
([

A1 0
0 A2

]
,

[
B1

B2

])
,

where A1 ∈ Rd1×d1 is Schur stable, and A2 ∈ Rd2×d2 has its eigenvalues on the
unit circle. By Assumption 2.2-(i), A2 is therefore block-diagonal with elements
on the diagonal being either ±1 or 2 × 2 rotation matrices. As a consequence, A2

is orthogonal. Moreover, since (A,B) is stabilizable by Assumption 2.2-(ii), the
pair (A2,B2) must be reachable in a number of steps κ 6 d2 that depends on the
dimension of A2 and the structure of (A2,B2), i.e., rank(Rκ(A2,B2)) = d2, where

Rκ(A2,B2) B
[
Aκ−1

2 B2 · · · A2B2 B2

]
.

The smallest such κ is called the controllability index of (A2,B2) and is fixed through-
out the rest of this article. Summing up, we can start by considering that the state
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equation (2) has the form

(6)
[
x(1)

t+1
x(2)

t+1

]
=

[
A1x(1)

t
A2x(2)

t

]
+

[
B1

B2

]
ũt +

[
w(1)

t
w(2)

t

]
,

where A1 is Schur stable, A2 is orthogonal, and the subsystem (A2,B2) is reachable
in κ steps. Since the matrix Rκ(A2,B2) has rank full rank, its Moore-Penrose
pseudoinverse exists and is given by

Rκ(A2,B2)+ B Rκ(A2,B2)T
(
Rκ(A2,B2)Rκ(A2,B2)T

)−1
.

3. Main Results

We are ready to state the main result pertaining to the existence of policy of
bounded authority that renders the state of the system (2) mean-square bounded.
Let us define the normalized measure of dispersion or the noise-to-signal ratio of

the channel Ψ B
√
σν · maxi=1,...,m

∣∣∣(µν)i

∣∣∣−1
. We impose the following additional

requirements:

Assumption 3.1. In addition to Assumption 2.2 we stipulate that:
(vi) The control channel noise has bounded range, i.e., ν0 ∈ T, where T is a

bounded subset of Rm, and that µν has nonzero entries.
(vii) The following two technical conditions hold:

(vii.a) κΨ
∥∥∥Rκ(A2,B2)+

∥∥∥ ‖Rκ(A2,B2)‖ < 1.

(vii.b) Umax >

√
κC1

(
maxi=1,...,m

∣∣∣(µν)i

∣∣∣−1
)
‖Rκ(A2,B2)+

‖ ‖Rκ(A2, I2)‖

1 − κΨ ‖Rκ(A2,B2)+‖ ‖Rκ(A2,B2)‖
. ♦

Proposition 3.2. Consider the system (2), and suppose that Assumption 3.1 holds.
Then there exists a κ-history dependent policy π B (πt)t∈N0 with control authority
at most Umax (see (12) below), such that for every initial condition x̄ there exists a
constant ζ = ζ(x̄, κ, µν,Ψ ,C1) > 0 with

Ex̄[‖xt‖
2] 6 ζ for all t ∈N0

in closed-loop.

Remark 3.3. Proposition 3.2 assumes minimal structure from the set in which the
control channel noise takes its values. In particular, we do not assume that the
control channel noise takes values in a finite set—in fact, T may be uncountable.
(While the standard choice of modelling uncertainty in the control channels has
focussed on a multiplicative Bernoulli {0, 1} random variable multiplying the entire
control vector, there are cases in which the uncertainty model considered in (2) (i.e.,
different random variables multiplying the components of the controller,) makes
sense. For instance, the standard processes of control quantization or “binning”
can be viewed as introducing uncertainty to the controller—components of the
controller being multiplied by bounded but not necessarily identically distributed
random variables; the set T has the natural interpretation of the “largest bin.”) In
view of this, Assumption 3.1-(vii.a) is a technical condition stipulated as a trade-off

for the absence of any further structure in the set T. /

In §4 we prove Proposition 3.2 by a constructive method. It turns out that
our policy (see (12) below) is derived from the κ-subsampled system (xκt)t∈N0 ,
and is κ-history dependent. To wit, for each n ∈ N0, at time κn, based on the
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state xκn, the policy synthesizes a κ-long sequence of control values for time steps
κn, κn + 1, . . . , κ(n + 1) − 1.

Let us assume that the same uncertainty enters all the control channels, i.e.,
ũt = νtut, where νt ∈ R. The structure of our control policy permits us to transmit
the control data packets in a single burst each κ steps. This however, necessitates
the presence of a buffer at the actuator end of the plant to store the κ control values
{νκnuκn, νκnuκn+1, . . . , νκnuκ(n+1)−1} transferred in a burst at time κn, such that at each
time t ∈ {κn, . . . , κ(n + 1) − 1}, the control νκnut can be applied.

Assumption 3.4. In addition to Assumption 2.2, we assume that:
(vi′) Control signals are sent to the actuator every κ steps, and for each t ∈ N0,

the control channel noise is of the form νκt1κm, with νκn ∈ {0, 1} and P(νκn =

1) = p ∈ ]0, 1[ for each n ∈N0.
(vii′) Umax >

√
κC1 ‖Rκ(A2,B2)+

‖ ‖Rκ(A2, I2)‖ /p. ♦

Proposition 3.5. Consider the system (2), and suppose that Assumption 3.4 holds.
Then there exists a κ-history dependent policy π B (πt)t∈N0 with control authority
at most Umax (see (13) below), such that for every initial condition x̄ there exists a
constant ζ′ = ζ′(x̄, κ, p,C1) > 0 with

Ex̄[‖xt‖
2] 6 ζ′ for all t ∈N0

in closed-loop.

Remark 3.6. We noted in Remark 3.3 that Proposition 3.2 assumes minimal structure
from the bounded set T. In contrast, Proposition 3.5 assumes a rather specific
structure of the set T—that it consists of two elements (note that νκn ∈ {0, 1} for
each n ∈ N0 in Assumption 3.4-(vi′)). The i.i.d Bernoulli assumption on (νκt)t∈N0

leads to a simpler description of the control authority Umax in Assumption 3.4-(vii′)
compared to Assumption 3.1-(vii.b), and the analog of Assumption 3.1-(vii.a) is
not required here. /

As promised in Remark 3.3, we provide a simple scalar example illustrating
some effects of varying the probability of transmission of the control signal.

Example 3.7. Consider the scalar system xt+1 = xt + ũt + wt, t > 0, with initial
condition x0 = x̄, ũt = νtut. Suppose that (νt)t∈N0 is i.i.d Bernoulli {0, 1} with
P(νt = 1) = p > 0, and let (wt)t∈N0 be i.i.d, and satisfy supt∈N0

E[|wt|
4] = C′4 < ∞. This

implies, in particular, that supt∈N0
E[|wt|] 6 C′1 6

4
√

C′4. Suppose that Umax > C′1/p,
where ut ∈ [−Umax,Umax] for all t. With this much data it is easy to verify the
conditions of Assumption 3.4. We conclude by Proposition 3.5 that there exists a
policy with control authority at most Umax such that the system is mean-square
bounded. In fact, we see that for every nonzero probability p of transmission
of the control signal, there exists a control authority Umax > 0 and a policy with
control authority at most Umax, under which the state of the system is mean-square
bounded. ∆

Remark 3.8. Notice that Proposition 3.5 does not contradict the main results of
[Schenato et al., 2007], where it was proved (see [Schenato et al., 2007, Lemma 5.4])
that there exists a threshold probability of i.i.d. Bernoulli packet drops such that a
stabilizing linear feedback for unstable linear systems can be found provided the
drop probability is less than that threshold. Indeed, in Assumption 2.2 we have
specifically ruled out unstable A. /
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4. Proofs of Propositions 3.2 and 3.5

For our proofs of Propositions 3.2 and 3.5 we shall employ the following imme-
diate adaptation of [Pemantle and Rosenthal, 1999, Theorem 1] on L2 bounds of
nonnegative random variables:

Proposition 4.1 ([Pemantle and Rosenthal, 1999]). Let (Ω,F,P) be a probability
space, and let (Ft)t∈N0 be a filtration on (Ω,F,P). Suppose that (ξt)t∈N0 is a family of
nonnegative random variables adapted to (Ft)t∈N0 , such that there exist constants
a,M, J > 0 such that ξ0 < J, and for all t ∈N0,

EFt [ξt+1 − ξt] 6 −a on the set {ξt > J},(7)

E[|ξt+1 − ξt|
4
| ξ0, . . . , ξt] 6M.(8)

Then there exists c = c(a, J,M) > 0 such that sup
t∈N0

E
[
ξ2

t

]
6 c.

In what follows we let I2 denote the d2 × d2 identity matrix.

Lemma 4.2. Given the system (2), suppose that Assumption 2.2 holds, and consider
the decomposition (6). Let Ft be the σ-algebra generated by (xt)t∈N0 , i.e., Ft B
σ(xn; n = 0, . . . , t) for each t ∈N0. Then there exists a, J > 0 such that

EFκt
[∥∥∥∥x(2)

κ(t+1)

∥∥∥∥ − ∥∥∥x(2)
κt

∥∥∥] 6 −a on the set
{∥∥∥x(2)

κt

∥∥∥ > J
}

for all t ∈N0.

Proof. To simplify notation we first write compactly

(9) νκt B


νκt

νκt+1
...

νκ(t+1)−1

 and uκt B


uκt

uκt+1
...

uκ(t+1)−1

 .
It follows from the system dynamics that

x(2)
κ(t+1) = Aκ

2x(2)
κt +Rκ(A2,B2)uκt +Rκ(A2, I2)w(2)

κt:κ(t+1)−1, t ∈N0,

where w(2)
κt:κ(t+1)−1 B

[(
w(2)
κt

)T
· · ·

(
w(2)
κ(t+1)−1

)T
]T

. Therefore,

EFκt
[∥∥∥∥x(2)

κ(t+1)

∥∥∥∥ − ∥∥∥x(2)
κt

∥∥∥]
= EFκt

[∥∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt +Rκ(A2, I2)w(2)

κt:κ(t+1)−1

∥∥∥∥ − ∥∥∥x(2)
κt

∥∥∥]
6 EFκt

[∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt

∥∥∥ − ∥∥∥x(2)
κt

∥∥∥] + ‖Rκ(A2, I2)‖E
[∥∥∥∥w(2)

κt:κ(t+1)−1

∥∥∥∥]
6 EFκt

[∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt

∥∥∥ − ∥∥∥x(2)
κt

∥∥∥] +
√
κ ‖Rκ(A2, I2)‖C1.

Since A2 is orthogonal, we have
∥∥∥Aκ

2x(2)
κt

∥∥∥ =
∥∥∥x(2)
κt

∥∥∥. We require uκt beFκt-measurable.
Employing Jensen’s inequality and sublinearity of the square-root function, we get

EFκt
[∥∥∥Aκ

2x(2)
κt +Rκ(A2,B2)uκt

∥∥∥]
6

√
EFκt

[∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt

∥∥∥2]
=

(∥∥∥x(2)
κt

∥∥∥2
+ 2

(
x(2)
κt

)T
(Aκ

2 )TRk(A2,B2)(EFκt [νκt] � uκt)
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+ EFκt
[(
Rκ(A2,B2)(νκt � uκt)

)T(
Rκ(A2,B2)(νκt � uκt)

)])1/2

6
∥∥∥Aκ

2x(2)
κt +Rκ(A2,B2)(EFκt [νκt] � uκt)

∥∥∥
+

√
EFκt

[
‖Rκ(A2,B2)(νκt � uκt)‖2

]
−

∥∥∥Rκ(A2,B2)(EFκt [νκt] � uκt)
∥∥∥2
,

The last term under the square-root is simply the conditional variance of the vector
Rκ(A2,B2)(νκt �uκt) given Fκt. Since (νn)κ(t+1)−1

n=κt is independent of Fκt, ν̄ B EFκt [νκt]
is a constant, and equals vec{µν, . . . , µν︸     ︷︷     ︸

κ-times

}.) Thus, we see that

EFκt
[∥∥∥Aκ

2x(2)
κt +Rκ(A2,B2)uκt

∥∥∥]
6

∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)(ν̄ � uκt)

∥∥∥ +

√
EFκt

[
‖Rκ(A2,B2)((νκt − ν̄) � uκt)‖2

]
6

∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)(ν̄ � uκt)

∥∥∥ +
√
κ ‖Rκ(A2,B2)‖Umax

√
EFκt

[
‖νκt − ν̄‖

2
]

6
∥∥∥Aκ

2x(2)
κt +Rκ(A2,B2)(ν̄ � uκt)

∥∥∥ + κ ‖Rκ(A2,B2)‖Umax
√
σν.

Collecting the inequalities above, we see that

(10)
EFκt

[∥∥∥∥x(2)
κ(t+1)

∥∥∥∥− ∥∥∥x(2)
κt

∥∥∥] 6 ∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)(ν̄ � uκt)

∥∥∥ − ∥∥∥Aκ
2x(2)
κt

∥∥∥
+ κ

(
‖Rκ(A2,B2)‖Umax

√
σν + ‖Rκ(A2, I2)‖C1/

√
κ
)
.

In view of Assumption 3.1-(vii.a) we see that there exists 0 < a B Umax

(
1 −

κΨ ‖Rκ(A2,B2)+
‖ ‖Rκ(A2,B2)‖

)
−
√
κC1

(
max

i=1,...,m

∣∣∣(µν)i

∣∣∣−1
)
‖Rκ(A2,B2)+

‖ ‖Rκ(A2, I2)‖. We

now define

(11) r B a + κ
(
‖Rκ(A2,B2)‖Umax

√
σν + ‖Rκ(A2, I2)‖C1/

√
κ
)
6 Umax.

By Assumption 3.1-(vi), every entry of ν̄ is nonzero; we let ν̄(−1) be the vector of
reciprocals of each entry of ν̄ (i.e., (ν̄(−1))i = (ν̄i)−1 for each i). We define our control
policy2

(12) uκt B uκt

(
x(2)
κt

)
B −Rκ(A2,B2)+ satr

(
Aκ

2x(2)
κt

)
� ν̄(−1),

where satr is the function defined in (1). Clearly, uκt isFκt-measurable. Substituting
into (10) we see that

EFκt
[∥∥∥∥x(2)

κ(t+1)

∥∥∥∥ − ∥∥∥x(2)
κt

∥∥∥] 6 −r + κ
(
‖Rκ(A2,B2)‖Umax

√
σν + ‖Rκ(A2, I2)‖C1/

√
κ
)

on the set
{ ∥∥∥x(2)

κt

∥∥∥ > r
}

6 −a on the set
{∥∥∥x(2)

κt

∥∥∥ > r
}
,

where the last inequality follows from the definition of r above.
Thus, it only remains to see that the control policy defined in (12) satisfies the

bound ‖ut‖ 6 Umax for each t. But in view of the definition of r in (11) and our
policy (12), we see that ‖uκt‖ 6 r ‖Rκ(A2,B2)+

‖maxi=1,...,m

∣∣∣(µν)i

∣∣∣−1
6 Umax, and the

assertion follows immediately. �

2This controller resembles in part the Ackermann’s formula in standard linear control theory
[Franklin et al., 2006, p. 477] employed in unconstrained deadbeat controllers.
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Lemma 4.3. Given the system (2), suppose that Assumption 2.2 holds, and consider
the decomposition (6). Then there exists M > 0 such that

E
[∣∣∣∣∥∥∥∥x(2)

κ(t+1)

∥∥∥∥ − ∥∥∥x(2)
κt

∥∥∥∣∣∣∣4 ∣∣∣∣ ∥∥∥x(2)
0

∥∥∥ , . . . , ∥∥∥x(2)
κt

∥∥∥] 6M for all t ∈N0.

Proof. We retain the notation w(2)
κt:κ(t+1)−1 from the proof of Lemma 4.2 and the

definition of uκt from (9). Fix t ∈ N0. Observe that since A2 is orthogonal,
∥∥∥x(2)
κt

∥∥∥ =∥∥∥Aκ
2x(2)
κt

∥∥∥, and therefore,

E
[∣∣∣∣∥∥∥∥x(2)

κ(t+1)

∥∥∥∥ − ∥∥∥x(2)
κt

∥∥∥∣∣∣∣4 ∣∣∣∣ {∥∥∥x(2)
κn

∥∥∥}t

n=0

]
= E

[∣∣∣∣∥∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt +Rκ(A2, I2)w(2)

κt:κ(t+1)−1

∥∥∥∥ − ∥∥∥Aκ
2x(2)
κt

∥∥∥∣∣∣∣4 ∣∣∣∣ {∥∥∥x(2)
κn

∥∥∥}t

n=0

]
6 E

[∥∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt +Rκ(A2, I2)w(2)

κt:κ(t+1)−1 − Aκ
2x(2)
κt

∥∥∥∥4 ∣∣∣∣ {∥∥∥x(2)
κn

∥∥∥}t

n=0

]
= E

[∥∥∥∥Rκ(A2,B2)uκt +Rκ(A2, I2)w(2)
κt:κ(t+1)−1

∥∥∥∥4 ∣∣∣∣ {∥∥∥x(2)
κn

∥∥∥}t

n=0

]
.

By Assumption 2.2-(iv), ‖ũt‖ 6
√

mUmax diam(T), which implies that

E
[∥∥∥∥Rκ(A2,B2)uκt +Rκ(A2, I2)w(2)

κt:κ(t+1)−1

∥∥∥∥4 ∣∣∣∣ {∥∥∥x(2)
κn

∥∥∥}t

n=0

]
6 E

[(
κ
√

mUmax diam(T) ‖Rκ(A2,B2)‖ + ‖Rκ(A2, I2)‖
∥∥∥∥w(2)

κt:κ(t+1)−1

∥∥∥∥)4 ∣∣∣∣ {∥∥∥x(2)
κn

∥∥∥}t

n=0

]
.

Noting that w(2)
κt:κ(t+1)−1 is independent of

∥∥∥x(2)
0

∥∥∥ , . . . , ∥∥∥x(2)
κt

∥∥∥ in view of Assumption
2.2-(iii), applying Jensen’s inequality to the right-hand side above yields

E
[(
κ
√

mUmax diam(T) ‖Rκ(A2,B2)‖ + ‖Rκ(A2, I2)‖
∥∥∥∥w(2)

κt:κ(t+1)−1

∥∥∥∥)4]
= E

[(
κ
√

mUmax diam(T) ‖Rκ(A2,B2)‖ + κ ‖Rκ(A2, I2)‖
∥∥∥w(2)

κt

∥∥∥)4]
6 κ4

(√
mUmax diam(T) ‖Rκ(A2,B2)‖ + ‖Rκ(A2, I2)‖C1

)4
.

The assertion follows at once with M equal to the right-hand side of the last
inequality. �

Proof of Proposition 3.2. From (6) we see that the system splits into two parts, x(1)

and x(2), with the sequence (x(1)
t )t∈N0 describing the evolution of the Schur stable

component of the state, and (x(2)
t )t∈N0 describing the evolution of the orthogonal

component of the state. It is well-known that (x(1)
t )t∈N0 is mean-square bounded so

long as the control is bounded, which by Assumption 3.1-(vi) clearly holds (i.e.,

there exists ζ(1) > 0 such that Ex̄

[∥∥∥x(1)
t

∥∥∥2]
6 ζ(1) for all t ∈ N0). It thus suffices to

concentrate on (x(2)
t )t∈N0 . We let ξt B

∥∥∥x(2)
κt

∥∥∥ for each t ∈N0. We see that:

◦ the condition (7) of Proposition 4.1 holds with J = r, where r is as defined in (11),
by Lemma 4.2, and

◦ the condition (8) of Proposition 4.1 holds by Lemma 4.3.

Defining J B max
{∥∥∥x(2)

0

∥∥∥ , r}, we see that by Proposition 4.1 there exists a ζ̃(2) =

ζ̃(2)(a,M, J) such that Ex̄

[∥∥∥x(2)
κt

∥∥∥2]
6 ζ̃(2) for all t ∈ N0. Since the subsampled process

(x(2)
κt )t∈N0 is mean-square bounded, and x(2) is generated by a linear dynamical

system, we conclude that there exists ζ(2) > 0 such that Ex̄

[∥∥∥x(2)
t

∥∥∥2]
6 ζ(2) for all
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t ∈ N0. The assertion of Proposition 3.2 follows with ζ B ζ(1) + ζ(2) and noticing
that a and J depend on x̄, κ, µν, Ψ and C1. �

Proof of Proposition 3.5. Let Ft B σ(xn, n = 0, 1, . . . , t). Let us consider the κ-
subsampled system

x(2)
κ(t+1) = Aκ

2x(2)
κt +Rκ(A2,B2)νκtuκt:κ(t+1)−1 +Rκ(A2, I2)wκt:κ(t+1)−1, t ∈N0,

where uκt:κ(t+1)−1 B
[
uT
κt . . . uT

κ(t+1)−1

]T
. For this subsampled system we propose

the control policy:

(13) uκt:κ(t+1)−1 = −Rκ(A2,B2)+ satr

(
Aκ

2x(2)
κt

)
,

for some r > 0 to be defined shortly. Let us verify the conditions of Proposition
4.1 for the process

(∥∥∥x(2)
κt

∥∥∥)
t∈N0

under the control policy proposed above. We see
immediately that

EFκt
[∥∥∥∥x(2)

κ(t+1)

∥∥∥∥ − ∥∥∥x(2)
κt

∥∥∥]
6 EFκt

[∥∥∥Aκ
2x(2)

tκ +Rκ(A2,B2)νκtuκt:κ(t+1)−1

∥∥∥] − ∥∥∥x(2)
κt

∥∥∥ + E
[∥∥∥Rκ(A2, I2)wκt:κ(t+1)−1

∥∥∥]
= p

∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt:κ(t+1)−1

∥∥∥ + (1 − p)
∥∥∥Aκ

2x(2)
κt

∥∥∥ − ∥∥∥x(2)
κt

∥∥∥
+ E

[∥∥∥Rκ(A2, I2)wκt:κ(t+1)−1

∥∥∥]
= p

(∥∥∥Aκ
2x(2)
κt +Rκ(A2,B2)uκt:κ(t+1)−1

∥∥∥ − ∥∥∥x(2)
κt

∥∥∥) +
√
κ ‖Rκ(A2, I2)‖C1

= −pr +
√
κ ‖Rκ(A2, I2)‖C1,

where we have employed orthogonality of A2 to arrive at the second equality above.
By Assumption 3.4-(vii′) we see that there exists a > 0 such that ‖Rκ(A2,B2)+

‖

(
a +

√
κC1 ‖Rκ(A2, I2)‖ /p

)
6 Umax. Letting r B a +

√
κC1 ‖Rκ(A2, I2)‖ /p, we see that

the condition (7) is verified with J B r. The condition (8) follows readily from
Lemma 4.3, since the elements of the control input are uniformly bounded. Letting
J B max

{
r,
∥∥∥x(2)

0

∥∥∥}, we see that by Proposition (4.1) there exists a constant ζ(2) > 0

such that Ex̄

[∥∥∥x(2)
t

∥∥∥2]
6 ζ(2) for all t ∈ N0. By the same argument involving the

Schur stable part x(1) as in the proof of Proposition 3.2, we see that there exists a
constant ζ′ > 0 such that Ex̄[‖xt‖

2] 6 ζ′ for all t ∈N0, concluding the proof. �
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