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A Linear Programming Approach to Design
Online Triggering Mechanisms for Robust MPC

A. Sharifi Kolarijani, S.C. Bregman, P. Mohajerin Esfahani and T. Keviczky

Abstract— In this paper, an event-triggering approach is
proposed for a robust model predictive control method. The
approach is applicable to constrained, linear time-invariant
systems with bounded, additive disturbances. At each triggering
instant, the triggering mechanism is designed online using a
linear programming approach. Intuitively, the mechanism is a
sequence of hyper-rectangles that surround the optimal state
trajectory, over the prediction horizon. Standard analyses of
robust feasibility and robust stability of the closed-loop, event-
triggered control system are conducted. A numerical example
is presented to show benefits of the proposed approach. In
particular and under the assumption that the disturbance
has a uniform distribution, we further study some statistical
properties of the generated triggering instants.

I. INTRODUCTION

Controlled physical systems are generally continuous-time
phenomena which are operated on or manipulated via com-
munication and computation components. These components
usually have discrete nature (whether in a temporal or a
spatial form), e.g., a wireless communication unit or a digital
sensor. As a result, the implementation of designed control
laws is affected by the discrete character of computation
and communication components. We refer to such systems
as cyber-physical systems [17]. A common approach to
implement control laws under such circumstances is the so-
called sample-and-hold approach. A traditional practice in
the sample-and-hold approach is to periodically update the
control action [3]. It has been shown that one can guarantee
desired stability and/or performance measures under suitable
conditions.

There is a class of cyber-physical systems that is called
wireless networked control systems (WNCSs). By the defi-
nition, WNCSs are control systems in which feedback loops
are closed via wireless communication networks [4]. These
systems possess nice properties such as the flexibility in
design and the ease of maintenance. However, these sys-
tems have some fundamental limitations such as the limited
bandwidth and battery life.

Åström and Bernhardsson in [2] have reported several
potential benefits of closing a feedback loop in sampled-data
systems in a different way. They called this new approach
the “Lebesgue sampling” approach. In particular, they used
the deviation law ‖x(t)− x(tk)‖ ≤ δ to determine the next
sampling time tk+1, where the parameter t ∈ [tk, tk+1)
denotes the time, x(t) is the current state, x(tk) denotes
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the last sampled state, {tk}k≥0 is the sequence of generated
sampling instants, and finally the positive constant δ is a
user-defined parameter. They also pointed out the possibility
of reducing the required communication and control law
computation frequencies via this new type of sampling.
It is natural to expect that the aforementioned benefits of
this state-dependent sampling approach may alleviate some
shortcomings of WNCSs. Later on and in a rigorous fashion,
Tabuada in [20] proposed a state-dependent sampling law
‖x(t) − x(tk)‖ ≤ σ‖x(tk)‖ for input-to-state stable control
systems, where σ is a suitable positive constant. In the
literature, these types of state-dependent sampling laws are
known as event-triggering mechanism and the corresponding
control systems are called event-triggered control (ETC)
systems. We refer the interested reader to [11] and [14] and
the references therein for reviews of ETC systems.

A particular class of control methods that suits such an
event-triggering setup is the class of robust model predictive
control (RMPC) methods [8]. The reasons behind such a
compatibility can be at least twofold. First, RMPC methods
are online, optimization-based methods and are computa-
tionally expensive. As a result, there is hope to reduce the
frequency with which the underlying optimization problem
is solved. Second, there exists a pair of optimal input and
state trajectories as the outcome of the optimization problem
at each sampling instant. In a standard implementation of
RMPC only the first element in the optimal input trajectory
is used [15]. It is hence logical to exploit these optimal tra-
jectories and to amend RMPC methods with event-triggering
implementations.

There are numerous studies in the literature that have
pursued such an amendment to RMPC methods. The authors
in [10] propose an online, event-triggering RMPC approach.
Their approach is capable of identifying the necessary input-
channel to be updated. A Lebesgue sampling approach is
used to design an estimator with a bounded covariance matrix
in [19]. The authors in [7] use the notion of explicit MPC
[6] to construct an `1-type triggering mechanism. Based on a
user-defined 2-norm ball around the optimal state trajectory,
a Lebesgue-type triggering mechanism is proposed in [13]
for WNCSs. Under some mild regularity assumptions, the
authors in [1] introduce a co-design event-triggering MPC
approach that outperforms a standard MPC method (in the
sense of closed-loop performance/average transmission rate).
Considering the number of control messages is limited, an
event-triggering mechanism is proposed in [9].

In this paper, we consider linear time-invariant (LTI)
systems with bounded additive disturbance. We propose a
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Lebesgue-type triggering mechanism for the RMPC method
introduced in [18]. The triggering mechanism is a sequence
of hyper-rectangles constructed around the optimal state tra-
jectory (that is the solution of the RMPC problem solved at a
triggering instant). Furthermore, the triggering mechanism is
designed online using a linear programming approach. Since
the construction approach is online, it is computationally
more expensive with respect to the user-defined Lebesgue
triggering methods in the literature. On a positive note,
since the system dynamics and the structure of input/state
constraints actively determine the derived triggering mecha-
nism, the overall convergence and feasibility properties of
the closed-loop dynamics do not get affected as a result
of the event-triggered implementation. We also show that
when the closed-loop system reaches the desired target sets,
some statistical properties of the generated triggering instants
are superior to the standard implementation of the RMPC
method. We finally note that an extended version of this
work is available in [12]. In particular, the interested reader
is referred to [12] for the proofs of theoretical results and an
in-depth discussion about the computational aspects of our
proposed approach.

Notation: the set of non-negative integers is denoted by
Z≥0. Given positive integers m and n, Rm and Rm×n
represent the m-dimensional Euclidean space and the space
of m × n matrices with real entries, respectively. Given a
positive integer r, the sets of positive integers and non-
negative integers less than or equal to r are denoted by N[r]

and Z[r], respectively. Given a vector v ∈ Rn, vi represents
the i-th entry of v. For any pairs of vectors a, b ∈ Rn,
the inequality a < (≤)b is realized in a component-wise
manner, i.e., ai < (≤)bi, for all i ∈ N[n]. Given a matrix
M ∈ Rm×n, Mij denotes the i-th row, j-th column entry of
M . Moreover, the matrix M+ ∈ Rm×n is the matrix with
entries of M+

ij := max{0,Mij}. A positive definite matrix
M is denoted by M � 0. The n × n identity matrix is
denoted by In. Given a vector v ∈ Rn and a scalar p ≥ 1,
‖v‖p denotes the p-norm

(∑n
i=1 (vi)p

)1/p
. The function

sign(·) represents the standard sign function. Given a set
S ⊂ Rn and a matrix M ∈ Rm×n, the set MS denotes the
set {c ∈ Rm : there exist s ∈ S such that Ms = c}. Given
two sets A and B in Rn, A/B := {x ∈ A : x /∈ B}. Given
a matrix M � 0, the squared weighted distance of a point
r ∈ Rn from a set S ⊂ Rn is defined as
d(r,S,M) := mins∈S ||r−s||2M = mins∈S(r−s)>M(r−s).
Given two sets C and D, C ∼ D and C ⊕ D denote the
Pontryagin difference and the Minkowski sum of these sets,
respectively. A set S ⊂ Rn is called a polyhedron, if
S := {s ∈ Rn : ASs ≤ bS}, AS ∈ Rm×n, bS ∈ Rm.

If in addition the polyhedron S is bounded, the set is also
called a polytope and the representation is known as the H-
representation. For any vector-pairs l, u ∈ Rn such that l <
u, the full-dimensional convex polytope B(l, u) := {x ∈
Rn : l ≤ x ≤ u} = {x ∈ Rn : ABx ≤ bB} is called a
hyper-rectangle, where AB := [In − In]> and bB = [u> −
l>]>.

II. PROBLEM FORMULATION

In this section, we first introduce the class of constrained
dynamical systems considered in this paper. The description
of the RMPC method is then presented. At last, we formally
state the problem addressed in this paper.

A. System Description

Consider a controllable LTI system with bounded additive
perturbations given by

xk+1 = Axk +Buk + wk, ∀k ∈ Z≥0, (1)
where xk, uk, and wk denote the state, input, and distur-
bance, respectively. The state, input and disturbance signals
satisfy the constraints

xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu , wk ∈ W ⊂ Rnx . (2)
The sets X, U, and W are all convex polytopes and contain
the origin of their corresponding space. The nominal system
associated with (1) is

x̄k+1 = Ax̄k +Buk, ∀k ∈ Z≥0. (3)

We now introduce the RMPC method proposed in [18].
The goal in this method is to guarantee that xk and uk
converge to some target sets Tx ⊂ X and Tu ⊂ U as k →∞,
respectively. These target sets are both user-defined, convex
polytopes and contain the origin of their space, as well. The
optimization problem P(xk) for a finite horizon N at the
instant k is

P(xk) : J(xk,U
∗
k|k) = min

Xk|k,Uk|k
J(xk,Uk|k) (4a)

subject to
x̄k = xk, (4b)

x̄k+i+1|k = Ax̄k+i|k +Buk+i|k, ∀i ∈ Z[N−1], (4c)
uk+i|k ∈ Ui, ∀i ∈ Z[N−1], (4d)
x̄k+i|k ∈ Xi, ∀i ∈ Z[N−1], (4e)
x̄k+N |k ∈ Xf , (4f)

where U∗k|k := {u∗k+i|k}N−1i=0 and X∗k|k := {x∗k+i|k}Ni=0

denote the optimal input and state trajectories of P(xk),
respectively. The cost function of the RMPC problem is

J(xk,Uk|k) =

N−1∑
i=0

d(x̄k+i|k, Tx,i, Q) + d(uk+i|k, Tu,i, R),

(5)
where d is the weighted distance function defined in Notation
section. For all i ∈ Z[N−2], the input, state, input target, and
state target sets are tightened as follows:

U0 = U, Ui+1 = Ui ∼ KiLiW, (6a)
X0 = X, Xi+1 = Xi ∼ LiW, (6b)
Tu,0 = Tu, Tu,i+1 = Tu,i ∼ KiLiW, (6c)
Tx,0 = Tx, Tx,i+1 = Tx,i ∼ LiW, (6d)

where
L0 = Inx , Li+1 = (A+BKi)Li. (6e)

Moreover, the set of gains K = {Ki}N−1i=0 are some M-
step nilpotent gains where the positive constant M satisfies
nx ≤M ≤ N −1. Since the nominal system is controllable,
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one can for example use the procedure introduced in [18] to
construct the set K. On the other hand, the controllability
of the nominal system (3) assures that the corresponding
discrete algebraic Riccati equation [16] has a unique solution
P � 0, for some positive definite matrices Q and R.
One can then employ P to find a stabilizing gain F =
−(R+B>PB)−1B>A. Next, suppose R is a robust control
invariant set under the (linearly mapped) disturbance set
LN−1W such that if x ∈ R,

(A+BF )x+ LN−1w ∈ R, ∀w ∈ W, (7a)
x ∈ XN−1, (7b)
x ∈ Tx,N−1, (7c)
Fx ∈ UN−1, (7d)
Fx ∈ Tu,N−1. (7e)

We then define the (non-empty) terminal state set Xf by
Xf = R ∼ LN−1W ⊂ Rnx . (8)

B. Problem Setup

We are now set to the introduce the problem addressed
in this paper. Consider the dynamical system (1) subject to
the constraints (2). Let k ∈ Z≥0 be the last instant at which
the problem (4) is solved with the corresponding optimal
trajectories U∗k|k and X∗k|k. Finally, assume the controller
transmits the optimal input trajectory U∗k|k to the actuators.

Problem 2.1: Construct a triggering mechanism in the
form of a sequence of hyper-rectangles Ek := {Ej,k}N−1j=1

to determine the next triggering instant
ktrig := k + min{j ∈ N[N−1] : xx+j /∈ x∗k+j|k ⊕ Ej,k},

(9)
such that (i) the dynamics (1) respect the constraints (2), and
(ii) xk → Tx and uk → Tu, as k →∞, if
• the actuator units employ the control action uk+j =
u∗k+j|k, for all j ∈ Z[ktrig−k].

Notice that xk+j is the observed state at the sensors and the
controller will transmit {xk+j|k ⊕ Ej,k}N−1j=1 to the sensors.

III. MAIN RESULTS

In this section, we begin with explaining how each hyper-
rectangle Ej,k is constructed. We then present the results
concerning the robust feasibility and the robust convergence
of the corresponding event-triggered RMPC method.

A. Construction of Ej,k
The procedure to construct each set Ej,k is now explained.

Denote the last triggering instant by k with the corresponding
optimal trajectories U∗k|k and X∗k|k. Moreover, let j ∈
N[N−1] be a time instant following k (indicating the instant
that the triggering mechanism is being evaluated). Suppose
next the sensors observe the state vector xk+j at the instant
k + j. Define the prediction error

ek+j|k = xk+j − x∗k+j|k. (10)
Since Ej,k is a hyper-rectangle, this set can be represented
as Ej,k :=

{
ε ∈ Rnx : − epj,k ≤ εp ≤ ē

p
j,k, ∀p ∈ N[nx]

}
,

where εp is the p-th element of ε. Each hyper-rectangle Ej,k

is parameterized in 2nx parameters epj,k and ēpj,k. In light of
the definition (10), the triggering mechanism (9) can now be
rewritten as ktrig := k + min{j ∈ N[N−1] : ek+j|k /∈ Ej,k}.

Our aim is now to find the required conditions on the
triggering set Ej,k by which the feasibility and stability
of the event-based implementation are ensured. For each
possible prediction error ek+j ∈ Ej,k, there should exist a
corresponding pair of candidate input and state trajectories.
These candidate trajectories in turn should guarantee the
recursive feasibility and the robust stability of the closed-
loop dynamics. In doing so, the first step is to properly define
a certain type of optimal input and state trajectories at the
instant k+j with the horizon N . (Notice that we have access
to U∗k|k and X∗k|k from solving P(xk).) To this end, we
propose
u∗k+j+i|k = FAj+i−Ncl x∗k+N |k, if j + i ≥ N, (11a)

x∗k+j+i|k = Aj+i−Ncl x∗k+N |k, if j + i ≥ N + 1, (11b)
for the missing entries of the optimal trajectories, where
Acl := A+BF .

Next, we try to enforce a set of conditions on the triggering
set Ej,k such that the inter-event feasibility and the recursive
feasibility are guaranteed. These conditions ensure that if
ej+k ∈ Ej,k, one can construct a pair of candidate input
and state trajectories that satisfy the constraints (4b)-(4f).
Moreover, these trajectories ensure that the problem (4)
remains feasible at triggering instants. A possible way to
capture these properties is provided below. Let us first define
the gains K̃i and the state-transition matrices L̃i,
K̃0 := 0nu×nx , K̃i+1 := Ki, ∀i ∈ Z[N−2], (12a)

L̃0 := Inx
, L̃i+1 := (A+BK̃i)L̃i, ∀i ∈ Z[N−1]. (12b)

Consider now the constraint (4e). In order to guarantee
satisfaction of this constraint by the constructed candidate
state trajectory, the triggering set Ej,k should respect the
constraint x∗k+j+i|k ⊕ L̃iEj,k ⊂ Xi, for all i ∈ Z[N−1]. With
regards to the constraint (4d), one can use similar arguments
to arrive at u∗k+j+i|k ⊕ K̃iL̃iEj,k ⊂ Ui, for all i ∈ Z[N−1].
(Let us also remark that the satisfaction of the constraint (4f)
follows from the nilpotency of the tightening gains K. See
[12] for more details.)

In the last step, our goal is to find a quantitative way to
capture the cost associated with the constructed candidate
trajectories. To this end, we introduce two new sets of
parameters representing the distance of the optimal input and
state trajectories from the target sets (6c)-(6d). Observe that

s∗x,k+j+i|k := argmin
sx∈Tx,j+i

‖x∗k+j+i|k − sx‖2Q, if j + i ≤N,

(13a)

s∗u,k+j+i|k := argmin
su∈Tu,j+i

‖u∗k+j+i|k − su‖2R, if j + i ≤N − 1,

(13b)
are available from solving P(xk). Recall now the convention
we introduced in (11). Based on this convention and in light
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of the relations (7), we define for all i ∈ Z[N−1],
s∗x,k+j+i|k := x∗k+j+i|k, if j + i ∈ Z[N+j]/Z[N ], (14a)

s∗u,k+j+i|k := u∗k+j+i|k, if j + i ∈ Z[N+j−1]/Z[N−1].

(14b)
The parameters defined in (13) and (14) enable us to identify
the conditions on the triggering set Ej,k by which the cost
function (5) corresponding to the candidate trajectories is
“well-behaved”. In particular, the cost function is guaranteed
to decrease (respectively, not increase) when the states and
inputs are outside (respectively, inside) their corresponding
target sets. See [12] for more details.

We are now ready to introduce all the set-type inequalities
that Ej,k should satisfy. These conditions are

epj,k ≥ 0, ēpj,k ≥ 0, ∀p ∈ N[nx], (15a)

x∗k+j+i|k ∈ Xi ∼ L̃iEj,k, ∀i ∈ Z[N−1], (15b)

u∗k+j+i|k ∈ Ui ∼ K̃iL̃iEj,k, ∀i ∈ Z[N−1], (15c)

s∗x,k+j+i|k ∈ Tx,i ∼ L̃iEj,k, ∀i ∈ Z[N−1], (15d)

s∗u,k+j+i|k ∈ Tu,i ∼ K̃iL̃iEj,k, ∀i ∈ Z[N−1]. (15e)
Notice that the constraint (15a) identifies all the states
xk+j ∈ x∗k+j|k ⊕ Ej,k.

B. Event-Triggered Robust MPC

We have so far provided the conditions that each Ej,k
should satisfy. It remains to select a suitable objective
function to construct this set. A natural choice is the volume
of Ej,k, vol(Ej,k) := Πp∈N[nx]

(ēpj,k+epj,k). To construct Ej,k,
we hence consider vol(Ej,k) as the objective function along
with the constraints (15a)-(15e). Moreover, we borrow some
results from [5] to propose an LP relaxation of the problem.
In order to avoid heavily involved notations, we also state
the result in terms of some general parameters.

Theorem 3.1 (LP relaxed construction): Consider a vec-
tor ξ ∈ Rp, a matrix M ∈ Rp×k, and a polytope S = {s ∈
Rp : ASs ≤ bS} containing the origin where AS ∈ Rm×p
and bS ∈ Rm. The maximum volume r-constrained hyper-
rectangle B(l, u) ⊂ Rk that contains the origin and satisfies
ξ ∈ S ∼MB(l, u) is B(z∗, z∗ + λ∗r) where

(z∗, λ∗) := argmax
z,λ

λ

s.t. ASMz + (ASM)+rλ ≤ bS −ASξ
z + λr ≥ 0, z ≤ 0,

(16)
where for all j ∈ N[k], the j-th entry of r is defined as

rj := max
z,ω

ω

s.t. ASMz ≤ bS −ASξ
ASM(z + ωej) ≤ bS −ASξ
z + ωej ≥ 0, z ≤ 0,

(17)

where ej ∈ Rk is the unit vector in the j-th direction.
Proof: See [12].

Suppose now each set Ej,k in the triggering mechanism (9)
is constructed based on Theorem 3.1. We now state the
results about the recursive feasibility and the robust stability

of the RMPC method (4) using the triggering mechanism (9).
Theorem 3.2 (Recursive feasibility): Consider the con-

strained dynamics (1)-(2). Suppose the initial state x0 ∈
Rnx is such that P(x0) is feasible. Then, the state and
input trajectories of the dynamics (1) with the triggering
mechanism (9) satisfy the constraints (2), for all k ∈ Z≥0,
i.e., robust recursive feasibility.

Proof: See [12].
Theorem 3.3 (Robust convergence): Consider the con-

strained dynamics (1)-(2). Suppose the initial state x0 ∈ Rnx

is such that P(x0) is feasible. Then, the state and input tra-
jectories of dynamics (1) with the triggering mechanism (9)
are such that xk → Tx and uk → Tu, as k →∞, i.e., robust
convergence.

Proof: See [12].
Let us close this section with highlighting two properties

of the proposed event-triggering design. First, observe that
the proposed approach is online. As a result, at each trig-
gering instant it is required to calculate the triggering sets.
However, the extra design problem is a linear program that
has a lower complexity with respect to the complexity of the
RMPC problem. (An RMPC problem with a quadratic cost
is a quadratic program.)

Second, we note the difference between the proposed
approach in this paper and the Lebesgue-type sampling
approaches proposed in the literature. To the best of our
knowledge, most of those approaches define a ball around
the optimal state trajectory based on a certain norm. Then,
they study the impact of the radius of this ball on feasibility
and convergence of the closed-loop dynamics. However, the
proposed approach in this paper does not necessarily con-
struct triggering sets (hyper-rectangles) that are symmetric
with respect to the computed optimal state trajectory at the
last triggering instant.

IV. NUMERICAL EXAMPLE

We now provide a numerical example to show the ef-
fectiveness of results presented in this paper. Consider the
perturbed LTI system

xk+1 =

(
1 0.1

0 1

)
xk +

(
0.005

0.1

)
uk + wk,

where the states and input constraint sets are X = {x ∈
R2 : |x1| ≤ 5, |x2| ≤ 3} and U = {u ∈ R : |u| ≤ 5},
respectively. The state and input target sets are Tx = {x ∈
R2 : ‖x‖∞ ≤ 1} and Tu = {u ∈ R : |u| ≤ 3}, respectively.
The weight matrices in the cost function (5) are

Q =

(
1 0

0 0.001

)
and R = 10.

The terminal set is Xf = {x ∈ R2 : ‖x‖∞ ≤ 0.1}.
We first show the result of using Theorem 3.1 to construct

the triggering sets Ej,k. As we have pointed out at the end of
Section III, the construction method proposed in this paper
results in triggering sets that are not symmetric with respect
to the optimal state trajectory computed at the last triggering
instant.
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Fig. 1: Constructed hyper-rectangles Ej,k for j = 1, 5, 12, 24:
the horizon length N = 25, the nilpotency length M = 24,
and the disturbance set W = {w ∈ R2 : w1 = 0, |w2| ≤
0.15}.
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Fig. 2: Impact of initial state on the distribution of inter-
execution times: the horizon length N = 10, the nilpotency
length M = 9, and the disturbance set W = {w ∈
R2 : w1 = 0, |w2| ≤ 0.1}.

In Fig.2, the relative frequency, or the probability mass
functions (pmf’s), of the inter-execution times ∆ktrig for four
equidistant initial conditions x0 on the ball ‖x0‖ = 0.5 are
depicted. Notice that the pmf’s for all initial states almost
converge to a similar distribution. Indeed, our simulations
show that the sequence of inter-execution times converge to
a stationary state in long-term.

We next study the impact of the horizon length N on the
pmf(∆ktrig) and the expectation E(∆ktrig) in Fig. 3. It is evi-
dent that as N increases, E(∆ktrig) will also increase. Recall
that as the horizon length increases the computation costs
of the RMPC method and the triggering mechanism design
increase. Hence, one should consider a trade-off between the
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Fig. 3: Impact of horizon length N on the distribution of
inter-execution times (top) and on the expectation of inter-
execution times (bottom): N = 10, 13, 16, the nilpotency
length M = N − 1 for each N , and the disturbance set
W = {w ∈ R2 : w1 = 0, |w2| ≤ 0.15}.
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Fig. 4: Impact of disturbance on the distribution of inter-
execution times (top) and on the expectation of inter-
execution times (bottom): the horizon length N = 10, the
nilpotency length M = 9, and the disturbance set W =
{w ∈ R2 : w1 = 0, |w2| ≤ a} where a = 0.1, 0.13, 0.16.

computational cost of having a larger horizon length and the
possibility of reducing the number of triggering instants.

In Fig. 4, the impacts of disturbance on the pmf(∆ktrig)
and the expectation E(∆ktrig) are reported. It is interesting
to observe that as the size of W increases, the distribution
of ∆ktrig approaches a uniform one (see Fig. 4, top). This in
turn results in a decrease of the expectation of inter-execution
times as depicted in Fig. 4, bottom.

We finally compare the behavior of the event-triggered
RMPC method with the standard RMPC method (4) where
we let the the standard method to run in an open loop fashion
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(a) Event-triggered implementation.
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(b) Standard method with the open-loop implementation

Fig. 5: Comparison of event-triggered and time-triggered
cases: the horizon length N = 10, the nilpotency length
M = 9, and the disturbance set W = {w ∈ R2 : w1 =
0, |w2| ≤ 0.15}.

for bE(∆ktrig)c instants. (Notice that in general the open-
loop implementation is not guaranteed to remain stable and
feasible.) Fig. 5 represents the pmf and expectation of ‖x‖
and ‖u‖. One can observe that the event-triggered case has
better statistical properties.

V. CONCLUSIONS

In this paper, a linear programming approach to construct
an online triggering mechanism for a robust MPC method is
proposed. The proposed approach can be seen as a Lebesgue-
type sampling. Unlike most of the approaches in literature,
the Lebesgue thresholds are time-varying over the horizon,
and depend on the dynamics at the triggering instant and
the constraints on the dynamics. We have conducted several
numerical experiments to show the effectiveness of our
proposed approach. As the closed-loop system reaches its
steady-state, the triggering mechanism significantly reduces

the number of times at which the RMPC problem should
be solved. Since the design of the triggering mechanism
is online, the computational cost of the proposed event-
triggered method at the triggering instants is higher compared
to the standard robust MPC. Therefore, a logical future
research direction is to make this design process offline.
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