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Towards ISS Disturbance Attenuation for Randomly SwitchedSystems

Debasish Chatterjee and Daniel Liberzon

Abstract—We are concerned with input-to-state stability —provide preliminary results dealing with sufficient comnalits
(1ss) of randomly switched systems. We provide preliminary  for a stochastic version 0és of these systems. Two types of
results dealing with sufficient conditions for stochastic ersions switching signals are considered:; the first is charactétize
of I1ss for randomly switched systems without control inputs, _— o i .
and with the aid of universal formulae we design controllersfor a statlstlcally_ slow switching condition, and the second 'S.
iss-disturbance attenuation when control inputs are present. class of semi-Markov processes. For these classes of switch
Two types of switching signals are considered: the first is ing signals it is difficult to apply traditional approachekioh
characterized by a statistically slow-switching conditim, and rely on an infinitesimal (or extended) generator [6], foheit
the second by a class of semi-Markov processes. there is little information available about the parametsfrs

Index Terms— randomly switched systems, input-to-state sta- th itchi . | th is st d d t
bility, multiple 1ss-Lyapunov functions, universal formula for € switching signal, or there IS strong dependence on pas

feedback stabilization. history of the process.
The approach pursued here employs multiptes

. INTRODUCTION Lyapunov functions in the spirit of our earlier works [7]][8

INCE its introduction in [1] the concept of input-to- ON stability analysis of _ran(_jomly sw?tched s_ystems Withqut
state stability (sS) has received widespread attentionNPUts. Our approach highlights the interaction of determi
on both theoretical and practical fronts; see [2] for a receStic dynamical systems with the stochastic switching aign
detailed discussion. Thes property characterizes behavior T "€ Switching signals considered here are adopted frone thes
of the state trajectory of a deterministic nonlinear systerrticles, but the analysis in the presence of inputs as wg car
perturbed by bounded disturbance inputs; as such it previd@Ut here is more involved.
a framework for robustness analysis of nonlinear systems. With the analysis results in hand, we turn to control syn-
Initially stated for deterministic inputs, various extans thesis. Two types of controller architectures are considier
of the Iss property have been made for inputs modeledn the first case the controllers depend on both the switching
as random processes, one of which is exponential input-téigna| and the state, and in the second case the controllers
state stability [3]. Thess property has been employed independ only on the state. The technical tools are off-the-
constructive ways for stability analysis, stabilizingdeack ~Shelf universal formulae forss disturbance attenuation [9]
controller synthesis, adaptive control schemes, etc. and our analysis results. To the best of our knowledge this
With the growing interest in the theory and applications ofs the first time thaiss under random switching is being
hybrid systems, considerable effort has been directedrtisva Studied.
understanding the behavior of switched systems. A switched The article is organized as follows. ffillwe fix notations
system has two ingredients: a family of subsystems, anda@d define our property of interest. The analysis results are
switching signal which specifies the active subsystem dt eagiven in §Ill] a proof of one result is sketched #IV] and
instant of time. An important control-theoretic issue iatthf ~ the synthesis results are presentefihWe conclude irfiV1]
stability and stabilization of these systems, and a number With a short discussion of the case of Markovian switching
interesting techniques have evolved over the past two @ascadignals.
to deal with this; for a discussion see, e.g., [4, Chapte8}.2,
More recently, looking beyond stability, robustness asgl Il. PRELIMINARIES
properties of deterministic switched systems have redeive
attention; see [5] and the references therein. There appe
e 8 commr e of sl v 1 095 O et 5. Rec ot 8 i
’ a : Ryg — Ry belongs to clas& if « is monotone

itgzlz\g:tscgmg is sufficiently slow, then the switched Sys'tenﬂncreasing, continuous, and(0) = 0. Also, a belongs to

. . . I oo If , and . A functi : R?
In this article we are concerned witlss of randomly E&iiisﬁelo:wgg folilaigég If/(ﬁo(o 5) lemlccl(;grﬂeacﬁg ;;

switched nonlinear _sysFems,_ |.ess_propert|es of SWItChedvé r,-) \ 0 for eachr. We letz A y := min{z,y} and
systems whose switching signal is a random process. .
xVy = max{z,y} for z,y € R.

Let R>g := [0,00], ||| denote the Euclidean norm on
", and || f|| , denote the essential supremum norm of the
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expectation given a sigma-subalgeffaf §. We IetPS'( ) expectation, which in general yields stronger bounds. For
(or P(- \3’)) denote conditional probability givegy'. instance, if the functionv is quadratic, it is convex, and an
application of Jensen’s inequaﬁtgeads to the last inequality.
Let us also note that Definitio] 1 does not claiss
Let P := {1,...,N} be a finite index set, and for eachof every sample path of the systef (2); the qualitative
i € P let us consider the system and quantitative aspects of this definition do not concern
i = fi(z,d) (1) information about individual trajectories.

e Suppose thaf{1) isss for eachi € P. Then by definition
where f; : R” x R¥ — R” is a continuously differentiable there exist functions}; € KL and~; € K. such that[(B)
vector field, f;(0,0) = 0. We allowd : R5, — R¥ to  holds along solutions of theth subsystem. However, with-
be a measurable, locally essentially bounded function @fut further stipulations om, in general it is not true that the
time; this ensures local existence and uniqueness of sohiti switched system generated byfrom the family {f;}icp
of (). Leto be a cadlag stochastic process (i.e., a stochastietains thass property (i.e., there will exisiniquefunctions
process whose sample paths are continuous from the righte KL andy € K, such that[(}) holds for any trajectory of
and possess limits from the left) ¢f, §) taking values ifP.  the switched systerfil(2)). filllwe consider different classes
We assume that for eaeh> 0 and eachv € Q there exists of switching signals for which we give sufficient conditions

A. Randomly switched systems with disturbance inputs

a strictly positive numbek(¢,w) such thato(t + s,w) =  for different types ofisstype estimates.
o(t,w) on[t,t+€(t,w)[. Under this condition we know [11,
Theorem T26, p. 304] that the filtratiof§:).>o generated Il ANALYSIS RESULTS

by o is right-continuous, and we augmegg with all P-  A. Statistically slow switching

null sets. We say that is a r.andom switching signal, and it \we assume no more structure of the switching signal
generates the randomly switched system from the farily (}an a slow switching condition, which is reminiscent of the

given by switching rate of a Poisson counter. A similar condition was
i = f,(z,d), (2(0),0(0)) = (z0,00), t>0, (2) emp_l(_)yed in the m_ain theorem of [7], where We_def_;llt with
stability under no disturbance inputs and slow switching. W

wherex, € R™. also assume that each member of the family of subsystems

B. Input-to-state stability is 1Ss. First a piece of notation: lelV, (t2,t1) denote the
' number of jumps made by on the intervalt;, 2] C R,
Input-to-state stability 16s) was formulated for a single ; < ¢,

system in [1]; let us state the definition corresponding ® th  Recall that we have(Q,%, (3¢)e=0, p) as a complete

i-th member of the family defined above. _ filtered probability space satisfying the usual conditioAs
The system[{1) isnput-to-state stabléf there exist func- [0, o0]-valued random variable is an (§;):>o-stopping time

tions 5; € KL andv; € Ko such that for everyro € R" it £+ < ¢} € §, for eacht > 0. A random variabler’ is

and measurable and locally bounded inguthe estimate 5, (3:):>0-optional timeif {7’ < ¢} € §, for eacht > 0.

_ _ It is quite clear that ar{F;).>o-optional time is a(F;)¢>o0-
@) < Billzoll 1) + i (lldll o) ®) stopping time. Itis a stgnd)ard result thatd );>o ?s(a )right—
holds for all¢ > 0 along solutions off{1). continuous filtration, everyg;),>o-stopping time is also an
Definition 1: The system[{2)atisfies anss in L, esti- (F;);>0-optional time. For details see, e.g., [10].
mate at switching instants there exist functions? € KL Definition 2: The switching signab is said to belong to

and a,y7 € K. such that for everyz, € R", every class Gif the following condition holds: there exist A > 0
measurable and essentially bounded infuthe estimate andko € NU{0}, such that for everyg,):>o-stopping time
t" and for allk > 0:

Ela(lo(m)D] < B(lwoll,v) +7(ldlp,,) () (Rs)"

S / n o —As
holds for allv € N along solutions of[{2). o PN+ S’_t ) _Nk) se %! ©
Notice that the expectation on the left hand side involves Note that if A = A and ky = 0, then Definition[2 gives
a classk,, function «. In the absence of randomness thighe jump rate of a stationary Poisson process.
statement in terms of. is equivalent to the statement that We have the following
lzI < B'(||zoll,t) + v’(||d|\[07t[) for some functions  Lemma 3:If o belongs to class G, them;);cn is almost
B € KL and~' € K., where we have employed a weaksurely divergent.
triangle inequality for clas:., functiond] In the context One can prove this by estimating the expected value of
of randomly switched systems, however, without furtheN,(¢,0) from the bound in Definitiof]2 for a fixed > 0
assumptions om one cannot conclude tha|||z(t)||] < (since each fixed is an (§:);>o-optional time), which is
B (||lzoll ,t)+y’(||d|\[0,t[) from (4). However, it is often the readily seen to be finite. See also [13, Chapter 3] for an

case that we get polynomial functions of the state inside thaternative argument.

1The weak triangle inequality for a function € Koo is: v(r1 + 72) < 2Jensen’s inequality [12] states that¥f is an integrable random variable
Y(2(r1 V r2)) <y(2r1) +v(2r2). and¢ : R — R is a convex function, them(E[X]) < E[¢(X)].



Our results employ a family ofss-Lyapunov functions; The class UH of switching signals is simply a representa-
the following assumption collects the properties we regjuirtive example of the class of semi-Markov switching signals
from them. The analysis will proceed with the aid Isfs-  that we can treat in our framework; see [13] for other classes
Lyapunov-like functiond. The following assumption collects of switching signals and related discussion.
the properties we shall require from them. Lemma 7:For switching signals of class UH, the se-

Assumption 4:Suppose that there exist continuously dif-quence(r;);cy is almost surely divergent.
ferentiable functiond; : R™ — Rsq, ¢ € P, functions The above lemma can be established by appealing to the
a1, 02,X € Koo, and numbers > 1, \; € A C R, i € P, Strong Law of Large Numbers [15, Chapter 2]; see also [13,
such that for all(i, z,d) € P x R® x R* we have Chapter 2] for alternative arguments.

(Vd1) o (||z]) < Vi(@) < as(]|z]); hTheorem 8:Consider the switched systefl (2). Suppose
; that

(Vd2) ) (@) fi(w, d) < =AaVi(@) + x(lldl); (U1) o belongs to class UH;

(Vd3) Vi(x) < uVj(x). ¢ (U2) Assumptioril holds with\ = R;

Note that if we allowA to include negative numbers, then U3) Z pgi (11— e=M7T)
E JEP /\jT

not all \;’s need to be positive, which in turn means that no <L

all subsystems are required to Iss.

The functionV; in (Vd1) and (Vd2) above is called aas-
Lyapunov functiorfor the i-th subsystem. IfA consists of
positive real numbers, (Vd2) is equivalent to each subsysteC. Discussion
being I1ss. Let us note that conventionallyss-Lyapunov The results above fall short of being satisfactory. Indeed,
functions are defined in a little different way, for instanceperhaps the most natural adaptation of th&concept to the

the right-hand side of (VL2) is-o/(||«]|) + x'(||d||), or the stochastic case would involve bounds of the type
right-hand side of (VL2) is-o/(||x]|), for ¢/, X" € K, but

Then [2) satisfies arssin L; estimate at switching instants.

they are equivalent to (VL2), as proved in [14]. Ela(lz®))] < B(lzoll£) + (., ) (6)
Theorem 5:Consider the switched systemnl (2), and supfor all zo € R®, ¢t > 0, and essentially bounded inpuds
pose that However, the technical difficulties, particularly in thesglnce
(G1) o belongs to class G; of Markovian assumptions ow, are formidable. Let us
(G2) Assumptioi ¥4 holds witth = {\.}, Ao > 0; consider switching signals belonging to class GBlflenotes
(G3) 1t < (A4 o)/ the ball around the origin whose radiugi§|d||;_ ), and5’

Then there exists a monotonically nondecreasing sequerlge? larger concentric ball, then the solution trajectaty)
(T})ien Of (31)i>0-optional times witHim,_,o, T; = co a.s., EN€rsB and exitsB’ at random instants, as defined [in (7);

and functions3 € KL, o, € Ko, such that the sequencéT;);cn in (@) is actually this set of random
instants. There is no further structure which prevents the
Ela(llz(®))Lerr, o 1p3n{T 1 <o0}] number of exit/entry times from increasing at least lingarl

< B(|lzoll 1) V7(||d||R> ) (5) with timet (the linearity follows at once from the observation
. that the set of vector field$f;}.cp is locally Lipschitz,

forallz>0andieN. and that||d|[,_, < oc). It is also clear that estimates for
The proof of Theorerll5 is rather long, and may be founge probability distribution of the holding times are not

in [13, Chapter 3]; we sketch the main stepsfiil] See also 5y 5jjaple. Hence “gain-margin” type arguments appear to be

fl-Clbelow for a discussion. the only mode of attack, as we pursuejlf] As asserted in

B. A class of semi-Markov switching signals Theoren(d, it is possible to get bounds on the expectation

. . of the state at some given time, restricted to each of these
In thls. subse_cn_on WE asSUREPOSSESSEs more SUrUCtUre 3 ndom excursion intervals, but gluing these estimate®to g

than being stat'|st|cally slow-switching. L& :=7; — 7i-1 4 niform bound for a given time is a difficult problem,

fori € N I_oe thez-th holding time,(7;);en being the sequence and in our case it is yet unsolved.

of SW'.tC.h.mg Instants. L . . . On the other hand, in the case of switching signals of class
Def|n|t|qn_ 6: Th_e switching signab is said to belong to UH, the holding times are explicitly characterized, but the

class UHIf it satisfies: chief issue is that of obtaining an estimate Edev(||(t)]])]

(UH1) the sequenceS;)icn of holding times is a collection from anissestimate inL; at switching instants. To wit, there

of i.i.d uniform~(T") random variables; can potentially be indefinitely many jumps ofbefore and
(UH2) the sequencéos(;))ienuioy Of values is ii.d with  after a given time; therefore countably many simultaneous

P(o(r;) = i) = g; for someg; €]0,1[, j € P; interpolations are needed to get an estimatg[of(||z(t)|)],
(UH3) the two sequences;)icn and (o(7;))icv are mutu-  and such an interpolation is again a difficult problem. Ualik

ally independent. ¢ in the deterministic case, one is necessarily forced to work

I : . with random intervals.
Notice that since we do not always require, (as §iil-B] every L | h . ” bability”
subsystem to bess, these functions are nass-Lyapunov functions in et us also note thatss-type estimates “in probability

the strict sense of the term. for diffusion processes have appeared in the literatune, fo



instance, in [16, Theorem 4.2], and more recently in [17in view of (Vd2)-(Vd3). Therefore,

§2]. Although the system models in the above references

differ from ours, the essential technical difficulties rema E[V"(” (x(t))l{tE[fjim[}ﬁ{fj<oo}}

the same. Unfortunately, these difficulties were not realiz <E ) . ) ) ) 9
in the aforesaid references, and the claims made in both of ™ Sup Va(tﬁs)(x(tﬂ + S))l{tj+s<tj+1}ﬂ{tj<oo} - 9)

them are still open. .
It can be shown that the proces§V, (i) (@t +

IV. PROOFS S)L(i sciyan jn{is<oo}) sso 1S @ nonnega‘uve{&t o) eso”

Proof of Theorerfl5 (Sketchhe argument is divided into potential. Further detailed calculations lead to
five steps for convenience. We shall employ the equivalent
“gain-mrz);\rgin” characterization [2] ofss ofpth):e indivi?jual E[V"(t) (x(t))l{te[ff’fm[}“{fﬂ'@o}} S V(HdHRzo)’
subsystems; see [13, chapter 3] for a more detailed proofwhere we lety(r) := (1 + 1/8)az(np(r)).

Step 1.Let us fix an essentially bounded disturbance input Step 5.1t remains to define the sequenc®;);cn of
signald with ||d||__ > 0, an initial conditionzo € R", and  (§;),>0-optional times. Lettingl%y,_1 := &, and Ty, = fx,
define the open set§; := {zeR"||z| < p(HdHR>O)} k € N, we see from Steps 2 through 4 that

andCy := {z e R"| | z]| < np(||dHR>0)} wheren > 0 is E [V oy (2(0) 1 ey, 10T, <00} ]

chosen such that: (np([|d||z.,)) > 2a2(p(lldlg.,))- Let < Bzl t) v A (ldls.,),
us suppose that, ¢ C,, the other case being similar. We z
deﬁne the following sequence of random times taking valueghich proves the claim. O
n [0, ocl: Proof of Theoreni]8 (Sketchfix » € N, and letk’ :
: 1-c A pgi(1—e 7T
t1:=1inf{t > 0] z(t) € C1}, K [dep X [1 - H /1= 2jep NT ]
= inf{t >, | z(t) € R"\Cy}, In view of (Vd2), pothlse on{s S n,riﬂ[}, i1 €N, and
o @) applying (Vd3) att = 7.1,
gy :=inf{t > ;| 2(t) e C1} forieN, Vo(ripn) (@(741)) < Vo (@(73)) € Aot (i1 =m0)
£i+1 = 1nf{t > £i+1 | ZC(t) S RR\OQ} fori e N, i MX(A|d||R>0) (1 -~ ef)‘ﬁ(ﬂ'i)(n*l*ﬂ)) '
o(Ti)

where it is understood that if arty or {; is oo, then each of _ _ _ ' _
the definitions which follow it in the above sequence is sefterating the above inequality from= 0 throughi = v — 1,
to oco. We note that both; andi; are|0, oo]-valued(F;)i=0- W get

optional times. vo1
Step 2Pointwise on{t, 7; € [0,1[} we haver(t), z(r;) € Vot (@(7)) < 1 Vip(o) (0) H oo (rp) (Tit1—7i)
R"~\.C4, and from (Vd2)- (Vd3) we get =0
~ _ v—1 v—1
EVoq (x(t)1 0] = as(llzof) e (GerA-mN)e, p Aoy (Ti1—75)
Vo (@) irepip] = c2llzol) + 1 x (g, ) ZAU H o Aotrp (Tt =5
Therefore, =0 J=i+l
E[Vow (z(t)1pep,inpy] < Blwoll,8) V>0, _ Ul:[ e Mo (Mmoo (10)
where B(r, s) := az(r)e >, A := Ao + A — pX > 0 by
(Gd3). The expectation of the first term on the right-hand side

Step 3.Pointwise on{t,r; € [{;,i;[} N {f; < oo} for of (I0) can be evaluated as
i,7 € N we havez(t), z(r;) € Cy by (@) and continuity of

v—1
z(+). Employing (Vd1) leads to E |1 V(o) (0) H ekaui)(mln)]
Vi [E il Vo (a(t) < az(np(ldllz.,))- =0 ,
. _ _ . pg; (1— e7)
whenevert; < co. Taking expectations we arrive at < az(]|zoll) Z 7| > (11)
jeP J
E[V"(f) (x(t))l{fj<°°}ﬂ{t6[fwfﬂ}} by utilizing (Vd1) and (UH1)-(UH3). Also, from (UH3) we
< az(np(lldll.,) )Pt € [, £} N {E; < o0}). have
v—1 Ao (r) (Ti+1—75) v=1 =X (Tj41—75)
Step 4.Pointwise on{t,; € [t;,;41[} N {t; < oo} for E (Hg ST | Tt L )
i,7 € N we have Ao(rs)
D20 (a(1)) 0 @(0). (1) < AoV (2 (2). 1— e X Sin
ox o (t) ’ = o(®\? (8) — H E e*>‘0<fj+1)5j+1} E|: ;i ] _ (12)
VEeP Vo (x(n)) < uVi(z(mi)) j=1+1 o (7i)



Now for eachj € N we have in [9]. The results in that article rely on universal formela

‘ 0 (1 B e*AkT) for asymptotic feedback stabilization of nonlinear system
E{e”"“ﬂsﬁl} = Z R (13) applications include systems in which the control takes
keP AT values in various restricted control sets, and a universal
and for each € N, formulais available. In our illustrative result below weliae

i Sita T off-the-shelf universal feedback control functions fgs
EF-@#] =y i (1 _ 1_67'“) . (14) disturbance attenuation from [9]. The next proposition is a
Ao(ri) hep Ak AT typical illustration of such a result.

Substituting the right-hand sides df {14) arld](13) back Let us define the map : R x R™ — R given by
into (I2) and simplifying, we see that

( T Y a+ a2+||b”4b b0
pgj (1 — e b= i ,
E[Va(r (@(n)] < aa(llaoll) | Y = (. 0) ol |
jeP J 0 otherwise
+ K x (1l )- (15) o
_ - _ . the functionW (z) := [Lg, ,V;(z),..., Ly, ,.V;(z)], and a
Now, letting (r) := lf_;qg(r) and 3(r, s) := az(r)n®, where map ¥, : R —> R, with values chosen such that it is

pulze 7 ) an application of (Vd1) on the smooth away from) and continuous afb, and

= 2ujep T ) :
left-hand side ofII’I]S) immediately proves the assertidn.

aV; _
V. CONTROL SYNTHESIS FOR ISS DISTURBANCE max {—J(:v)fj(:c,d) - x(IdII)} + A Vi(z) < Wj(x)

derk | Ox
ATTENUATION

We look at two different controller architectures, namely, < max {%(x)fj (x,d) — x(|d|)} + 2\, V;(z) (18)
one in which the controller is mode-dependent, and the other dezt | O

in which the controller is mode-independent. That is to sayq, )| ; ¢ R™, j € P.

in the first caseu is a function of both the state and Proposition 9: Consider the systeni{lL6) witi — R™.
the switching signab, while in the second case is just a Suppose that belongs to class UH, and

function of x.
(Cd1) (vdl) of Assumptiohl4 holds;

A. Mode-dependent controllers (Cd2) (Vd3) of Assumptiofil4 holds;

Consider the affine-in-control switched system perturbe(td3) Jo,x € Koo, 3Aj € A = R, j € P, such that
by a disturbance signal Vz € R"~\ {0}, Vd € R* andVj € P we have

&= folw,d)+ Y goil@ui,  x(0) =z, >0, N LR

i=1 ’LiIéC %(I)fj (Ia )+ J J(I)
(16)
wherex € R" is the stateu;, i = 1,...,m, are the (scalar) - . ‘ )
control inputs,f; : R® x R¥ — R™ andg;; : R* — +Z;Lgfﬂv-7(x)ul < x(lldll);
R™ are smooth maps for each € P, i € {1,...,m}. =
Let C _be the set where the contral := [u1,...,u;]" (Cd4) Ve > 034 > 0 such that ifz(+ 0) satisfies||z| < 6,
takes its values. For the moment we (étbe a subset of thenJu € R™, ||u| < e, such thaty j € P
R™ containing the origin. With a feedback control function ' ’
ko(x) = [ue1(x),...,usm(x)]", the closed-loop system OV
stands as gé%f{a—;(ff)fj(%d) —X(||d|)}
&= fol@d)+)_gi@)koi(@),  2(0) =z, >0, + 3 Ly, Vil@hus < =\ V;(a);
i=1 (17) -1

We let the switching signat- be a stochastic process aS(CdS) (U3) of Theoreril]8 hold
defined indll] and letzy # 0. ' _
Our goal is to choose a control functidy so that [Zy) Then under the feedback control function

satisfies somess in L, estimate at switching instants. We

shall appeal to our analysis results §fill and universal ko(z) = (Wa(x)anT(f)) (19)
formulae for I1ss disturbance attenuation to achieve this
objective. the system[(17) satisfies ams in L; estimate at switching

Universal feedback control functions attainings dis-  instants,
turbance attenuation for nonlinear systems affected by dis The proof relies heavily on the proof of [9, Theorem 3],
turbances and possessing control inputs were constructeee [13, Chapter 3] for detalils.



B. Mode-independent controllers. is a mearl-zero(st)t>0-local martingale. We define

Consider the affine in control switched systdm] (16). Le€h(i,z) := h(i,x), whereL is the extended generator [6]

k(z) = [k1(2),..., km(x)]" be a feedback control function, corresponding to the Markov process(t), z(t)):>0. Of
with which the closed-loop system stands as course, finding the class of functioris for which such a

m h exists is a nontrivial matter, but it is usually not difficult
i = fa(iv,d)-FZga,i(x)ki(iv), 2(0) =z, t>0. (20) to find a subclass. Often the operatdiis defined in terms

i=1 of a differentiation operation, namely,
We let the switching signab be a stochastic process as _ . E[h(o‘(t—i—h)’x(t—‘,—h))’At} — h(i,z))
defined indll] and letz # 0. Lh(i,z) = 1}&% ; ,

Our objective is to choose a control functign such

that [20) satisfies arssin L, estimate at switching instants, WhereA, == {(o(t),z(t)) = (i,2)}, andh: P xR" — R

for some clasgc., function a. is a function that is pointwise continuously differentialoin
Proposition 10: Consider the systeni(IL6) with = R™, the setP. _ _ _
Suppose that belongs to class UH, and A similar approach relying on the solution to appropriate
(CUd1) (Vd1) and (Vd3) of Assumptidd 4 holds: martingale problems can be adopted ifs a general marked
(CUd2) there exists a control functidn: R® — C, such Point process [11] with suitable stochastic jump inteesiti
that oV; (o d (o < 0V and will be reported elsewhere. Another interesting dioect
a ?a; (x)(fz(xf ) +9i(2)k(@)) < =NVi@) + G work concerns establishings-type estimates “in proba-
x(llll E‘(l)f everyi € P, z € R™; bility” of (£), such as those formulated in [16], [17].
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