

Newcastle University ePrints - eprint.ncl.ac.uk

Solaiman E, Sfyrakis I, Molina-Jimenez C.

A State Aware Model and Architecture for the Monitoring and Enforcement

of Electronic Contracts.

In: 18th IEEE Conference on Business Informatics (CBI). 2016, Paris, France:

IEEE

Copyright:

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

http://doi.org/10.1109/CBI.2016.15

Date deposited:

05/09/2016

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=227747
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=227747
http://doi.org/10.1109/CBI.2016.15

A State Aware Model and Architecture for the
Monitoring and Enforcement of Electronic Contracts

Ellis Solaiman, member, IEEE
School of Computing Science

Newcastle University
Newcastle upon Tyne, UK
ellis.solaiman@ncl.ac.uk

Ioannis Sfyrakis
School of Computing Science

Newcastle University
Newcastle upon Tyne, UK

i.sfyrakis@ncl.ac.uk

Carlos Molina-Jimenez
Computer Laboratory

University of Cambridge
Cambridge, UK

carlos.molina@cl.cam.ac.uk

Abstract—Internet, Cloud, and IoT (Internet of Things) based
business relationships involve electronic interactions that are
normally regulated using Service Level Agreements (SLAs), and
contracts that specify the rights, obligations, and prohibitions
of the entities involved in the interactions. After a contract has
been negotiated and agreed, all parties will need assurances
that the service interactions comply with the clauses of the
agreements between the parties, and that any violations are
detected, prevented, and their causes identified. Because of the
dynamic nature of emerging IoT and Cloud based relationships,
there is a need for automated support for the monitoring and
enforcement of service agreement policies. This paper develops
a novel model for representing contract clauses using business
rules that is specifically designed for contract compliance
checking and enforcement. We identify what events need to
be generated and captured from the underlying messaging
middleware, and describe key design issues for a state aware
contract monitoring and enforcement service.

Index Terms—electronic contract, service level agreement,
monitoring, enforcement, policies, web service, access control,
research data

I. INTRODUCTION

Advances in Internet and Cloud computing technologies
have made it possible for businesses to provide increasingly
sophisticated infrastructure and software services to their
business partners and to their customers at affordable costs.
Before a relationship between a service provider and a
service consumer can commence, concerns such as security,
and quality of the services provided, need to be agreed.
Such details are normally formalized in the form of Service
Level Agreements (SLAs) [1]. Service agreements explicitly
define the permissible actions of the interacting parties, thus
providing a legal basis for the resolution of any disputes.
A Legal agreement can also be used as a guide for de-
veloping an electronic contract [2]. The main purpose of
an electronic contract is to provide a mechanism that can
automatically regulate (monitor and/or enforce) electronic
service exchanges between contracted parties. Therefore en-
suring that participants adhere to agreements in place, and
that performed actions comply with various message timing
and sequencing constraints.

The need for monitoring and enforcement mechanisms
such as electronic contracts, has become more important with
advances in paradigms such as big data, cloud computing,

and the Internet of Things (IoT) [3]. Such advances have
resulted in a phenomenal increase in the complexity of
interactions between collaborators, business partners, and the
distributed systems involved. Checking that such complex
interactions correctly comply with any agreements in place
manually, is almost an impossible task [4].

Developing mechanisms that are capable of monitoring
and enforcing electronic contracts correctly is not easy.
Previous work on contract monitoring has covered prob-
lems such as electronic contract representation and monitor-
ing [5][6][7][8], contract verification [9][10], and automated
testing [11]. In our previous work a contract monitoring
service is mainly a passive observer that does not interfere
with interactions between contracted parties. In this paper we
focus our attention on the problem of contract enforcement
(a key requirement identified in [8]). A contract enforcement
service must be capable of ensuring that a business operation
is executed only if it is contract compliant in accordance with
the contract clauses.

The contract compliance checker (CCC) (Fig. 1), de-
scribed previously in [8], is an independent contract mon-
itoring service, which is event driven and state aware. When
provided with an executable specification of a contract, it can
be deployed by the contracted parties or by a third party.
The CCC is able to observe and log relevant interaction
events, which it processes to determine whether the actions
of the business partners are consistent with respect to the
rights, obligations, and prohibitions declared in the original
legal contract. Namely, the CCC declares interaction events
as either contract compliant (CC) or non contract compliant
(NCC). As shown in Fig 1, business partners use a commu-
nication channel for exchanging their business messages. In
addition they use a monitoring channel for notifying events
of interest to the CCC. Notably, the figure shows that the
CCC can cope with exceptions and failures, observing events
that have been declared by the interacting parties as either S
(successful), TF (technical failure), or BF (business failure).

As a contract monitoring service, the CCC acts as a passive
observer, which makes no attempt to influence the sequence
and timing of message exchanges between business partners,
or between the components of a distributed system. In this
paper we explore key design requirements and present a

buyer seller

CCC

communication channel

monitoring channel

 biz events (S,TF,BF)

trusted third party
response:
CC | NCCelectronic

contract

Synchronizer outcomeoutcome

Fig. 1. The Contract Compliance Checker (CCC) monitor service.

model and enhanced implementation of the CCC that is
able to act as a contract enforcement service, which is state
aware and that directly influences the initiation of message
exchanges and their outcomes.

Therefore this paper makes the following key contribu-
tions; we describe a model for contract enforcement while
explicitly taking into consideration the rights, obligations,
and prohibitions within the policies of the electronic contract
as the interacting parties move from state to state; and to
enable this functionality we present an architecture for a
proof of concept contract enforcer service that is capable of
intercepting the initiation events that precede the execution of
operations, and prevent execution of operations that are none
contract compliant. The enforcer service is also proactive
whereby it can remind partners of their obligations well
before deadlines expire.

The remainder of the paper is organized as follows: In
Section II we describe key electronic contracting concepts,
and our ROP ontology with the aid of a simple example. In
Section III, we analyze the requirements for a contract en-
forcement service with the aid of a research data management
scenario. Implementation details of the contract monitoring
and enforcement service are presented in Section IV. We
place our work within the context of current research in Sec-
tion V. We draw conclusions and motivate further research
in this direction in Section VI.

II. BACKGROUND

In order to elaborate key electronic contracting concepts, we
present a simple scenario. Let us assume that Fig. 1 describes
a relationship where two organisations, a Buyer and a Seller
(a store), agree to a business contract. Below are some of its
clauses:

1) The buyer can place a buy request with the store to
buy an item.

2) The store is obliged to respond with either buy con-
firmation or buy rejection within 3 days of receiving
the buy request.

a) No response from the store within 3 days will be
treated as a buy rejection.

3) The buyer can either pay or cancel the buy request
within 7 days of receiving a confirmation.

a) No response from the buyer within 7 days will be
treated as a cancellation.

The clauses of such a legal agreement should take into
consideration all relevant business operations (shown in bold
in the contract text). A business contract specifies a well
defined list of business operations. A business operation is a
business activity which the participants are able to perform
under certain conditions. In the CCC, business operations
are used to formally define the vocabulary (alphabet) of
the interaction. We use B = {bo1, ..., bon} to represent all
the valid business operations in the contract. The clauses of
our example contain five business operations {buy request,
buy reject, buy confirmation, buy payment, buy cancellation}
shown in bold in the English text of the contract. The buyer
and seller are regarded as role players interested in executing
the operations is a shared fashion. The set of valid role
players is represented by RP = {rp1, ...,rpn}.

The execution of each business process generates an
individual outcome event which is passed to the synchronizer
shown in Fig. 1 through the monitor channel. The synchro-
nizer integrates the pair of individual outcomes from each
side into a single business event. This business event is sent
to the CCC. As a monitor, the responsibility of the CCC is to
determine whether a given event presented to it represents the
notification of a contract compliant operation CC, or a none
contract compliant operation NCC. To be able to make this
determination, the CCC keeps track of the state of interaction
as a Finite State Machine (FSM) with states being determined
by enabling and disabling the current rights, obligations and
prohibitions of the role players in force.

A. ROP Ontology

A contract distinguishes operations as Rights, Obligations,
and Prohibitions (the ROP set). A Right is an operation that
a party is allowed to perform under certain conditions, an
Obligation is an operation that a party is expected to do
under certain conditions, and a Prohibition is an operation
that a party is not allowed to do under certain conditions.

We define an individual right ri, obligation oi or prohibi-
tion pi as a set of operations where: ri ⊆ B, oi ⊆ B, and
pi ⊆ B. For a particular role player RP; Rrp = {r1,...,rn};
Orp = {o1,...,on}; and Prp = {p1,...,pn}, represent the sets of
rights, obligations, and prohibitions currently assigned to the
role player RP respectively. The sets of rights, obligations,
and prohibitions of an RP are represented as ROP rp.

B. Electronic Contracts

The electronic contract designer is able to use the legal
contract in order to accurately identify and extract the ROP
set attributed to the business partners, and to specify the rules
which operate on the ROP set. Rule implementation requires
an appropriate specification language; contract rules written

for the CCC service are currently realized using the Drools
Rule Language [12], wrapped within our ROP ontology.

An example of a rule that deals with receipt of a buy
request event by the CCC, written using Drools can be seen
below. Line 5 checks that the buyRequest operation is a right
that the buyer is currently allowed to perform. If so then
buyRequest is declared by the CCC as contract compliant
(line 13). This operation is also removed from the buyer’s
ROP set (line 8), meaning that the buyer no longer has
a right to perform this operation. At lines 10 and 11, the
seller is given an obligation to perform one of 2 operations:
buyConfirm, or buyReject.

1 rule "Buy Request Received"
2 //Verify type of event, originator, and

responder
3 when
4 $e: Event(type=="BUYREQ", originator=="

buyer", responder=="store", status=="
success")

5 eval(ropBuyer.matchesRights(buyRequest))
6 then
7 //Remove buyer’s right to place other Buy

Requests
8 ropBuyer.removeRight(buyRequest, seller);
9 //Add seller’s obligation to either accept

or reject order
10 BusinessOperation[] bos = {buyConfirm,

buyReject};
11 ropSeller.addObligation("React To Buy

Request", bos, buyer, 60,2);
12 System.out.println("* Buy Request Received

rule triggered");
13 responder.setContractCompliant(true)
14 end

Each of the business operations in bold within the contract
clauses of our example, has a rule such as the one shown
above. Typically, for an activity, each business partner can
have several rights, obligations, and prohibitions in force.
Once an electronic contract specification has been completed,
it can be loaded into the CCC for deployment. As operations
are executed, and events are received by the CCC; rights,
obligations, and prohibitions are granted and revoked as
specified by the rules. Therefore when the CCC acts as a
contract monitor, a right obligation or prohibition, is in one
of two states only: inactive or active.

C. Contract Compliance

The CCC processes each event to determine if it is contract
compliant (CC) or none contract compliant (NCC). The
execution of a business operation is said to be CC if it
satisfies the following three conditions and is said to be NCC
if it does not:

1) boi ∈ BO; the business operation matches an operation
within the set of business operations expected by the CCC.

2) boi ` ROP rp; the business operation matches the
ROP set of its role player (meaning, the role player that
performed the operation has a right/obligation/prohibition to
perform that operation). By ”match”, we mean that for a valid
business operation boi, and a particular role player’s ROP set;

ROPrp where: Rrp = {r1,...,rm}, Orp = {o1,...,om}, Prp =
{p1,...,pm}, and m ≥ 1, their relationship should be that: boi
∈ rj or boi ∈ oj or boi ∈ pj , where 1 ≤ j ≤ m.

3) the business operation must also satisfy the constraints
stipulated in the contractual clauses. An example of a con-
straint is the seven day deadline in clause 3 of our contract
example shown earlier.

We also consider that the execution of a given sequence of
operations is NCC if it includes one or more operations that
are flagged by the CCC as NCC. A sequence of operations
is also known as an execution sequence or execution trace
and drives the choreography from its initial state to a final
state.

D. Exception Handling

To ease the introduction of basic concepts, our legal
contract example deals with successful outcome events only.
However, the CCC contract monitoring service is also able
to observe outcome events that include exceptional cir-
cumstances [13]. Following the ebXML standard [14], at
the end of a business conversation, each party indepen-
dently declares an execution outcome event from the set
{Success(S), BizFail(BF), TecFail(TF)} as shown in Fig. 1.
Success events model successful execution outcomes. TecFail
models protocol related failures detected at the middleware
level, such as a late, or a syntactically incorrect message.
BizFail models semantic errors in a message detected at the
business level, e.g., the credit card details extracted from the
received payment document are incorrect.

E. Discussion

It is clear that the information available to the CCC can
also be used by the interacting partners to maintain consis-
tency of the overall state of interaction between all parties
that are involved. For example, a business partner can use the
termination status (CC — NCC) received from the CCC, in
order to drive its execution of business processes, thereby
eliminating (or substantially reducing the occurrences of)
situations that arise due to divergence in views. A natural
extension therefore would be to convert the CCC to a
contract enforcer that prevents the partners from performing
prohibited operations. The timer component within the CCC
architecture can also be used to identify obligations that have
not been fulfilled by certain deadlines, and to proactively
inform affected participants.

III. CONTRACT ENFORCEMENT

The CCC presented in the previous section acts as an
observer that does not interfere with the actions of the
interacting parties. For the CCC to act as an enforcer it
must be intimately involved in the execution of operations
between all parties. In the following section we discuss
the requirements for a contract enforcement service using
a Research Data (RD) storage and access control scenario.

GOV
policy

Research
funder
 policy

University
policy

low level
executable

contract policies
extracted from

CCC
Policy Enforcer

Operation
Executor

authorisation
request

authorisation
response

PI

operation request

operation response

RO
metadata

Database

*.java *.pdf

actual data on cloud

 result of operation

operation execution

ROP
Sets

consult

Fig. 2. High level view of CCC Policy Enforcer and Operation Executor.

A. Policy Enforcement Scenario

Scientific activities normally result in the production of
research data that can be used to support scientific claims. By
Research Data (RD), we mean data produced from research
activities such as computer programs, genome sequences,
data recorded during archaeological excavation, data col-
lected about atmospheric conditions, and so forth. As well
as traditional publications such as journal, conference papers
and technical reports. It has become common practice to
store research data in electronic mediums, such as plain
files or database records. The data can be stored locally
within an organization, on a public cloud, or using a hybrid
cloud solution depending on the nature of the data being
stored and various security and privacy needs. As a general
rule, research data is owned by the institution (for example
a university) that employs the scientists involved in the
research. Thus research institutions are legally responsible
for guaranteeing that RD generated under their auspices
comply with a number of policies. Intuitively speaking, RD
policies are meant to regulate the management of RD to
guarantee that it is kept for as long as necessary, and made
widely accessible to view and reuse under the observance of
some requirements. Typical requirements are protection of
intellectual property and privacy, and accuracy of the RD so
that it allows reproducibility (or at least repeatability) of the
original scientific experiment [15].

The following is a typical policy imposed on RD at a re-
search university: ”The University has the right of unfettered
access to RD generated from research activities conducted by
its research staff”. As a second example, take the following
policy imposed on RD at the University of Pittsburgh: ”RD
is retained for a minimum of seven years after the final
reporting or publication of a project”.

Legally speaking, universities are responsible for ensuring
that RD policies are observed. They are expected to devise
mechanisms that guarantee that the operations executed by
RD users against RD comply with the RD policies in force.

The enforcement of RD policies is a complex and currently
a poorly understood topic that deserves research attention.
For instance it is not surprising that in order to tackle this
issue in the United Kingdom, the Digital Curation Centre
(DCC) was created in the UK in 2010 [16] to provide expert
advice and practical help in RD management to UK higher
education institutions. For example, RD needs to comply
with policies stipulated independently by several bodies such
as the research institution that owns the RD, the sponsors of
the project that generated the RD, as well as governmental
policies.

In this paper we argue that this problem can be addressed
by the use of an automatic policy enforcer service that
regulates the operations executed against abstract structures
of research data, known as Research Objects (RO) [17]. A
simplified example of research data policy is given next to
support our discussion:

1) PI (Principal Investigator) has the right to upload
RD to the RD repository after his registration to the
repository.

2) If the size of RD PI uploads is less than 10 MB.
a) PI is prohibited from deleting the RD.
b) PI has a right to update the latest publication

date of the RD he/she has uploaded within 2
years.

c) PI has the right to download the RD he/she has
uploaded.

3) If the size of RD uploaded by PI is larger than 10 MB.
a) PI is obliged to specify the raw data and tools

for reproducing this RD.
b) PI has an obligation to delete the RD from the

repository within one month after he fulfills his
obligation of (a).

Fig 2 shows three possible policy stakeholders (University,
Research funder such as the EU, and a national government).
But in practice, more stakeholders such as industrial partners
can be involved. The figure also shows a high level view of

Fig. 3. Typical interaction with the CCC Enforcer.

the CCC when acting as an enforcer with two main compo-
nents, the Policy Enforcer, and the Operation Executor.

The state of the a RO can be changed by operations
requested by RD users. In Fig 2, the PI (Principal Inves-
tigator) is shown placing an operation request. An operation
is executed by the operation executor only if the operation
is authorized by the policy enforcer.

As with the contract example shown in Section II, a
research data policy contract essentially specifies the rights,
obligations and prohibitions of the users involved. In the fig-
ure, research objects (RO) are stored in a meta-data database.
A research object contains links to the actual research data
represented by it. An operation on a RO therefore could be
mapped to the actual research data. The three high level
policies of our example are integrated into low level policies
(such as the Drools rules described in Section II-B), which
are executable by the policy enforcer, and must be conflict
free. The policy enforcer authorizes a request only if it finds
it to be compliant with the list of low level policies derived
from the overall RD policy description.

By enforcement of RD policies, we mean that the policy
enforcer should be able to prevent those operations which
violate the RD policies. So the enforcer has to decide whether
an operation on research data should be permitted before
it is performed. If the operation violates any policies, then
permission should be denied.

B. Example Execution

An example execution of the previous scenario is shown in
Fig. 3. The CCC web service provides research data storage
service on the cloud and the RD stored in it are enforced by
RD policies shown earlier. Here is a description of the steps
shown in the figure:

1) In Fig. 3, the client (for example the PI) sends a request
to upload a research object to the database.

2) The operation executor constructs an event object for
the request received. This event includes information
about the client and the performed operation. This
object is then passed to the policy enforcer.

3) After receiving the event object, the policy enforcer
logs the event and checks for policy compliance of the
upload operation according to the coded RD contract
policies. The policy enforcer also checks the ROP sets.

4) The policy enforcer then decides whether this upload
event is contract-compliant (CC) or not (NCC).

5) Importantly, the policy enforcer then blocks the ROP
sets, and further operations are temporarily prevented
in order to avoid causing inconsistencies in the state of
the ROP set while the current operation is in progress.

6) The policy returns its verdict on the event to the
operation executor.

7) a) If the verdict is that the operation is Contract
Compliant, the executor will attempt to upload
the research object in the database.

b) If the verdict is None Contract Compliant, the
executor will respond to the user informing them
that the operation is not allowed.

8) The executor gets the execution result of the upload
operation.

9) a) If the research object is uploaded successfully,
the executor will pass a succeed event (S event)
to the policy enforcer to notify it that the upload
operation was executed successfully.

b) If the upload operation fails, then the executor
will send a failed event to the policy enforcer to
inform it that the delete operation has failed.

10) The policy enforcer will change the ROP set of the
user according to the result of the upload action and
according to the requirements of the RD policies.

11) Finally, the executor returns the execution result to the
user.

C. Enhancing the ROP ontology for contract enforcement

Within the CCC monitoring service, each of a role player’s
rights obligations or prohibitions, need only be in one of
two possible states: either active or inactive. For the CCC
to operate as an enforcer these two states are inadequate.
Because the policy enforcer determines the contractual com-
pliance of an operation before its execution (it also has to
detect potential execution failures), we introduce a new state
for describing a right, obligation or prohibition currently in
execution called inExecution. When a right, obligation or
prohibition is matched by an operation, its state will become
inExecution until the execution result of the operation is
determined. This is to prevent the modification of the ROP
set by other operations (parallel execution attempt) while the
current operation outcome is being determined by the CCC.
This state is then changed by the policy enforcer according
to both the execution result, and according to the contract
policy. For example, the RD contract policies of our previous
example specify that a PI has an obligation to specify the
raw data and tools for reproducing this RD if the size of
the RD uploaded is larger than 10 MB. According to the
policy, if the PI fulfills this obligation, the obligation should
be removed from the ROP sets of the PI which means that
the PI no longer has this obligation. However, if the PI fails
to fulfill this obligation, then the obligation should remain
imposed because the data and tools have not been uploaded.

Fig. 4 illustrates how the state of an obligation to delete
a file changes through time where; t1 is the time at which
the policy enforcer decides if the delete operation is policy-
compliant or not, and t2 is the time at which the policy
enforcer receives the result of executing the delete operation.

First, the obligation to delete the file is imposed on the
PI. Then the state of the obligation to delete the file changes
to inExecution when the policy enforcer considers the delete
operation policy-compliant. During the state of inExecution,
this ROP set is temporarily unavailable. If the PI tries to send
another request to delete the same file when the obligation
to delete the file is inExecution, this attempt will be blocked.

After a successful execution of the delete operation, the
state of the obligation is set to fulfilled, which means that
the obligation is honored as shown Fig. 4 a). If the result
of execution fails, then the state of the obligation will be
changed back to imposed so that PI can try to delete the file
again as shown in Fig. 4 b).

The significance of introducing inExecution is that some-
times performing an operation takes a relatively long time,
and during this time the PI should not be able to re-perform
the same operation until it has completed. Also, when the
policy enforcer receives an operation execution result, it has

Fig. 4. The state of the delete obligation changes through time.

to distinguish which rights, obligations or prohibitions have
definitively been previously executed.

In Fig. 4 the state imposed within the enforcer service is
the same as the active state of the CCC monitor service. In
addition, we introduce the state fulfilled if an obligation or
prohibition has been honored. A right has no state of fulfilled
as a right can potentially be performed many times. But a
particular obligation or prohibition can only be performed
once. Therefore, we use a counter to keep track of how many
times a right has been performed. Fig. 5 shows the states that
rights, obligations, and prohibitions can go through during
their life-time. A new state called violated is also introduced
which means that a right, obligation or prohibition has not
been fulfilled after a particular deadline. Because the deadline
for a right or prohibition may not necessarily be triggered,
the state violated is optional for rights and prohibitions. The
state of an individual right r, obligation o and prohibition p
is represented by Sr, So, and Sp respectively.

D. Contract Compliance within the Enforcer

For an operation opi by a role player rp, to be contract-
compliant, the event for representing its execution, e{rp, opi,
status, time} must satisfy the following conditions:

Right Obligation Prohibition

State

Imposed
Inactive

InExecution
Violated (optional)

Imposed
Inactive

InExecution
Violated
Fulfilled

Imposed
Inactive

InExecution
Violated (optional)

Fulfilled

Fig. 5. Possible states for Rights, Obligations, and Prohibitions.

1) rp ∈ RP; the role player rp who initiates an operation
opi must belong to the set of valid users RP .

2) opi ∈ OP; an operation opi must be a known operation.
In other words, it must be one of operations specified
in the set of operations OP .

3) opi ` ROPrp; an operation opi must match an op-
eration within the initiating role player’s ROP set.
Meaning that the user who initiates the operation opi
must have a right, obligation or prohibition to perform
it.

4) Se∈{notExecuted, success, failed} the status of
event must be notExecuted, success or failed. Any
status except the three will be treated as none contract
compliant (NCC).

5) time constraint (optional). The time of occurrence of
an event must be before the deadline of the matched
right, obligation or prohibition.

6) history of event (optional). Whether an event is policy-
compliant or not may depend on the occurrence of
other events.

7) any other constrains specified in the contract (optional).
To illustrate the last three constrains, here is an example of
a RD (research data) policy with two clauses:
A research paper can be deleted from the system if:

1) Its size is larger than 1024 MB (other constraint).
2) After 1 year of uploading (time constraint).
3) The raw data and software for reproducing it are also

stored in the system (history of event constraint).

IV. ARCHITECTURE OF THE POLICY ENFORCER

A high level view of the CCC is shown in Fig. 6. It
consists of two layers: The CCC Engine (The Logical Layer),
and the CCC Service (The Presentation Layer). The CCC
Engine is responsible for processing business events and for
determining whether they are contract compliant or not. The
CCC Service is an interface to the CCC Engine, it is used
for delivering business events to the CCC, and for collecting
the corresponding responses. In addition, the CCC Service
can be used by the rule administrator for loading and editing
the rules that represent the contract. The functionality of the
architecture is as follows: An event is received through the
monitoring channel as an XML document that includes the
names of the initiator, the operation, and its outcome from
the set: (Success, BizFail, TecFail):

<event>
<originator>PI</originator>
<type>Upload</type>

BEvent
queue

outcome
queue

BizObj2XML /
XML2BizObj

filter
mism.bo

BEvent
queue

ROP set

contract
rules

BEvent
logger

timer

rule editor
(Browser)

relevance
engine

monitoring
channel

 outcome events
 (S, TF, BF)

tim
eo

ut
 e

ve
nt

s

set / reset

timeouts

update(add/del)

 response
 CC | NCC

Presentation Layer

Logical Layer

upload rule
service

Fig. 6. Architecture of the Contract Compliance Checker (CCC).

<status>success</status>
</event>

The XML document representing the event is passed to the
BEvent queue. Business events are retrieved, and converted
using the xml2BizObj/BizObj2xml Converter from their XML
format into business event objects. Events are then passed to
the CCC Engine. The filter mism.bo, discards mismatched
business events that are not among the permitted events
defined within the ROP set. Business events that pass this
filter are inserted into the BEvent queue. All deadlines are
set and reset by the relevance engine, and enforced by the
timer. Timeout events are added to the filter mism.bo as
required by the contract, and are examined by the filter to
decide if bevents are mismatched. For example, receiving
an upload event from the PI after a 3 day deadline has
elapsed, will be treated as mismatched. The relevance engine
removes a business event from the head of the bevent queue
and compares it to the rules stored in the contract rules.
Rules that match the bevent under examination are triggered
to determine if their conditions are satisfied. The actions of
the rules whose conditions are satisfied are executed, and
this may alter (add/del) the current state of the ROP sets. The
bevent is then stored in the BEvent logger as a record for any
future dispute resolution. The relevance engine eventually
declares the business event either CC or NCC and produces
a response as a business object, which is sent out to the
Presentation Layer. The business object passes through the
xml2BizObj/BizObj2xml Converter, where it is serialized into

an XML message of the following format:

<result>
<contractcompliant>true|false
</contractcompliant>

</result>

If the decision of the CCC Enforcer is that the event is
none contract compliant then an extra element is attached to
the response event. This element outlines the reason the event
is not contract compliant. An xml representation of such a
response event is displayed below:

<result>
<contractCompliant>false
</contractCompliant>
<message>Obligation to upload before

deadline is violated
</message>

</result>

The xml2BizObj/BizObj2xml Converter inserts the response
into the outcome queue, which can be accessed by the
contracted parties. The Presentation Layer allows a ”rule
manager” to update the contract rules at run time. For
this purpose, rules can be edited using the rule editor
(in a browser) and sent to the rule upload service as a
conventional RESTful POST operation. The rule upload
service is responsible for producing a drl (Drools) file (for
example new–rules.drl) from the payload of the POST
operation, and for uploading it to the CCC Logical Layer to
replace the Contract Rules.

The CCC Logical Layer is implemented using JBoss’s Drools
rules engine [12]. The Drools rules engine powers the
decision making capabilities of the relevance engine. The
relevance engine, acts as a wrapper for the Drools rule
engine and its responsibilities include the initialisation of
the contract, as well as the addition and processing of events
received from the Presentation Layer.

The Presentation layer, exposes the CCC as a RESTful
web service. Its aim is to enable the exchange of XML
event messages between the CCC and the contracted clients,
and to ease the editing and update of the contract rules.
The Presentation Layer is implemented using the JBoss
Enterprise Application Platform (EAP), [18]. The BEvent
queue and the outcome queue, are implemented using JBoss’s
HornetQ (a message oriented middleware layer), and using
the Java Message Service (JMS) API. A Message Driven
Bean (MDB) receives business events from HornetQ and
passes them to the XML2BizObj/BizObj2XML converter,
which is implemented using Java. The upload rule service
is part of the Drools Workbench– a web authoring and rules
management application.

V. RELATED WORK

Research work on the monitoring and enforcement of
cross-organizational interactions between parties was pio-

neered by Minsky [19] with work on Law Governed Inter-
action (LGI). LGI is a law enforcer that regulates the inter-
action between autonomous and distributed agents linked by
a communication network. A controller instrumented with
the law (e.g., contractual clauses) is placed between each
agent and the network to intercept and rule on incoming or
outgoing messages that are incompatible with the law, keep
the agent state in synchrony with other agents, verify certain
conditions, and execute relevant actions to enforce the law
imposed on the agent. The LGI system architecture is peer-
to-peer in the sense that each participant is required to run
an instance of LGI, whereas we have examined compliance
checking from the view point of a trusted third party. Further,
unlike our work, timing and message validity constraints that
are an essential part of on-line messaging are not considered
in LGI.

The notion of rights, obligations and prohibitions was
introduced in [20]. A useful summary about various issues
involved in contract management is provided in [21].

We are not the first to suggest an event centric approach
to model contracts. In [22] the authors describe an obligation
enforcer focused on the enforcement of resource usage poli-
cies such as No execution should last more than one second.
It is designed under the assumption that all actions are al-
lowed and (if necessary) compensatory; likewise all resources
are assumed to be preemptive (e.g., Abort a given job after
3 sec of execution to free CPU). Consequently, unlike in our
work, the notion of rights and prohibitions are not of concern.
The architecture of the obligation enforcer of [22] bears some
similarities to our CCC, except that pending obligations are
recorded in a history log whereas in our work we express
them explicitly in ROP sets, and therefore our CCC is able
to automatically detect the none fulfillment of obligations by
deadlines specified within the Drools rules. In [23], an event
based SLA compliance monitoring framework is presented
where the monitoring platform is capable of reacting to
compliance violations as soon as they happen – as we do
using our CCC. The paper also describes the advantages
of immediate reactions to violations such as an enterprise
avoiding or at least minimizing penalty fees for SLAs, in
addition to potential reduction of operational costs. The paper
goes on to highlight important future work on including
forecasting capabilities into their compliance model, which
we address within our model using the timer component,
which is capable of generating events reminding contracted
parties of their rights, prohibitions, or obligations well before
their deadlines.

A general overview of the four phases of electronic con-
tracting (information phase, pre-contracting, contracting, and
enactment) that an electronic contracting process involves is
presented in [24]. With respect to this taxonomy, our work
focuses on the enactment phase and in particular, on the
monitoring, enforcement, and control activity. Our aim is
to provide a concrete solution to monitor and when neces-
sary enforce interactions in various distributed application
settings, and also collect historical records that can assist

in off-line evaluation of contract compliance and in dispute
resolution.

VI. CONCLUSIONS AND FUTURE WORK

The CCC (Contract Compliance Checker) is a state aware
event driven mechanism that when supplied with an appro-
priate electronic contract specification, is capable of deter-
mining the contractual compliance of electronic exchanges
between collaborators. In this paper we have presented an
enhancement to the CCC service, and to our ROP ontology,
enabling it be deployed as an enforcer service. We have
determined the requirements for such a service using a
simplified but realistic Research Data access control scenario.

Unlike the CCC monitoring service which acts only as
an observer, a contract enforcement service needs to be
intimately involved in the execution of operations, actively
preventing the initiation of some operations, and proac-
tively detecting and informing affected parties of the none-
fulfillment of obligations. The CCC Enforcer observes and
logs relevant interaction events, which it processes to deter-
mine whether actions are contract compliant (CC) or none
contract compliant (NCC).

An important item for future work is the development of
tools for the automatic verification and testing of coded elec-
tronic contracts. As the complexity of interactions in domains
such as IoT, and cloud computing increases, naturally so
do the electronic contracts. Such complexity makes it much
more likely for conflicts between the clauses of contracts
to occur (for example mutually prohibiting and obliging
an operation). Thus the need for verification, and for the
development of tools (such as [25]) that makes verification
easier for none computing experts is extremely important.

REFERENCES

[1] D. Kyriazis, “Cloud computing service level agreements - exploitation
of research results,” European Commission, 2013.

[2] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne, “Con-
tract representation for run-time monitoring and enforcement,” in 2003
IEEE International Conference on E-Commerce (CEC 2003). IEEE,
2003.

[3] E. Solaiman, R. Ranjan, P. Jayaraman, and K. Mitra, “Failure moni-
toring in the internet of things application ecosystems: Cloud to edge,”
IT Professional IEEE Computer Society, 2016, in press.

[4] C. Molina-Jimenez, S. Shrivastava, and S. Wheater, “An architecture
for negotiation and enforcement of resource usage policies,” in IEEE
International Conference on Service Oriented Computing & Applica-
tions (SOCA). IEEE, 2011.

[5] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne, “Run-
time monitoring and enforcement of electronic contracts,” Electronic
Commerce Research and Applications, 2004.

[6] M. Strano, C. Molina-Jimenez, and S. Shrivastava, “A rule-based nota-
tion to specify executable electronic contracts,” in Rule Representation,
Interchange and Reasoning on the Web: International Symposium
(RuleML). Springer-Verlag, 2008.

[7] G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance checking
between business processes and business contracts,” in 10th Int’l
Enterprise Distrib. Object Computing Conf. (EDOC’06). IEEE CS,
2006, pp. 221–232.

[8] C. Molina-Jimenez, S. Shrivastava, and M. Strano, “A model for check-
ing contractual compliance of business interactions,” IEEE Transac-
tions on Services Computing, vol. 5, no. 2, pp. 276–289, 2012.

[9] E. Solaiman, C. Molina-Jimenez, and S. Shrivastava, “Model checking
correctness properties of electronic contracts,” in International Con-
ference on Service Oriented Computing (ICSOC03). Springer, 2003.

[10] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava, “A high level
model checking tool for verifying service agreements,” in The 6th
IEEE International Symposium on Service-Oriented System Engineer-
ing (SOSE 2011). IEEE, 2011.

[11] E. Solaiman, I. Sfyrakis, and C. Molina-Jimenez, “High level model
checker based testing of electronic contracts,” Cloud Computing and
Services Science, Springer-Verlag, 2016.

[12] RedHat, ”Drools”, http://www.drools.org/, 2016.
[13] C. Molina-Jimenez, S. Shrivastava, and M. Strano, “Exception han-

dling in electronic contracting,” in IEEE Conference on Commerce and
Enterprise Computing (CEC). 2009, Vienna, Austria. IEEE, 2009.

[14] OASIS, ebXML Business Process Specification Schema Techni-
cal Specification v2.0.4, Available: http://docs.oasis-open.org/ebxml-
bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf, 2006.

[15] P. Missier, S. Woodman, H. Hiden, and P. Watson, “Provenance and
data differencing for workow reproducibility analysis,” Concurrency
and Computation: Practice and Experience, 2013.

[16] DCC, “Digital curation center’s home page,” http://www.dcc.ac.uk,
Last accessed 2016.

[17] S. Bechhofer, I. Buchan, D. D. Roure, P. Missier, J. Ainsworth, J. Bha-
gat, P. Couch, D. Cruickshank, M. Delderfiel, I. Dunlop, M. Gamble,
D. Michaelides, S. Owen, D. Newman, S. Sufi, and C. Goble, “Why
linked data is not enough for scientists,” Future Generation Computer
Systems, 2013.

[18] RedHat, JBoss Enterprise Application Platform,
http://www.redhat.com/en/technologies/jboss-middleware/application-
platform, 2016.

[19] V. Ungureanu and N. H. Minsky, “Establishing business rules for inter
enterprise electronic commerce,” in 14th International Symposium on
Distributed Computing (DISC00), 2000, pp. 179–193.

[20] H. Ludwig and M. Stolze, “Simple obligation and right model (sorm)-
for the runtime management of electronic service contracts,” in 2nd Intl
Workshop on Web Services, eBusiness, and the Semantic Web (WES03)
LNCS, vol. 3095, 2003, pp. 62–76.

[21] T. Hvitved, “A survey of formal languages for contracts,” in n Fourth
Workshop on Formal Languages and Analysis of Contract Oriented
Software (FLACOS10), 2010.

[22] P. Gama, C. Ribeiro, and P. Ferreira, “Heimdhal: A history-based
policy engine for grids,” in Sixth IEEE Intl Symp. Cluster Computing
and the Grid (CCGRID 06). IEEE, 2006.

[23] R. Thullner and S. Rozsnyai, “Proactive business process compliance
monitoring with event-based systems,” in Proc. 15th IEEE Interna-
tional Enterprise Distributed Object Computing Conference, 2011.

[24] S. Angelov and P. Grefen, “Supporting the diversity of b2b econtract-
ing processes,” International Journal of Electronic Commerce, 2008.

[25] E. Solaiman, W. Sun, and C. Molina-Jimenez, “A tool for the automatic
verification of bpmn choreographies,” in IEEE 12th International
Conference on Services Computing (SCC). IEEE, 2015.

